blob: 1347f008d9f6d2ea3e05ccac79191ef7b0ec6d87 [file] [log] [blame]
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H
#include "clang/AST/APValue.h"
#include "clang/AST/ASTVector.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SyncScope.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
namespace clang {
class APValue;
class ASTContext;
class BlockDecl;
class CXXBaseSpecifier;
class CXXMemberCallExpr;
class CXXOperatorCallExpr;
class CastExpr;
class Decl;
class IdentifierInfo;
class MaterializeTemporaryExpr;
class NamedDecl;
class ObjCPropertyRefExpr;
class OpaqueValueExpr;
class ParmVarDecl;
class StringLiteral;
class TargetInfo;
class ValueDecl;
/// A simple array of base specifiers.
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
/// An adjustment to be made to the temporary created when emitting a
/// reference binding, which accesses a particular subobject of that temporary.
struct SubobjectAdjustment {
enum {
DerivedToBaseAdjustment,
FieldAdjustment,
MemberPointerAdjustment
} Kind;
struct DTB {
const CastExpr *BasePath;
const CXXRecordDecl *DerivedClass;
};
struct P {
const MemberPointerType *MPT;
Expr *RHS;
};
union {
struct DTB DerivedToBase;
FieldDecl *Field;
struct P Ptr;
};
SubobjectAdjustment(const CastExpr *BasePath,
const CXXRecordDecl *DerivedClass)
: Kind(DerivedToBaseAdjustment) {
DerivedToBase.BasePath = BasePath;
DerivedToBase.DerivedClass = DerivedClass;
}
SubobjectAdjustment(FieldDecl *Field)
: Kind(FieldAdjustment) {
this->Field = Field;
}
SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
: Kind(MemberPointerAdjustment) {
this->Ptr.MPT = MPT;
this->Ptr.RHS = RHS;
}
};
/// This represents one expression. Note that Expr's are subclasses of Stmt.
/// This allows an expression to be transparently used any place a Stmt is
/// required.
class Expr : public Stmt {
QualType TR;
protected:
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
: Stmt(SC)
{
ExprBits.TypeDependent = TD;
ExprBits.ValueDependent = VD;
ExprBits.InstantiationDependent = ID;
ExprBits.ValueKind = VK;
ExprBits.ObjectKind = OK;
assert(ExprBits.ObjectKind == OK && "truncated kind");
ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
setType(T);
}
/// Construct an empty expression.
explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
public:
QualType getType() const { return TR; }
void setType(QualType t) {
// In C++, the type of an expression is always adjusted so that it
// will not have reference type (C++ [expr]p6). Use
// QualType::getNonReferenceType() to retrieve the non-reference
// type. Additionally, inspect Expr::isLvalue to determine whether
// an expression that is adjusted in this manner should be
// considered an lvalue.
assert((t.isNull() || !t->isReferenceType()) &&
"Expressions can't have reference type");
TR = t;
}
/// isValueDependent - Determines whether this expression is
/// value-dependent (C++ [temp.dep.constexpr]). For example, the
/// array bound of "Chars" in the following example is
/// value-dependent.
/// @code
/// template<int Size, char (&Chars)[Size]> struct meta_string;
/// @endcode
bool isValueDependent() const { return ExprBits.ValueDependent; }
/// Set whether this expression is value-dependent or not.
void setValueDependent(bool VD) {
ExprBits.ValueDependent = VD;
}
/// isTypeDependent - Determines whether this expression is
/// type-dependent (C++ [temp.dep.expr]), which means that its type
/// could change from one template instantiation to the next. For
/// example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// @code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// @endcode
bool isTypeDependent() const { return ExprBits.TypeDependent; }
/// Set whether this expression is type-dependent or not.
void setTypeDependent(bool TD) {
ExprBits.TypeDependent = TD;
}
/// Whether this expression is instantiation-dependent, meaning that
/// it depends in some way on a template parameter, even if neither its type
/// nor (constant) value can change due to the template instantiation.
///
/// In the following example, the expression \c sizeof(sizeof(T() + T())) is
/// instantiation-dependent (since it involves a template parameter \c T), but
/// is neither type- nor value-dependent, since the type of the inner
/// \c sizeof is known (\c std::size_t) and therefore the size of the outer
/// \c sizeof is known.
///
/// \code
/// template<typename T>
/// void f(T x, T y) {
/// sizeof(sizeof(T() + T());
/// }
/// \endcode
///
bool isInstantiationDependent() const {
return ExprBits.InstantiationDependent;
}
/// Set whether this expression is instantiation-dependent or not.
void setInstantiationDependent(bool ID) {
ExprBits.InstantiationDependent = ID;
}
/// Whether this expression contains an unexpanded parameter
/// pack (for C++11 variadic templates).
///
/// Given the following function template:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(const F &f, Types &&...args) {
/// f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// The expressions \c args and \c static_cast<Types&&>(args) both
/// contain parameter packs.
bool containsUnexpandedParameterPack() const {
return ExprBits.ContainsUnexpandedParameterPack;
}
/// Set the bit that describes whether this expression
/// contains an unexpanded parameter pack.
void setContainsUnexpandedParameterPack(bool PP = true) {
ExprBits.ContainsUnexpandedParameterPack = PP;
}
/// getExprLoc - Return the preferred location for the arrow when diagnosing
/// a problem with a generic expression.
SourceLocation getExprLoc() const LLVM_READONLY;
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in expr, location,
/// and ranges with expr to warn on and source locations/ranges appropriate
/// for a warning.
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const;
/// isLValue - True if this expression is an "l-value" according to
/// the rules of the current language. C and C++ give somewhat
/// different rules for this concept, but in general, the result of
/// an l-value expression identifies a specific object whereas the
/// result of an r-value expression is a value detached from any
/// specific storage.
///
/// C++11 divides the concept of "r-value" into pure r-values
/// ("pr-values") and so-called expiring values ("x-values"), which
/// identify specific objects that can be safely cannibalized for
/// their resources. This is an unfortunate abuse of terminology on
/// the part of the C++ committee. In Clang, when we say "r-value",
/// we generally mean a pr-value.
bool isLValue() const { return getValueKind() == VK_LValue; }
bool isRValue() const { return getValueKind() == VK_RValue; }
bool isXValue() const { return getValueKind() == VK_XValue; }
bool isGLValue() const { return getValueKind() != VK_RValue; }
enum LValueClassification {
LV_Valid,
LV_NotObjectType,
LV_IncompleteVoidType,
LV_DuplicateVectorComponents,
LV_InvalidExpression,
LV_InvalidMessageExpression,
LV_MemberFunction,
LV_SubObjCPropertySetting,
LV_ClassTemporary,
LV_ArrayTemporary
};
/// Reasons why an expression might not be an l-value.
LValueClassification ClassifyLValue(ASTContext &Ctx) const;
enum isModifiableLvalueResult {
MLV_Valid,
MLV_NotObjectType,
MLV_IncompleteVoidType,
MLV_DuplicateVectorComponents,
MLV_InvalidExpression,
MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
MLV_IncompleteType,
MLV_ConstQualified,
MLV_ConstQualifiedField,
MLV_ConstAddrSpace,
MLV_ArrayType,
MLV_NoSetterProperty,
MLV_MemberFunction,
MLV_SubObjCPropertySetting,
MLV_InvalidMessageExpression,
MLV_ClassTemporary,
MLV_ArrayTemporary
};
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type,
/// and if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
///
/// \param Loc [in,out] - A source location which *may* be filled
/// in with the location of the expression making this a
/// non-modifiable lvalue, if specified.
isModifiableLvalueResult
isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
/// The return type of classify(). Represents the C++11 expression
/// taxonomy.
class Classification {
public:
/// The various classification results. Most of these mean prvalue.
enum Kinds {
CL_LValue,
CL_XValue,
CL_Function, // Functions cannot be lvalues in C.
CL_Void, // Void cannot be an lvalue in C.
CL_AddressableVoid, // Void expression whose address can be taken in C.
CL_DuplicateVectorComponents, // A vector shuffle with dupes.
CL_MemberFunction, // An expression referring to a member function
CL_SubObjCPropertySetting,
CL_ClassTemporary, // A temporary of class type, or subobject thereof.
CL_ArrayTemporary, // A temporary of array type.
CL_ObjCMessageRValue, // ObjC message is an rvalue
CL_PRValue // A prvalue for any other reason, of any other type
};
/// The results of modification testing.
enum ModifiableType {
CM_Untested, // testModifiable was false.
CM_Modifiable,
CM_RValue, // Not modifiable because it's an rvalue
CM_Function, // Not modifiable because it's a function; C++ only
CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
CM_ConstQualified,
CM_ConstQualifiedField,
CM_ConstAddrSpace,
CM_ArrayType,
CM_IncompleteType
};
private:
friend class Expr;
unsigned short Kind;
unsigned short Modifiable;
explicit Classification(Kinds k, ModifiableType m)
: Kind(k), Modifiable(m)
{}
public:
Classification() {}
Kinds getKind() const { return static_cast<Kinds>(Kind); }
ModifiableType getModifiable() const {
assert(Modifiable != CM_Untested && "Did not test for modifiability.");
return static_cast<ModifiableType>(Modifiable);
}
bool isLValue() const { return Kind == CL_LValue; }
bool isXValue() const { return Kind == CL_XValue; }
bool isGLValue() const { return Kind <= CL_XValue; }
bool isPRValue() const { return Kind >= CL_Function; }
bool isRValue() const { return Kind >= CL_XValue; }
bool isModifiable() const { return getModifiable() == CM_Modifiable; }
/// Create a simple, modifiably lvalue
static Classification makeSimpleLValue() {
return Classification(CL_LValue, CM_Modifiable);
}
};
/// Classify - Classify this expression according to the C++11
/// expression taxonomy.
///
/// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
/// old lvalue vs rvalue. This function determines the type of expression this
/// is. There are three expression types:
/// - lvalues are classical lvalues as in C++03.
/// - prvalues are equivalent to rvalues in C++03.
/// - xvalues are expressions yielding unnamed rvalue references, e.g. a
/// function returning an rvalue reference.
/// lvalues and xvalues are collectively referred to as glvalues, while
/// prvalues and xvalues together form rvalues.
Classification Classify(ASTContext &Ctx) const {
return ClassifyImpl(Ctx, nullptr);
}
/// ClassifyModifiable - Classify this expression according to the
/// C++11 expression taxonomy, and see if it is valid on the left side
/// of an assignment.
///
/// This function extends classify in that it also tests whether the
/// expression is modifiable (C99 6.3.2.1p1).
/// \param Loc A source location that might be filled with a relevant location
/// if the expression is not modifiable.
Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
return ClassifyImpl(Ctx, &Loc);
}
/// getValueKindForType - Given a formal return or parameter type,
/// give its value kind.
static ExprValueKind getValueKindForType(QualType T) {
if (const ReferenceType *RT = T->getAs<ReferenceType>())
return (isa<LValueReferenceType>(RT)
? VK_LValue
: (RT->getPointeeType()->isFunctionType()
? VK_LValue : VK_XValue));
return VK_RValue;
}
/// getValueKind - The value kind that this expression produces.
ExprValueKind getValueKind() const {
return static_cast<ExprValueKind>(ExprBits.ValueKind);
}
/// getObjectKind - The object kind that this expression produces.
/// Object kinds are meaningful only for expressions that yield an
/// l-value or x-value.
ExprObjectKind getObjectKind() const {
return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
}
bool isOrdinaryOrBitFieldObject() const {
ExprObjectKind OK = getObjectKind();
return (OK == OK_Ordinary || OK == OK_BitField);
}
/// setValueKind - Set the value kind produced by this expression.
void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
/// setObjectKind - Set the object kind produced by this expression.
void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
private:
Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
public:
/// Returns true if this expression is a gl-value that
/// potentially refers to a bit-field.
///
/// In C++, whether a gl-value refers to a bitfield is essentially
/// an aspect of the value-kind type system.
bool refersToBitField() const { return getObjectKind() == OK_BitField; }
/// If this expression refers to a bit-field, retrieve the
/// declaration of that bit-field.
///
/// Note that this returns a non-null pointer in subtly different
/// places than refersToBitField returns true. In particular, this can
/// return a non-null pointer even for r-values loaded from
/// bit-fields, but it will return null for a conditional bit-field.
FieldDecl *getSourceBitField();
const FieldDecl *getSourceBitField() const {
return const_cast<Expr*>(this)->getSourceBitField();
}
Decl *getReferencedDeclOfCallee();
const Decl *getReferencedDeclOfCallee() const {
return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
}
/// If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *getObjCProperty() const;
/// Check if this expression is the ObjC 'self' implicit parameter.
bool isObjCSelfExpr() const;
/// Returns whether this expression refers to a vector element.
bool refersToVectorElement() const;
/// Returns whether this expression refers to a global register
/// variable.
bool refersToGlobalRegisterVar() const;
/// Returns whether this expression has a placeholder type.
bool hasPlaceholderType() const {
return getType()->isPlaceholderType();
}
/// Returns whether this expression has a specific placeholder type.
bool hasPlaceholderType(BuiltinType::Kind K) const {
assert(BuiltinType::isPlaceholderTypeKind(K));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
return BT->getKind() == K;
return false;
}
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool isKnownToHaveBooleanValue() const;
/// isIntegerConstantExpr - Return true if this expression is a valid integer
/// constant expression, and, if so, return its value in Result. If not a
/// valid i-c-e, return false and fill in Loc (if specified) with the location
/// of the invalid expression.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
SourceLocation *Loc = nullptr,
bool isEvaluated = true) const;
bool isIntegerConstantExpr(const ASTContext &Ctx,
SourceLocation *Loc = nullptr) const;
/// isCXX98IntegralConstantExpr - Return true if this expression is an
/// integral constant expression in C++98. Can only be used in C++.
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
/// isCXX11ConstantExpr - Return true if this expression is a constant
/// expression in C++11. Can only be used in C++.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
SourceLocation *Loc = nullptr) const;
/// isPotentialConstantExpr - Return true if this function's definition
/// might be usable in a constant expression in C++11, if it were marked
/// constexpr. Return false if the function can never produce a constant
/// expression, along with diagnostics describing why not.
static bool isPotentialConstantExpr(const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isPotentialConstantExprUnevaluted - Return true if this expression might
/// be usable in a constant expression in C++11 in an unevaluated context, if
/// it were in function FD marked constexpr. Return false if the function can
/// never produce a constant expression, along with diagnostics describing
/// why not.
static bool isPotentialConstantExprUnevaluated(Expr *E,
const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isConstantInitializer - Returns true if this expression can be emitted to
/// IR as a constant, and thus can be used as a constant initializer in C.
/// If this expression is not constant and Culprit is non-null,
/// it is used to store the address of first non constant expr.
bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
const Expr **Culprit = nullptr) const;
/// EvalStatus is a struct with detailed info about an evaluation in progress.
struct EvalStatus {
/// Whether the evaluated expression has side effects.
/// For example, (f() && 0) can be folded, but it still has side effects.
bool HasSideEffects;
/// Whether the evaluation hit undefined behavior.
/// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
/// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
bool HasUndefinedBehavior;
/// Diag - If this is non-null, it will be filled in with a stack of notes
/// indicating why evaluation failed (or why it failed to produce a constant
/// expression).
/// If the expression is unfoldable, the notes will indicate why it's not
/// foldable. If the expression is foldable, but not a constant expression,
/// the notes will describes why it isn't a constant expression. If the
/// expression *is* a constant expression, no notes will be produced.
SmallVectorImpl<PartialDiagnosticAt> *Diag;
EvalStatus()
: HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
// hasSideEffects - Return true if the evaluated expression has
// side effects.
bool hasSideEffects() const {
return HasSideEffects;
}
};
/// EvalResult is a struct with detailed info about an evaluated expression.
struct EvalResult : EvalStatus {
/// Val - This is the value the expression can be folded to.
APValue Val;
// isGlobalLValue - Return true if the evaluated lvalue expression
// is global.
bool isGlobalLValue() const;
};
/// EvaluateAsRValue - Return true if this is a constant which we can fold to
/// an rvalue using any crazy technique (that has nothing to do with language
/// standards) that we want to, even if the expression has side-effects. If
/// this function returns true, it returns the folded constant in Result. If
/// the expression is a glvalue, an lvalue-to-rvalue conversion will be
/// applied.
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
/// EvaluateAsBooleanCondition - Return true if this is a constant
/// which we can fold and convert to a boolean condition using
/// any crazy technique that we want to, even if the expression has
/// side-effects.
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
enum SideEffectsKind {
SE_NoSideEffects, ///< Strictly evaluate the expression.
SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
///< arbitrary unmodeled side effects.
SE_AllowSideEffects ///< Allow any unmodeled side effect.
};
/// EvaluateAsInt - Return true if this is a constant which we can fold and
/// convert to an integer, using any crazy technique that we want to.
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// EvaluateAsFloat - Return true if this is a constant which we can fold and
/// convert to a floating point value, using any crazy technique that we
/// want to.
bool
EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded without side-effects, but discard the result.
bool isEvaluatable(const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// HasSideEffects - This routine returns true for all those expressions
/// which have any effect other than producing a value. Example is a function
/// call, volatile variable read, or throwing an exception. If
/// IncludePossibleEffects is false, this call treats certain expressions with
/// potential side effects (such as function call-like expressions,
/// instantiation-dependent expressions, or invocations from a macro) as not
/// having side effects.
bool HasSideEffects(const ASTContext &Ctx,
bool IncludePossibleEffects = true) const;
/// Determine whether this expression involves a call to any function
/// that is not trivial.
bool hasNonTrivialCall(const ASTContext &Ctx) const;
/// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
/// integer. This must be called on an expression that constant folds to an
/// integer.
llvm::APSInt EvaluateKnownConstInt(
const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
llvm::APSInt EvaluateKnownConstIntCheckOverflow(
const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
void EvaluateForOverflow(const ASTContext &Ctx) const;
/// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
/// lvalue with link time known address, with no side-effects.
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
/// EvaluateAsInitializer - Evaluate an expression as if it were the
/// initializer of the given declaration. Returns true if the initializer
/// can be folded to a constant, and produces any relevant notes. In C++11,
/// notes will be produced if the expression is not a constant expression.
bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
const VarDecl *VD,
SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
/// EvaluateWithSubstitution - Evaluate an expression as if from the context
/// of a call to the given function with the given arguments, inside an
/// unevaluated context. Returns true if the expression could be folded to a
/// constant.
bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
const FunctionDecl *Callee,
ArrayRef<const Expr*> Args,
const Expr *This = nullptr) const;
/// Indicates how the constant expression will be used.
enum ConstExprUsage { EvaluateForCodeGen, EvaluateForMangling };
/// Evaluate an expression that is required to be a constant expression.
bool EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
const ASTContext &Ctx) const;
/// If the current Expr is a pointer, this will try to statically
/// determine the number of bytes available where the pointer is pointing.
/// Returns true if all of the above holds and we were able to figure out the
/// size, false otherwise.
///
/// \param Type - How to evaluate the size of the Expr, as defined by the
/// "type" parameter of __builtin_object_size
bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
unsigned Type) const;
/// Enumeration used to describe the kind of Null pointer constant
/// returned from \c isNullPointerConstant().
enum NullPointerConstantKind {
/// Expression is not a Null pointer constant.
NPCK_NotNull = 0,
/// Expression is a Null pointer constant built from a zero integer
/// expression that is not a simple, possibly parenthesized, zero literal.
/// C++ Core Issue 903 will classify these expressions as "not pointers"
/// once it is adopted.
/// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
NPCK_ZeroExpression,
/// Expression is a Null pointer constant built from a literal zero.
NPCK_ZeroLiteral,
/// Expression is a C++11 nullptr.
NPCK_CXX11_nullptr,
/// Expression is a GNU-style __null constant.
NPCK_GNUNull
};
/// Enumeration used to describe how \c isNullPointerConstant()
/// should cope with value-dependent expressions.
enum NullPointerConstantValueDependence {
/// Specifies that the expression should never be value-dependent.
NPC_NeverValueDependent = 0,
/// Specifies that a value-dependent expression of integral or
/// dependent type should be considered a null pointer constant.
NPC_ValueDependentIsNull,
/// Specifies that a value-dependent expression should be considered
/// to never be a null pointer constant.
NPC_ValueDependentIsNotNull
};
/// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
/// a Null pointer constant. The return value can further distinguish the
/// kind of NULL pointer constant that was detected.
NullPointerConstantKind isNullPointerConstant(
ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const;
/// isOBJCGCCandidate - Return true if this expression may be used in a read/
/// write barrier.
bool isOBJCGCCandidate(ASTContext &Ctx) const;
/// Returns true if this expression is a bound member function.
bool isBoundMemberFunction(ASTContext &Ctx) const;
/// Given an expression of bound-member type, find the type
/// of the member. Returns null if this is an *overloaded* bound
/// member expression.
static QualType findBoundMemberType(const Expr *expr);
/// IgnoreImpCasts - Skip past any implicit casts which might
/// surround this expression. Only skips ImplicitCastExprs.
Expr *IgnoreImpCasts() LLVM_READONLY;
/// IgnoreImplicit - Skip past any implicit AST nodes which might
/// surround this expression.
Expr *IgnoreImplicit() LLVM_READONLY {
return cast<Expr>(Stmt::IgnoreImplicit());
}
const Expr *IgnoreImplicit() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreImplicit();
}
/// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
/// its subexpression. If that subexpression is also a ParenExpr,
/// then this method recursively returns its subexpression, and so forth.
/// Otherwise, the method returns the current Expr.
Expr *IgnoreParens() LLVM_READONLY;
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
/// or CastExprs, returning their operand.
Expr *IgnoreParenCasts() LLVM_READONLY;
/// Ignore casts. Strip off any CastExprs, returning their operand.
Expr *IgnoreCasts() LLVM_READONLY;
/// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
/// any ParenExpr or ImplicitCastExprs, returning their operand.
Expr *IgnoreParenImpCasts() LLVM_READONLY;
/// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
/// call to a conversion operator, return the argument.
Expr *IgnoreConversionOperator() LLVM_READONLY;
const Expr *IgnoreConversionOperator() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreConversionOperator();
}
const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenImpCasts();
}
/// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
/// CastExprs that represent lvalue casts, returning their operand.
Expr *IgnoreParenLValueCasts() LLVM_READONLY;
const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
}
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size). Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
/// Ignore parentheses and derived-to-base casts.
Expr *ignoreParenBaseCasts() LLVM_READONLY;
const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->ignoreParenBaseCasts();
}
/// Determine whether this expression is a default function argument.
///
/// Default arguments are implicitly generated in the abstract syntax tree
/// by semantic analysis for function calls, object constructions, etc. in
/// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
/// this routine also looks through any implicit casts to determine whether
/// the expression is a default argument.
bool isDefaultArgument() const;
/// Determine whether the result of this expression is a
/// temporary object of the given class type.
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
/// Whether this expression is an implicit reference to 'this' in C++.
bool isImplicitCXXThis() const;
const Expr *IgnoreImpCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreImpCasts();
}
const Expr *IgnoreParens() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParens();
}
const Expr *IgnoreParenCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenCasts();
}
/// Strip off casts, but keep parentheses.
const Expr *IgnoreCasts() const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreCasts();
}
const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
}
static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
/// For an expression of class type or pointer to class type,
/// return the most derived class decl the expression is known to refer to.
///
/// If this expression is a cast, this method looks through it to find the
/// most derived decl that can be inferred from the expression.
/// This is valid because derived-to-base conversions have undefined
/// behavior if the object isn't dynamically of the derived type.
const CXXRecordDecl *getBestDynamicClassType() const;
/// Get the inner expression that determines the best dynamic class.
/// If this is a prvalue, we guarantee that it is of the most-derived type
/// for the object itself.
const Expr *getBestDynamicClassTypeExpr() const;
/// Walk outwards from an expression we want to bind a reference to and
/// find the expression whose lifetime needs to be extended. Record
/// the LHSs of comma expressions and adjustments needed along the path.
const Expr *skipRValueSubobjectAdjustments(
SmallVectorImpl<const Expr *> &CommaLHS,
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
const Expr *skipRValueSubobjectAdjustments() const {
SmallVector<const Expr *, 8> CommaLHSs;
SmallVector<SubobjectAdjustment, 8> Adjustments;
return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExprConstant &&
T->getStmtClass() <= lastExprConstant;
}
};
//===----------------------------------------------------------------------===//
// Wrapper Expressions.
//===----------------------------------------------------------------------===//
/// FullExpr - Represents a "full-expression" node.
class FullExpr : public Expr {
protected:
Stmt *SubExpr;
FullExpr(StmtClass SC, Expr *subexpr)
: Expr(SC, subexpr->getType(),
subexpr->getValueKind(), subexpr->getObjectKind(),
subexpr->isTypeDependent(), subexpr->isValueDependent(),
subexpr->isInstantiationDependent(),
subexpr->containsUnexpandedParameterPack()), SubExpr(subexpr) {}
FullExpr(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) {}
public:
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
/// As with any mutator of the AST, be very careful when modifying an
/// existing AST to preserve its invariants.
void setSubExpr(Expr *E) { SubExpr = E; }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstFullExprConstant &&
T->getStmtClass() <= lastFullExprConstant;
}
};
/// ConstantExpr - An expression that occurs in a constant context.
class ConstantExpr : public FullExpr {
public:
ConstantExpr(Expr *subexpr)
: FullExpr(ConstantExprClass, subexpr) {}
/// Build an empty constant expression wrapper.
explicit ConstantExpr(EmptyShell Empty)
: FullExpr(ConstantExprClass, Empty) {}
SourceLocation getBeginLoc() const LLVM_READONLY {
return SubExpr->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return SubExpr->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConstantExprClass;
}
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr+1); }
const_child_range children() const {
return const_child_range(&SubExpr, &SubExpr + 1);
}
};
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// OpaqueValueExpr - An expression referring to an opaque object of a
/// fixed type and value class. These don't correspond to concrete
/// syntax; instead they're used to express operations (usually copy
/// operations) on values whose source is generally obvious from
/// context.
class OpaqueValueExpr : public Expr {
friend class ASTStmtReader;
Expr *SourceExpr;
SourceLocation Loc;
public:
OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
ExprObjectKind OK = OK_Ordinary,
Expr *SourceExpr = nullptr)
: Expr(OpaqueValueExprClass, T, VK, OK,
T->isDependentType() ||
(SourceExpr && SourceExpr->isTypeDependent()),
T->isDependentType() ||
(SourceExpr && SourceExpr->isValueDependent()),
T->isInstantiationDependentType() ||
(SourceExpr && SourceExpr->isInstantiationDependent()),
false),
SourceExpr(SourceExpr), Loc(Loc) {
setIsUnique(false);
}
/// Given an expression which invokes a copy constructor --- i.e. a
/// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
/// find the OpaqueValueExpr that's the source of the construction.
static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
explicit OpaqueValueExpr(EmptyShell Empty)
: Expr(OpaqueValueExprClass, Empty) { }
/// Retrieve the location of this expression.
SourceLocation getLocation() const { return Loc; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getBeginLoc() : Loc;
}
SourceLocation getEndLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getEndLoc() : Loc;
}
SourceLocation getExprLoc() const LLVM_READONLY {
if (SourceExpr) return SourceExpr->getExprLoc();
return Loc;
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
/// The source expression of an opaque value expression is the
/// expression which originally generated the value. This is
/// provided as a convenience for analyses that don't wish to
/// precisely model the execution behavior of the program.
///
/// The source expression is typically set when building the
/// expression which binds the opaque value expression in the first
/// place.
Expr *getSourceExpr() const { return SourceExpr; }
void setIsUnique(bool V) {
assert((!V || SourceExpr) &&
"unique OVEs are expected to have source expressions");
OpaqueValueExprBits.IsUnique = V;
}
bool isUnique() const { return OpaqueValueExprBits.IsUnique; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OpaqueValueExprClass;
}
};
/// A reference to a declared variable, function, enum, etc.
/// [C99 6.5.1p2]
///
/// This encodes all the information about how a declaration is referenced
/// within an expression.
///
/// There are several optional constructs attached to DeclRefExprs only when
/// they apply in order to conserve memory. These are laid out past the end of
/// the object, and flags in the DeclRefExprBitfield track whether they exist:
///
/// DeclRefExprBits.HasQualifier:
/// Specifies when this declaration reference expression has a C++
/// nested-name-specifier.
/// DeclRefExprBits.HasFoundDecl:
/// Specifies when this declaration reference expression has a record of
/// a NamedDecl (different from the referenced ValueDecl) which was found
/// during name lookup and/or overload resolution.
/// DeclRefExprBits.HasTemplateKWAndArgsInfo:
/// Specifies when this declaration reference expression has an explicit
/// C++ template keyword and/or template argument list.
/// DeclRefExprBits.RefersToEnclosingVariableOrCapture
/// Specifies when this declaration reference expression (validly)
/// refers to an enclosed local or a captured variable.
class DeclRefExpr final
: public Expr,
private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
NamedDecl *, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc> {
/// The declaration that we are referencing.
ValueDecl *D;
/// The location of the declaration name itself.
SourceLocation Loc;
/// Provides source/type location info for the declaration name
/// embedded in D.
DeclarationNameLoc DNLoc;
size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
return hasQualifier() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
return hasFoundDecl() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
return hasTemplateKWAndArgsInfo() ? 1 : 0;
}
/// Test whether there is a distinct FoundDecl attached to the end of
/// this DRE.
bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
DeclRefExpr(const ASTContext &Ctx,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
const DeclarationNameInfo &NameInfo,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK);
/// Construct an empty declaration reference expression.
explicit DeclRefExpr(EmptyShell Empty)
: Expr(DeclRefExprClass, Empty) { }
/// Computes the type- and value-dependence flags for this
/// declaration reference expression.
void computeDependence(const ASTContext &C);
public:
DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
ExprValueKind VK, SourceLocation L,
const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
D(D), Loc(L), DNLoc(LocInfo) {
DeclRefExprBits.HasQualifier = 0;
DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
DeclRefExprBits.HasFoundDecl = 0;
DeclRefExprBits.HadMultipleCandidates = 0;
DeclRefExprBits.RefersToEnclosingVariableOrCapture =
RefersToEnclosingVariableOrCapture;
computeDependence(D->getASTContext());
}
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
/// Construct an empty declaration reference expression.
static DeclRefExpr *CreateEmpty(const ASTContext &Context,
bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
ValueDecl *getDecl() { return D; }
const ValueDecl *getDecl() const { return D; }
void setDecl(ValueDecl *NewD) { D = NewD; }
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
/// Determine whether this declaration reference was preceded by a
/// C++ nested-name-specifier, e.g., \c N::foo.
bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
/// If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifier())
return NestedNameSpecifierLoc();
return *getTrailingObjects<NestedNameSpecifierLoc>();
}
/// If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name. Otherwise, returns NULL.
NestedNameSpecifier *getQualifier() const {
return getQualifierLoc().getNestedNameSpecifier();
}
/// Get the NamedDecl through which this reference occurred.
///
/// This Decl may be different from the ValueDecl actually referred to in the
/// presence of using declarations, etc. It always returns non-NULL, and may
/// simple return the ValueDecl when appropriate.
NamedDecl *getFoundDecl() {
return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
}
/// Get the NamedDecl through which this reference occurred.
/// See non-const variant.
const NamedDecl *getFoundDecl() const {
return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
}
bool hasTemplateKWAndArgsInfo() const {
return DeclRefExprBits.HasTemplateKWAndArgsInfo;
}
/// Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
}
/// Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
}
/// Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
}
/// Determines whether the name in this declaration reference
/// was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this declaration reference was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
getTrailingObjects<TemplateArgumentLoc>(), List);
}
/// Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
}
ArrayRef<TemplateArgumentLoc> template_arguments() const {
return {getTemplateArgs(), getNumTemplateArgs()};
}
/// Returns true if this expression refers to a function that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return DeclRefExprBits.HadMultipleCandidates;
}
/// Sets the flag telling whether this expression refers to
/// a function that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
DeclRefExprBits.HadMultipleCandidates = V;
}
/// Does this DeclRefExpr refer to an enclosing local or a captured
/// variable?
bool refersToEnclosingVariableOrCapture() const {
return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclRefExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
friend TrailingObjects;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Used by IntegerLiteral/FloatingLiteral to store the numeric without
/// leaking memory.
///
/// For large floats/integers, APFloat/APInt will allocate memory from the heap
/// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
/// the APFloat/APInt values will never get freed. APNumericStorage uses
/// ASTContext's allocator for memory allocation.
class APNumericStorage {
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
unsigned BitWidth;
bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
APNumericStorage(const APNumericStorage &) = delete;
void operator=(const APNumericStorage &) = delete;
protected:
APNumericStorage() : VAL(0), BitWidth(0) { }
llvm::APInt getIntValue() const {
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
if (NumWords > 1)
return llvm::APInt(BitWidth, NumWords, pVal);
else
return llvm::APInt(BitWidth, VAL);
}
void setIntValue(const ASTContext &C, const llvm::APInt &Val);
};
class APIntStorage : private APNumericStorage {
public:
llvm::APInt getValue() const { return getIntValue(); }
void setValue(const ASTContext &C, const llvm::APInt &Val) {
setIntValue(C, Val);
}
};
class APFloatStorage : private APNumericStorage {
public:
llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
return llvm::APFloat(Semantics, getIntValue());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
setIntValue(C, Val.bitcastToAPInt());
}
};
class IntegerLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
/// Construct an empty integer literal.
explicit IntegerLiteral(EmptyShell Empty)
: Expr(IntegerLiteralClass, Empty) { }
public:
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l);
/// Returns a new integer literal with value 'V' and type 'type'.
/// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
/// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
/// \param V - the value that the returned integer literal contains.
static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l);
/// Returns a new empty integer literal.
static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
/// Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IntegerLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class FixedPointLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
unsigned Scale;
/// \brief Construct an empty integer literal.
explicit FixedPointLiteral(EmptyShell Empty)
: Expr(FixedPointLiteralClass, Empty) {}
public:
FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l, unsigned Scale);
// Store the int as is without any bit shifting.
static FixedPointLiteral *CreateFromRawInt(const ASTContext &C,
const llvm::APInt &V,
QualType type, SourceLocation l,
unsigned Scale);
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
/// \brief Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FixedPointLiteralClass;
}
std::string getValueAsString(unsigned Radix) const;
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class CharacterLiteral : public Expr {
public:
enum CharacterKind {
Ascii,
Wide,
UTF8,
UTF16,
UTF32
};
private:
unsigned Value;
SourceLocation Loc;
public:
// type should be IntTy
CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
SourceLocation l)
: Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
false, false),
Value(value), Loc(l) {
CharacterLiteralBits.Kind = kind;
}
/// Construct an empty character literal.
CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
SourceLocation getLocation() const { return Loc; }
CharacterKind getKind() const {
return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
unsigned getValue() const { return Value; }
void setLocation(SourceLocation Location) { Loc = Location; }
void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
void setValue(unsigned Val) { Value = Val; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CharacterLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class FloatingLiteral : public Expr, private APFloatStorage {
SourceLocation Loc;
FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
QualType Type, SourceLocation L);
/// Construct an empty floating-point literal.
explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
public:
static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L);
static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
llvm::APFloat getValue() const {
return APFloatStorage::getValue(getSemantics());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
APFloatStorage::setValue(C, Val);
}
/// Get a raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
APFloatSemantics getRawSemantics() const {
return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
}
/// Set the raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
void setRawSemantics(APFloatSemantics Sem) {
FloatingLiteralBits.Semantics = Sem;
}
/// Return the APFloat semantics this literal uses.
const llvm::fltSemantics &getSemantics() const;
/// Set the APFloat semantics this literal uses.
void setSemantics(const llvm::fltSemantics &Sem);
bool isExact() const { return FloatingLiteralBits.IsExact; }
void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double getValueAsApproximateDouble() const;
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FloatingLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes. Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
Stmt *Val;
public:
ImaginaryLiteral(Expr *val, QualType Ty)
: Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false),
Val(val) {}
/// Build an empty imaginary literal.
explicit ImaginaryLiteral(EmptyShell Empty)
: Expr(ImaginaryLiteralClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return Val->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return Val->getEndLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImaginaryLiteralClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string is returned by getBytes()
/// is NOT null-terminated, and the length of the string is determined by
/// calling getByteLength(). The C type for a string is always a
/// ConstantArrayType. In C++, the char type is const qualified, in C it is
/// not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6. This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
/// char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral : public Expr {
public:
enum StringKind {
Ascii,
Wide,
UTF8,
UTF16,
UTF32
};
private:
friend class ASTStmtReader;
union {
const char *asChar;
const uint16_t *asUInt16;
const uint32_t *asUInt32;
} StrData;
unsigned Length;
unsigned CharByteWidth : 4;
unsigned Kind : 3;
unsigned IsPascal : 1;
unsigned NumConcatenated;
SourceLocation TokLocs[1];
StringLiteral(QualType Ty) :
Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
false) {}
static int mapCharByteWidth(TargetInfo const &target,StringKind k);
public:
/// This is the "fully general" constructor that allows representation of
/// strings formed from multiple concatenated tokens.
static StringLiteral *Create(const ASTContext &C, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc, unsigned NumStrs);
/// Simple constructor for string literals made from one token.
static StringLiteral *Create(const ASTContext &C, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
SourceLocation Loc) {
return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
}
/// Construct an empty string literal.
static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
StringRef getString() const {
assert(CharByteWidth==1
&& "This function is used in places that assume strings use char");
return StringRef(StrData.asChar, getByteLength());
}
/// Allow access to clients that need the byte representation, such as
/// ASTWriterStmt::VisitStringLiteral().
StringRef getBytes() const {
// FIXME: StringRef may not be the right type to use as a result for this.
if (CharByteWidth == 1)
return StringRef(StrData.asChar, getByteLength());
if (CharByteWidth == 4)
return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
getByteLength());
assert(CharByteWidth == 2 && "unsupported CharByteWidth");
return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
getByteLength());
}
void outputString(raw_ostream &OS) const;
uint32_t getCodeUnit(size_t i) const {
assert(i < Length && "out of bounds access");
if (CharByteWidth == 1)
return static_cast<unsigned char>(StrData.asChar[i]);
if (CharByteWidth == 4)
return StrData.asUInt32[i];
assert(CharByteWidth == 2 && "unsupported CharByteWidth");
return StrData.asUInt16[i];
}
unsigned getByteLength() const { return CharByteWidth*Length; }
unsigned getLength() const { return Length; }
unsigned getCharByteWidth() const { return CharByteWidth; }
/// Sets the string data to the given string data.
void setString(const ASTContext &C, StringRef Str,
StringKind Kind, bool IsPascal);
StringKind getKind() const { return static_cast<StringKind>(Kind); }
bool isAscii() const { return Kind == Ascii; }
bool isWide() const { return Kind == Wide; }
bool isUTF8() const { return Kind == UTF8; }
bool isUTF16() const { return Kind == UTF16; }
bool isUTF32() const { return Kind == UTF32; }
bool isPascal() const { return IsPascal; }
bool containsNonAscii() const {
StringRef Str = getString();
for (unsigned i = 0, e = Str.size(); i != e; ++i)
if (!isASCII(Str[i]))
return true;
return false;
}
bool containsNonAsciiOrNull() const {
StringRef Str = getString();
for (unsigned i = 0, e = Str.size(); i != e; ++i)
if (!isASCII(Str[i]) || !Str[i])
return true;
return false;
}
/// getNumConcatenated - Get the number of string literal tokens that were
/// concatenated in translation phase #6 to form this string literal.
unsigned getNumConcatenated() const { return NumConcatenated; }
SourceLocation getStrTokenLoc(unsigned TokNum) const {
assert(TokNum < NumConcatenated && "Invalid tok number");
return TokLocs[TokNum];
}
void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
assert(TokNum < NumConcatenated && "Invalid tok number");
TokLocs[TokNum] = L;
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens
/// and can have escape sequences in them in addition to the usual trigraph
/// and escaped newline business. This routine handles this complexity.
///
SourceLocation
getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features, const TargetInfo &Target,
unsigned *StartToken = nullptr,
unsigned *StartTokenByteOffset = nullptr) const;
typedef const SourceLocation *tokloc_iterator;
tokloc_iterator tokloc_begin() const { return TokLocs; }
tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
SourceLocation getBeginLoc() const LLVM_READONLY { return TokLocs[0]; }
SourceLocation getEndLoc() const LLVM_READONLY {
return TokLocs[NumConcatenated - 1];
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == StringLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr final
: public Expr,
private llvm::TrailingObjects<PredefinedExpr, Stmt *> {
friend class ASTStmtReader;
friend TrailingObjects;
// PredefinedExpr is optionally followed by a single trailing
// "Stmt *" for the predefined identifier. It is present if and only if
// hasFunctionName() is true and is always a "StringLiteral *".
public:
enum IdentKind {
Func,
Function,
LFunction, // Same as Function, but as wide string.
FuncDName,
FuncSig,
LFuncSig, // Same as FuncSig, but as as wide string
PrettyFunction,
/// The same as PrettyFunction, except that the
/// 'virtual' keyword is omitted for virtual member functions.
PrettyFunctionNoVirtual
};
private:
PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
StringLiteral *SL);
explicit PredefinedExpr(EmptyShell Empty, bool HasFunctionName);
/// True if this PredefinedExpr has storage for a function name.
bool hasFunctionName() const { return PredefinedExprBits.HasFunctionName; }
void setFunctionName(StringLiteral *SL) {
assert(hasFunctionName() &&
"This PredefinedExpr has no storage for a function name!");
*getTrailingObjects<Stmt *>() = SL;
}
public:
/// Create a PredefinedExpr.
static PredefinedExpr *Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, IdentKind IK, StringLiteral *SL);
/// Create an empty PredefinedExpr.
static PredefinedExpr *CreateEmpty(const ASTContext &Ctx,
bool HasFunctionName);
IdentKind getIdentKind() const {
return static_cast<IdentKind>(PredefinedExprBits.Kind);
}
SourceLocation getLocation() const { return PredefinedExprBits.Loc; }
void setLocation(SourceLocation L) { PredefinedExprBits.Loc = L; }
StringLiteral *getFunctionName() {
return hasFunctionName()
? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
: nullptr;
}
const StringLiteral *getFunctionName() const {
return hasFunctionName()
? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
: nullptr;
}
static StringRef getIdentKindName(IdentKind IK);
static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl);
SourceLocation getBeginLoc() const { return getLocation(); }
SourceLocation getEndLoc() const { return getLocation(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PredefinedExprClass;
}
// Iterators
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + hasFunctionName());
}
};
/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
SourceLocation L, R;
Stmt *Val;
public:
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
: Expr(ParenExprClass, val->getType(),
val->getValueKind(), val->getObjectKind(),
val->isTypeDependent(), val->isValueDependent(),
val->isInstantiationDependent(),
val->containsUnexpandedParameterPack()),
L(l), R(r), Val(val) {}
/// Construct an empty parenthesized expression.
explicit ParenExpr(EmptyShell Empty)
: Expr(ParenExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getBeginLoc() const LLVM_READONLY { return L; }
SourceLocation getEndLoc() const LLVM_READONLY { return R; }
/// Get the location of the left parentheses '('.
SourceLocation getLParen() const { return L; }
void setLParen(SourceLocation Loc) { L = Loc; }
/// Get the location of the right parentheses ')'.
SourceLocation getRParen() const { return R; }
void setRParen(SourceLocation Loc) { R = Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand. If
/// applied to a non-complex value, the former returns its operand and the
/// later returns zero in the type of the operand.
///
class UnaryOperator : public Expr {
public:
typedef UnaryOperatorKind Opcode;
private:
unsigned Opc : 5;
unsigned CanOverflow : 1;
SourceLocation Loc;
Stmt *Val;
public:
UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK,
ExprObjectKind OK, SourceLocation l, bool CanOverflow)
: Expr(UnaryOperatorClass, type, VK, OK,
input->isTypeDependent() || type->isDependentType(),
input->isValueDependent(),
(input->isInstantiationDependent() ||
type->isInstantiationDependentType()),
input->containsUnexpandedParameterPack()),
Opc(opc), CanOverflow(CanOverflow), Loc(l), Val(input) {}
/// Build an empty unary operator.
explicit UnaryOperator(EmptyShell Empty)
: Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
void setOpcode(Opcode O) { Opc = O; }
Expr *getSubExpr() const { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return Loc; }
void setOperatorLoc(SourceLocation L) { Loc = L; }
/// Returns true if the unary operator can cause an overflow. For instance,
/// signed int i = INT_MAX; i++;
/// signed char c = CHAR_MAX; c++;
/// Due to integer promotions, c++ is promoted to an int before the postfix
/// increment, and the result is an int that cannot overflow. However, i++
/// can overflow.
bool canOverflow() const { return CanOverflow; }
void setCanOverflow(bool C) { CanOverflow = C; }
/// isPostfix - Return true if this is a postfix operation, like x++.
static bool isPostfix(Opcode Op) {
return Op == UO_PostInc || Op == UO_PostDec;
}
/// isPrefix - Return true if this is a prefix operation, like --x.
static bool isPrefix(Opcode Op) {
return Op == UO_PreInc || Op == UO_PreDec;
}
bool isPrefix() const { return isPrefix(getOpcode()); }
bool isPostfix() const { return isPostfix(getOpcode()); }
static bool isIncrementOp(Opcode Op) {
return Op == UO_PreInc || Op == UO_PostInc;
}
bool isIncrementOp() const {
return isIncrementOp(getOpcode());
}
static bool isDecrementOp(Opcode Op) {
return Op == UO_PreDec || Op == UO_PostDec;
}
bool isDecrementOp() const {
return isDecrementOp(getOpcode());
}
static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
bool isIncrementDecrementOp() const {
return isIncrementDecrementOp(getOpcode());
}
static bool isArithmeticOp(Opcode Op) {
return Op >= UO_Plus && Op <= UO_LNot;
}
bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++"
static StringRef getOpcodeStr(Opcode Op);
/// Retrieve the unary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
/// Retrieve the overloaded operator kind that corresponds to
/// the given unary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
SourceLocation getBeginLoc() const LLVM_READONLY {
return isPostfix() ? Val->getBeginLoc() : Loc;
}
SourceLocation getEndLoc() const LLVM_READONLY {
return isPostfix() ? Loc : Val->getEndLoc();
}
SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryOperatorClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// Helper class for OffsetOfExpr.
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
class OffsetOfNode {
public:
/// The kind of offsetof node we have.
enum Kind {
/// An index into an array.
Array = 0x00,
/// A field.
Field = 0x01,
/// A field in a dependent type, known only by its name.
Identifier = 0x02,
/// An implicit indirection through a C++ base class, when the
/// field found is in a base class.
Base = 0x03
};
private:
enum { MaskBits = 2, Mask = 0x03 };
/// The source range that covers this part of the designator.
SourceRange Range;
/// The data describing the designator, which comes in three
/// different forms, depending on the lower two bits.
/// - An unsigned index into the array of Expr*'s stored after this node
/// in memory, for [constant-expression] designators.
/// - A FieldDecl*, for references to a known field.
/// - An IdentifierInfo*, for references to a field with a given name
/// when the class type is dependent.
/// - A CXXBaseSpecifier*, for references that look at a field in a
/// base class.
uintptr_t Data;
public:
/// Create an offsetof node that refers to an array element.
OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
SourceLocation RBracketLoc)
: Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
/// Create an offsetof node that refers to a field.
OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
: Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
/// Create an offsetof node that refers to an identifier.
OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
SourceLocation NameLoc)
: Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
/// Create an offsetof node that refers into a C++ base class.
explicit OffsetOfNode(const CXXBaseSpecifier *Base)
: Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
/// Determine what kind of offsetof node this is.
Kind getKind() const { return static_cast<Kind>(Data & Mask); }
/// For an array element node, returns the index into the array
/// of expressions.
unsigned getArrayExprIndex() const {
assert(getKind() == Array);
return Data >> 2;
}
/// For a field offsetof node, returns the field.
FieldDecl *getField() const {
assert(getKind() == Field);
return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
}
/// For a field or identifier offsetof node, returns the name of
/// the field.
IdentifierInfo *getFieldName() const;
/// For a base class node, returns the base specifier.
CXXBaseSpecifier *getBase() const {
assert(getKind() == Base);
return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
}
/// Retrieve the source range that covers this offsetof node.
///
/// For an array element node, the source range contains the locations of
/// the square brackets. For a field or identifier node, the source range
/// contains the location of the period (if there is one) and the
/// identifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
};
/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
/// offsetof(record-type, member-designator). For example, given:
/// @code
/// struct S {
/// float f;
/// double d;
/// };
/// struct T {
/// int i;
/// struct S s[10];
/// };
/// @endcode
/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
class OffsetOfExpr final
: public Expr,
private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
SourceLocation OperatorLoc, RParenLoc;
// Base type;
TypeSourceInfo *TSInfo;
// Number of sub-components (i.e. instances of OffsetOfNode).
unsigned NumComps;
// Number of sub-expressions (i.e. array subscript expressions).
unsigned NumExprs;
size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
return NumComps;
}
OffsetOfExpr(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
SourceLocation RParenLoc);
explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
: Expr(OffsetOfExprClass, EmptyShell()),
TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
public:
static OffsetOfExpr *Create(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
static OffsetOfExpr *CreateEmpty(const ASTContext &C,
unsigned NumComps, unsigned NumExprs);
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// Return the location of the right parentheses.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation R) { RParenLoc = R; }
TypeSourceInfo *getTypeSourceInfo() const {
return TSInfo;
}
void setTypeSourceInfo(TypeSourceInfo *tsi) {
TSInfo = tsi;
}
const OffsetOfNode &getComponent(unsigned Idx) const {
assert(Idx < NumComps && "Subscript out of range");
return getTrailingObjects<OffsetOfNode>()[Idx];
}
void setComponent(unsigned Idx, OffsetOfNode ON) {
assert(Idx < NumComps && "Subscript out of range");
getTrailingObjects<OffsetOfNode>()[Idx] = ON;
}
unsigned getNumComponents() const {
return NumComps;
}
Expr* getIndexExpr(unsigned Idx) {
assert(Idx < NumExprs && "Subscript out of range");
return getTrailingObjects<Expr *>()[Idx];
}
const Expr *getIndexExpr(unsigned Idx) const {
assert(Idx < NumExprs && "Subscript out of range");
return getTrailingObjects<Expr *>()[Idx];
}
void setIndexExpr(unsigned Idx, Expr* E) {
assert(Idx < NumComps && "Subscript out of range");
getTrailingObjects<Expr *>()[Idx] = E;
}
unsigned getNumExpressions() const {
return NumExprs;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OffsetOfExprClass;
}
// Iterators
child_range children() {
Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
return child_range(begin, begin + NumExprs);
}
const_child_range children() const {
Stmt *const *begin =
reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
return const_child_range(begin, begin + NumExprs);
}
friend TrailingObjects;
};
/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
/// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
/// vec_step (OpenCL 1.1 6.11.12).
class UnaryExprOrTypeTraitExpr : public Expr {
union {
TypeSourceInfo *Ty;
Stmt *Ex;
} Argument;
SourceLocation OpLoc, RParenLoc;
public:
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
QualType resultType, SourceLocation op,
SourceLocation rp) :
Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
false, // Never type-dependent (C++ [temp.dep.expr]p3).
// Value-dependent if the argument is type-dependent.
TInfo->getType()->isDependentType(),
TInfo->getType()->isInstantiationDependentType(),
TInfo->getType()->containsUnexpandedParameterPack()),
OpLoc(op), RParenLoc(rp) {
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
UnaryExprOrTypeTraitExprBits.IsType = true;
Argument.Ty = TInfo;
}
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
QualType resultType, SourceLocation op,
SourceLocation rp);
/// Construct an empty sizeof/alignof expression.
explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
: Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
UnaryExprOrTypeTrait getKind() const {
return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
}
void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
QualType getArgumentType() const {
return getArgumentTypeInfo()->getType();
}
TypeSourceInfo *getArgumentTypeInfo() const {
assert(isArgumentType() && "calling getArgumentType() when arg is expr");
return Argument.Ty;
}
Expr *getArgumentExpr() {
assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
return static_cast<Expr*>(Argument.Ex);
}
const Expr *getArgumentExpr() const {
return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
}
void setArgument(Expr *E) {
Argument.Ex = E;
UnaryExprOrTypeTraitExprBits.IsType = false;
}
void setArgument(TypeSourceInfo *TInfo) {
Argument.Ty = TInfo;
UnaryExprOrTypeTraitExprBits.IsType = true;
}
/// Gets the argument type, or the type of the argument expression, whichever
/// is appropriate.
QualType getTypeOfArgument() const {
return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
}
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return OpLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
}
// Iterators
child_range children();
const_child_range children() const;
};
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
enum { LHS, RHS, END_EXPR=2 };
Stmt* SubExprs[END_EXPR];
SourceLocation RBracketLoc;
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t, VK, OK,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent(),
(lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
RBracketLoc(rbracketloc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// Create an empty array subscript expression.
explicit ArraySubscriptExpr(EmptyShell Shell)
: Expr(ArraySubscriptExprClass, Shell) { }
/// An array access can be written A[4] or 4[A] (both are equivalent).
/// - getBase() and getIdx() always present the normalized view: A[4].
/// In this case getBase() returns "A" and getIdx() returns "4".
/// - getLHS() and getRHS() present the syntactic view. e.g. for
/// 4[A] getLHS() returns "4".
/// Note: Because vector element access is also written A[4] we must
/// predicate the format conversion in getBase and getIdx only on the
/// the type of the RHS, as it is possible for the LHS to be a vector of
/// integer type
Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
Expr *getBase() {
return getRHS()->getType()->isIntegerType() ? getLHS() : getRHS();
}
const Expr *getBase() const {
return getRHS()->getType()->isIntegerType() ? getLHS() : getRHS();
}
Expr *getIdx() {
return getRHS()->getType()->isIntegerType() ? getRHS() : getLHS();
}
const Expr *getIdx() const {
return getRHS()->getType()->isIntegerType() ? getRHS() : getLHS();
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getLHS()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return RBracketLoc; }
SourceLocation getRBracketLoc() const { return RBracketLoc; }
void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySubscriptExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
enum { FN=0, PREARGS_START=1 };
Stmt **SubExprs;
unsigned NumArgs;
SourceLocation RParenLoc;
void updateDependenciesFromArg(Expr *Arg);
protected:
// These versions of the constructor are for derived classes.
CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
ExprValueKind VK, SourceLocation rparenloc);
CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef<Expr *> args,
QualType t, ExprValueKind VK, SourceLocation rparenloc);
CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
EmptyShell Empty);
Stmt *getPreArg(unsigned i) {
assert(i < getNumPreArgs() && "Prearg access out of range!");
return SubExprs[PREARGS_START+i];
}
const Stmt *getPreArg(unsigned i) const {
assert(i < getNumPreArgs() && "Prearg access out of range!");
return SubExprs[PREARGS_START+i];
}
void setPreArg(unsigned i, Stmt *PreArg) {
assert(i < getNumPreArgs() && "Prearg access out of range!");
SubExprs[PREARGS_START+i] = PreArg;
}
unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
public:
CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
ExprValueKind VK, SourceLocation rparenloc);
/// Build an empty call expression.
CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
void setCallee(Expr *F) { SubExprs[FN] = F; }
Decl *getCalleeDecl();
const Decl *getCalleeDecl() const {
return const_cast<CallExpr*>(this)->getCalleeDecl();
}
/// If the callee is a FunctionDecl, return it. Otherwise return 0.
FunctionDecl *getDirectCallee();
const FunctionDecl *getDirectCallee() const {
return const_cast<CallExpr*>(this)->getDirectCallee();
}
/// getNumArgs - Return the number of actual arguments to this call.
///
unsigned getNumArgs() const { return NumArgs; }
/// Retrieve the call arguments.
Expr **getArgs() {
return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
}
const Expr *const *getArgs() const {
return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
PREARGS_START);
}
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
}
/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void setNumArgs(const ASTContext& C, unsigned NumArgs);
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
typedef llvm::iterator_range<arg_iterator> arg_range;
typedef llvm::iterator_range<const_arg_iterator> const_arg_range;
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
const_arg_range arguments() const {
return const_arg_range(arg_begin(), arg_end());
}
arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
arg_iterator arg_end() {
return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
}
const_arg_iterator arg_begin() const {
return SubExprs+PREARGS_START+getNumPreArgs();
}
const_arg_iterator arg_end() const {
return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
}
/// This method provides fast access to all the subexpressions of
/// a CallExpr without going through the slower virtual child_iterator
/// interface. This provides efficient reverse iteration of the
/// subexpressions. This is currently used for CFG construction.
ArrayRef<Stmt*> getRawSubExprs() {
return llvm::makeArrayRef(SubExprs,
getNumPreArgs() + PREARGS_START + getNumArgs());
}
/// getNumCommas - Return the number of commas that must have been present in
/// this function call.
unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
/// of the callee. If not, return 0.
unsigned getBuiltinCallee() const;
/// Returns \c true if this is a call to a builtin which does not
/// evaluate side-effects within its arguments.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
/// getCallReturnType - Get the return type of the call expr. This is not
/// always the type of the expr itself, if the return type is a reference
/// type.
QualType getCallReturnType(const ASTContext &Ctx) const;
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
/// Return true if this is a call to __assume() or __builtin_assume() with
/// a non-value-dependent constant parameter evaluating as false.
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
bool isCallToStdMove() const {
const FunctionDecl* FD = getDirectCallee();
return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
FD->getIdentifier() && FD->getIdentifier()->isStr("move");
}
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCallExprConstant &&
T->getStmtClass() <= lastCallExprConstant;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0],
&SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + NumArgs +
getNumPreArgs() + PREARGS_START);
}
};
/// Extra data stored in some MemberExpr objects.
struct MemberExprNameQualifier {
/// The nested-name-specifier that qualifies the name, including
/// source-location information.
NestedNameSpecifierLoc QualifierLoc;
/// The DeclAccessPair through which the MemberDecl was found due to
/// name qualifiers.
DeclAccessPair FoundDecl;
};
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
///
class MemberExpr final
: public Expr,
private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc> {
/// Base - the expression for the base pointer or structure references. In
/// X.F, this is "X".
Stmt *Base;
/// MemberDecl - This is the decl being referenced by the field/member name.
/// In X.F, this is the decl referenced by F.
ValueDecl *MemberDecl;
/// MemberDNLoc - Provides source/type location info for the
/// declaration name embedded in MemberDecl.
DeclarationNameLoc MemberDNLoc;
/// MemberLoc - This is the location of the member name.
SourceLocation MemberLoc;
/// This is the location of the -> or . in the expression.
SourceLocation OperatorLoc;
/// IsArrow - True if this is "X->F", false if this is "X.F".
bool IsArrow : 1;
/// True if this member expression used a nested-name-specifier to
/// refer to the member, e.g., "x->Base::f", or found its member via a using
/// declaration. When true, a MemberExprNameQualifier
/// structure is allocated immediately after the MemberExpr.
bool HasQualifierOrFoundDecl : 1;
/// True if this member expression specified a template keyword
/// and/or a template argument list explicitly, e.g., x->f<int>,
/// x->template f, x->template f<int>.
/// When true, an ASTTemplateKWAndArgsInfo structure and its
/// TemplateArguments (if any) are present.
bool HasTemplateKWAndArgsInfo : 1;
/// True if this member expression refers to a method that
/// was resolved from an overloaded set having size greater than 1.
bool HadMultipleCandidates : 1;
size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
return HasQualifierOrFoundDecl ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
return HasTemplateKWAndArgsInfo ? 1 : 0;
}
public:
MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
QualType ty, ExprValueKind VK, ExprObjectKind OK)
: Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
base->isValueDependent(), base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
IsArrow(isarrow), HasQualifierOrFoundDecl(false),
HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
assert(memberdecl->getDeclName() == NameInfo.getName());
}
// NOTE: this constructor should be used only when it is known that
// the member name can not provide additional syntactic info
// (i.e., source locations for C++ operator names or type source info
// for constructors, destructors and conversion operators).
MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
ValueDecl *memberdecl, SourceLocation l, QualType ty,
ExprValueKind VK, ExprObjectKind OK)
: Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
base->isValueDependent(), base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
OperatorLoc(operatorloc), IsArrow(isarrow),
HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
HadMultipleCandidates(false) {}
static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
DeclAccessPair founddecl,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *targs, QualType ty,
ExprValueKind VK, ExprObjectKind OK);
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
/// Retrieve the member declaration to which this expression refers.
///
/// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
/// static data members), a CXXMethodDecl, or an EnumConstantDecl.
ValueDecl *getMemberDecl() const { return MemberDecl; }
void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
/// Retrieves the declaration found by lookup.
DeclAccessPair getFoundDecl() const {
if (!HasQualifierOrFoundDecl)
return DeclAccessPair::make(getMemberDecl(),
getMemberDecl()->getAccess());
return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
}
/// Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return getQualifier() != nullptr; }
/// If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name, with source-location
/// information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!HasQualifierOrFoundDecl)
return NestedNameSpecifierLoc();
return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
}
/// If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const {
return getQualifierLoc().getNestedNameSpecifier();
}
/// Retrieve the location of the template keyword preceding
/// the member name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
}
/// Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the member name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
}
/// Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the member name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
}
/// Determines whether the member name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether the member name was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
getTrailingObjects<TemplateArgumentLoc>(), List);
}
/// Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
}
ArrayRef<TemplateArgumentLoc> template_arguments() const {
return {getTemplateArgs(), getNumTemplateArgs()};
}
/// Retrieve the member declaration name info.
DeclarationNameInfo getMemberNameInfo() const {
return DeclarationNameInfo(MemberDecl->getDeclName(),
MemberLoc, MemberDNLoc);
}
SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getMemberLoc() const { return MemberLoc; }
void setMemberLoc(SourceLocation L) { MemberLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
/// Determine whether the base of this explicit is implicit.
bool isImplicitAccess() const {
return getBase() && getBase()->isImplicitCXXThis();
}
/// Returns true if this member expression refers to a method that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return HadMultipleCandidates;
}
/// Sets the flag telling whether this expression refers to
/// a method that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
HadMultipleCandidates = V;
}
/// Returns true if virtual dispatch is performed.
/// If the member access is fully qualified, (i.e. X::f()), virtual
/// dispatching is not performed. In -fapple-kext mode qualified
/// calls to virtual method will still go through the vtable.
bool performsVirtualDispatch(const LangOptions &LO) const {
return LO.AppleKext || !hasQualifier();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MemberExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
const_child_range children() const {
return const_child_range(&Base, &Base + 1);
}
friend TrailingObjects;
friend class ASTReader;
friend class ASTStmtWriter;
};
/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
/// LParenLoc - If non-null, this is the location of the left paren in a
/// compound literal like "(int){4}". This can be null if this is a
/// synthesized compound expression.
SourceLocation LParenLoc;
/// The type as written. This can be an incomplete array type, in
/// which case the actual expression type will be different.
/// The int part of the pair stores whether this expr is file scope.
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
Stmt *Init;
public:
CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
QualType T, ExprValueKind VK, Expr *init, bool fileScope)
: Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
tinfo->getType()->isDependentType(),
init->isValueDependent(),
(init->isInstantiationDependent() ||
tinfo->getType()->isInstantiationDependentType()),
init->containsUnexpandedParameterPack()),
LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
/// Construct an empty compound literal.
explicit CompoundLiteralExpr(EmptyShell Empty)
: Expr(CompoundLiteralExprClass, Empty) { }
const Expr *getInitializer() const { return cast<Expr>(Init); }
Expr *getInitializer() { return cast<Expr>(Init); }
void setInitializer(Expr *E) { Init = E; }
bool isFileScope() const { return TInfoAndScope.getInt(); }
void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
TypeSourceInfo *getTypeSourceInfo() const {
return TInfoAndScope.getPointer();
}
void setTypeSourceInfo(TypeSourceInfo *tinfo) {
TInfoAndScope.setPointer(tinfo);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
if (LParenLoc.isInvalid())
return Init->getBeginLoc();
return LParenLoc;
}
SourceLocation getEndLoc() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
return Init->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundLiteralExprClass;
}
// Iterators
child_range children() { return child_range(&Init, &Init+1); }
const_child_range children() const {
return const_child_range(&Init, &Init + 1);
}
};
/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
public:
using BasePathSizeTy = unsigned int;
static_assert(std::numeric_limits<BasePathSizeTy>::max() >= 16384,
"[implimits] Direct and indirect base classes [16384].");
private:
Stmt *Op;
bool CastConsistency() const;
BasePathSizeTy *BasePathSize();
const CXXBaseSpecifier * const *path_buffer() const {
return const_cast<CastExpr*>(this)->path_buffer();
}
CXXBaseSpecifier **path_buffer();
void setBasePathSize(BasePathSizeTy basePathSize) {
assert(!path_empty() && basePathSize != 0);
*(BasePathSize()) = basePathSize;
}
protected:
CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
Expr *op, unsigned BasePathSize)
: Expr(SC, ty, VK, OK_Ordinary,
// Cast expressions are type-dependent if the type is
// dependent (C++ [temp.dep.expr]p3).
ty->isDependentType(),
// Cast expressions are value-dependent if the type is
// dependent or if the subexpression is value-dependent.
ty->isDependentType() || (op && op->isValueDependent()),
(ty->isInstantiationDependentType() ||
(op && op->isInstantiationDependent())),
// An implicit cast expression doesn't (lexically) contain an
// unexpanded pack, even if its target type does.
((SC != ImplicitCastExprClass &&
ty->containsUnexpandedParameterPack()) ||
(op && op->containsUnexpandedParameterPack()))),
Op(op) {
CastExprBits.Kind = kind;
CastExprBits.PartOfExplicitCast = false;
CastExprBits.BasePathIsEmpty = BasePathSize == 0;
if (!path_empty())
setBasePathSize(BasePathSize);
assert(CastConsistency());
}
/// Construct an empty cast.
CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
: Expr(SC, Empty) {
CastExprBits.PartOfExplicitCast = false;
CastExprBits.BasePathIsEmpty = BasePathSize == 0;
if (!path_empty())
setBasePathSize(BasePathSize);
}
public:
CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
void setCastKind(CastKind K) { CastExprBits.Kind = K; }
static const char *getCastKindName(CastKind CK);
const char *getCastKindName() const { return getCastKindName(getCastKind()); }
Expr *getSubExpr() { return cast<Expr>(Op); }
const Expr *getSubExpr() const { return cast<Expr>(Op); }
void setSubExpr(Expr *E) { Op = E; }
/// Retrieve the cast subexpression as it was written in the source
/// code, looking through any implicit casts or other intermediate nodes
/// introduced by semantic analysis.
Expr *getSubExprAsWritten();
const Expr *getSubExprAsWritten() const {
return const_cast<CastExpr *>(this)->getSubExprAsWritten();
}
/// If this cast applies a user-defined conversion, retrieve the conversion
/// function that it invokes.
NamedDecl *getConversionFunction() const;
typedef CXXBaseSpecifier **path_iterator;
typedef const CXXBaseSpecifier * const *path_const_iterator;
bool path_empty() const { return CastExprBits.BasePathIsEmpty; }
unsigned path_size() const {
if (path_empty())
return 0U;
return *(const_cast<CastExpr *>(this)->BasePathSize());
}
path_iterator path_begin() { return path_buffer(); }
path_iterator path_end() { return path_buffer() + path_size(); }
path_const_iterator path_begin() const { return path_buffer(); }
path_const_iterator path_end() const { return path_buffer() + path_size(); }
const FieldDecl *getTargetUnionField() const {
assert(getCastKind() == CK_ToUnion);
return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
}
static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
QualType opType);
static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
QualType opType);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCastExprConstant &&
T->getStmtClass() <= lastCastExprConstant;
}
// Iterators
child_range children() { return child_range(&Op, &Op+1); }
const_child_range children() const { return const_child_range(&Op, &Op + 1); }
};
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue or xvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// Derived &&ref();
/// void f(Derived d) {
/// Base& b = d; // initializer is an ImplicitCastExpr
/// // to an lvalue of type Base
/// Base&& r = ref(); // initializer is an ImplicitCastExpr
/// // to an xvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr final
: public CastExpr,
private llvm::TrailingObjects<ImplicitCastExpr, CastExpr::BasePathSizeTy,
CXXBaseSpecifier *> {
size_t numTrailingObjects(OverloadToken<CastExpr::BasePathSizeTy>) const {
return path_empty() ? 0 : 1;
}
private:
ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
unsigned BasePathLength, ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
}
/// Construct an empty implicit cast.
explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
: CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
public:
enum OnStack_t { OnStack };
ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
}
bool isPartOfExplicitCast() const { return CastExprBits.PartOfExplicitCast; }
void setIsPartOfExplicitCast(bool PartOfExplicitCast) {
CastExprBits.PartOfExplicitCast = PartOfExplicitCast;
}
static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind Cat);
static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize);
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSubExpr()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSubExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitCastExprClass;
}
friend TrailingObjects;
friend class CastExpr;
};
inline Expr *Expr::IgnoreImpCasts() {
Expr *e = this;
while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
e = ice->getSubExpr();
return e;
}
/// ExplicitCastExpr - An explicit cast written in the source
/// code.
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue or xvalue. The reference type, however,
/// will not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
/// TInfo - Source type info for the (written) type
/// this expression is casting to.
TypeSourceInfo *TInfo;
protected:
ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
CastKind kind, Expr *op, unsigned PathSize,
TypeSourceInfo *writtenTy)
: CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
/// Construct an empty explicit cast.
ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
: CastExpr(SC, Shell, PathSize) { }
public:
/// getTypeInfoAsWritten - Returns the type source info for the type
/// that this expression is casting to.
TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
/// getTypeAsWritten - Returns the type that this expression is
/// casting to, as written in the source code.
QualType getTypeAsWritten() const { return TInfo->getType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExplicitCastExprConstant &&
T->getStmtClass() <= lastExplicitCastExprConstant;
}
};
/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr final
: public ExplicitCastExpr,
private llvm::TrailingObjects<CStyleCastExpr, CastExpr::BasePathSizeTy,
CXXBaseSpecifier *> {
SourceLocation LPLoc; // the location of the left paren
SourceLocation RPLoc; // the location of the right paren
CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
unsigned PathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation r)
: ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
writtenTy), LPLoc(l), RPLoc(r) {}
/// Construct an empty C-style explicit cast.
explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
size_t numTrailingObjects(OverloadToken<CastExpr::BasePathSizeTy>) const {
return path_empty() ? 0 : 1;
}
public:
static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK, CastKind K,
Expr *Op, const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation R);
static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize);
SourceLocation getLParenLoc() const { return LPLoc; }
void setLParenLoc(SourceLocation L) { LPLoc = L; }
SourceLocation getRParenLoc() const { return RPLoc; }
void setRParenLoc(SourceLocation L) { RPLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LPLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return getSubExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CStyleCastExprClass;
}
friend TrailingObjects;
friend class CastExpr;
};
/// A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
public:
typedef BinaryOperatorKind Opcode;
private:
unsigned Opc : 6;
// This is only meaningful for operations on floating point types and 0
// otherwise.
unsigned FPFeatures : 3;
SourceLocation OpLoc;
enum { LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR];
public:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, FPOptions FPFeatures)
: Expr(BinaryOperatorClass, ResTy, VK, OK,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent(),
(lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments");
}
/// Construct an empty binary operator.
explicit BinaryOperator(EmptyShell Empty)
: Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
void setOpcode(Opcode O) { Opc = O; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getLHS()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getRHS()->getEndLoc();
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
static StringRef getOpcodeStr(Opcode Op);
StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
/// Retrieve the binary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
/// Retrieve the overloaded operator kind that corresponds to
/// the given binary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
/// predicates to categorize the respective opcodes.
bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
static bool isMultiplicativeOp(Opcode Opc) {
return Opc >= BO_Mul && Opc <= BO_Rem;
}
bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
bool isShiftOp() const { return isShiftOp(getOpcode()); }
static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
static Opcode negateComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparison operator.");
case BO_LT: return BO_GE;
case BO_GT: return BO_LE;
case BO_LE: return BO_GT;
case BO_GE: return BO_LT;
case BO_EQ: return BO_NE;
case BO_NE: return BO_EQ;
}
}
static Opcode reverseComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparison operator.");
case BO_LT: return BO_GT;
case BO_GT: return BO_LT;
case BO_LE: return BO_GE;
case BO_GE: return BO_LE;
case BO_EQ:
case BO_NE:
return Opc;
}
}
static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
static bool isAssignmentOp(Opcode Opc) {
return Opc >= BO_Assign && Opc <= BO_OrAssign;
}
bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
static bool isCompoundAssignmentOp(Opcode Opc) {
return Opc > BO_Assign && Opc <= BO_OrAssign;
}
bool isCompoundAssignmentOp() const {
return isCompoundAssignmentOp(getOpcode());
}
static Opcode getOpForCompoundAssignment(Opcode Opc) {
assert(isCompoundAssignmentOp(Opc));
if (Opc >= BO_AndAssign)
return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
else
return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
}
static bool isShiftAssignOp(Opcode Opc) {
return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
}
bool isShiftAssignOp() const {
return isShiftAssignOp(getOpcode());
}
// Return true if a binary operator using the specified opcode and operands
// would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
// integer to a pointer.
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
Expr *LHS, Expr *RHS);
static bool classof(const Stmt *S) {
return S->getStmtClass() >= firstBinaryOperatorConstant &&
S->getStmtClass() <= lastBinaryOperatorConstant;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
// Set the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
void setFPFeatures(FPOptions F) { FPFeatures = F.getInt(); }
FPOptions getFPFeatures() const { return FPOptions(FPFeatures); }
// Get the FP contractability status of this operator. Only meaningful for
// operations on floating point types.
bool isFPContractableWithinStatement() const {
return FPOptions(FPFeatures).allowFPContractWithinStatement();
}
// Get the FENV_ACCESS status of this operator. Only meaningful for
// operations on floating point types.
bool isFEnvAccessOn() const {
return FPOptions(FPFeatures).allowFEnvAccess();
}
protected:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
: Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent(),
(lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
BinaryOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), Opc(BO_MulAssign) { }
};
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in. Due to the semantics of
/// these operators, the operands are promoted, the arithmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place. This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
QualType ComputationLHSType;
QualType ComputationResultType;
public:
CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
ExprValueKind VK, ExprObjectKind OK,
QualType CompLHSType, QualType CompResultType,
SourceLocation OpLoc, FPOptions FPFeatures)
: BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
true),
ComputationLHSType(CompLHSType),
ComputationResultType(CompResultType) {
assert(isCompoundAssignmentOp() &&
"Only should be used for compound assignments");
}
/// Build an empty compound assignment operator expression.
explicit CompoundAssignOperator(EmptyShell Empty)
: BinaryOperator(CompoundAssignOperatorClass, Empty) { }
// The two computation types are the type the LHS is converted
// to for the computation and the type of the result; the two are
// distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
QualType getComputationLHSType() const { return ComputationLHSType; }
void setComputationLHSType(QualType T) { ComputationLHSType = T; }
QualType getComputationResultType() const { return ComputationResultType; }
void setComputationResultType(QualType T) { ComputationResultType = T; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == CompoundAssignOperatorClass;
}
};
/// AbstractConditionalOperator - An abstract base class for
/// ConditionalOperator and BinaryConditionalOperator.
class AbstractConditionalOperator : public Expr {
SourceLocation QuestionLoc, ColonLoc;
friend class ASTStmtReader;
protected:
AbstractConditionalOperator(StmtClass SC, QualType T,
ExprValueKind VK, ExprObjectKind OK,
bool TD, bool VD, bool ID,
bool ContainsUnexpandedParameterPack,
SourceLocation qloc,
SourceLocation cloc)
: Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
QuestionLoc(qloc), ColonLoc(cloc) {}
AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) { }
public:
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const;
// getTrueExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to true.
Expr *getTrueExpr() const;
// getFalseExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to false. This is
// the same as getRHS.
Expr *getFalseExpr() const;
SourceLocation getQuestionLoc() const { return QuestionLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass ||
T->getStmtClass() == BinaryConditionalOperatorClass;
}
};
/// ConditionalOperator - The ?: ternary operator. The GNU "missing
/// middle" extension is a BinaryConditionalOperator.
class ConditionalOperator : public AbstractConditionalOperator {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
friend class ASTStmtReader;
public:
ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
SourceLocation CLoc, Expr *rhs,
QualType t, ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
// FIXME: the type of the conditional operator doesn't
// depend on the type of the conditional, but the standard
// seems to imply that it could. File a bug!
(lhs->isTypeDependent() || rhs->isTypeDependent()),
(cond->isValueDependent() || lhs->isValueDependent() ||
rhs->isValueDependent()),
(cond->isInstantiationDependent() ||
lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(cond->containsUnexpandedParameterPack() ||
lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack()),
QLoc, CLoc) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// Build an empty conditional operator.
explicit ConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
// getTrueExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to true.
Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
// getFalseExpr - Return the subexpression representing the value of
// the expression if the condition evaluates to false. This is
// the same as getRHS.
Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCond()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getRHS()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// BinaryConditionalOperator - The GNU extension to the conditional
/// operator which allows the middle operand to be omitted.
///
/// This is a different expression kind on the assumption that almost
/// every client ends up needing to know that these are different.
class BinaryConditionalOperator : public AbstractConditionalOperator {
enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
/// - the common condition/left-hand-side expression, which will be
/// evaluated as the opaque value
/// - the condition, expressed in terms of the opaque value
/// - the left-hand-side, expressed in terms of the opaque value
/// - the right-hand-side
Stmt *SubExprs[NUM_SUBEXPRS];
OpaqueValueExpr *OpaqueValue;
friend class ASTStmtReader;
public:
BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
Expr *cond, Expr *lhs, Expr *rhs,
SourceLocation qloc, SourceLocation cloc,
QualType t, ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
(common->isTypeDependent() || rhs->isTypeDependent()),
(common->isValueDependent() || rhs->isValueDependent()),
(common->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(common->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack()),
qloc, cloc),
OpaqueValue(opaqueValue) {
SubExprs[COMMON] = common;
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
}
/// Build an empty conditional operator.
explicit BinaryConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
/// getCommon - Return the common expression, written to the
/// left of the condition. The opaque value will be bound to the
/// result of this expression.
Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
/// getOpaqueValue - Return the opaque value placeholder.
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
/// getCond - Return the condition expression; this is defined
/// in terms of the opaque value.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
/// getTrueExpr - Return the subexpression which will be
/// evaluated if the condition evaluates to true; this is defined
/// in terms of the opaque value.
Expr *getTrueExpr() const {
return cast<Expr>(SubExprs[LHS]);
}
/// getFalseExpr - Return the subexpression which will be
/// evaluated if the condnition evaluates to false; this is
/// defined in terms of the opaque value.
Expr *getFalseExpr() const {
return cast<Expr>(SubExprs[RHS]);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCommon()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getFalseExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == BinaryConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
};
inline Expr *AbstractConditionalOperator::getCond() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getCond();
return cast<BinaryConditionalOperator>(this)->getCond();
}
inline Expr *AbstractConditionalOperator::getTrueExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getTrueExpr();
return cast<BinaryConditionalOperator>(this)->getTrueExpr();
}
inline Expr *AbstractConditionalOperator::getFalseExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getFalseExpr();
return cast<BinaryConditionalOperator>(this)->getFalseExpr();
}
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
SourceLocation AmpAmpLoc, LabelLoc;
LabelDecl *Label;
public:
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
QualType t)
: Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
false),
AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
/// Build an empty address of a label expression.
explicit AddrLabelExpr(EmptyShell Empty)
: Expr(AddrLabelExprClass, Empty) { }
SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
SourceLocation getLabelLoc() const { return LabelLoc; }
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return AmpAmpLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return LabelLoc; }
LabelDecl *getLabel() const { return Label; }
void setLabel(LabelDecl *L) { Label = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AddrLabelExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
///
/// A StmtExpr is always an r-value; values "returned" out of a
/// StmtExpr will be copied.
class StmtExpr : public Expr {
Stmt *SubStmt;
SourceLocation LParenLoc, RParenLoc;
public:
// FIXME: Does type-dependence need to be computed differently?
// FIXME: Do we need to compute instantiation instantiation-dependence for
// statements? (ugh!)
StmtExpr(CompoundStmt *substmt, QualType T,
SourceLocation lp, SourceLocation rp) :
Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
T->isDependentType(), false, false, false),
SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
/// Build an empty statement expression.
explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
void setSubStmt(CompoundStmt *S) { SubStmt = S; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StmtExprClass;
}
// Iterators
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
const_child_range children() const {
return const_child_range(&SubStmt, &SubStmt + 1);
}
};
/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
// SubExprs - the list of values passed to the __builtin_shufflevector
// function. The first two are vectors, and the rest are constant
// indices. The number of values in this list is always
// 2+the number of indices in the vector type.
Stmt **SubExprs;
unsigned NumExprs;
public:
ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
SourceLocation BLoc, SourceLocation RP);
/// Build an empty vector-shuffle expression.
explicit ShuffleVectorExpr(EmptyShell Empty)
: Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ShuffleVectorExprClass;
}
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
/// constant expression, the actual arguments passed in, and the function
/// pointers.
unsigned getNumSubExprs() const { return NumExprs; }
/// Retrieve the array of expressions.
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
/// getExpr - Return the Expr at the specified index.
Expr *getExpr(unsigned Index) {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
const Expr *getExpr(unsigned Index) const {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
assert((N < NumExprs - 2) && "Shuffle idx out of range!");
return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
}
};
/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
/// This AST node provides support for converting a vector type to another
/// vector type of the same arity.
class ConvertVectorExpr : public Expr {
private:
Stmt *SrcExpr;
TypeSourceInfo *TInfo;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
public:
ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation BuiltinLoc, SourceLocation RParenLoc)
: Expr(ConvertVectorExprClass, DstType, VK, OK,
DstType->isDependentType(),
DstType->isDependentType() || SrcExpr->isValueDependent(),
(DstType->isInstantiationDependentType() ||
SrcExpr->isInstantiationDependent()),
(DstType->containsUnexpandedParameterPack() ||
SrcExpr->containsUnexpandedParameterPack())),
SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getTypeSourceInfo - Return the destination type.
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
void setTypeSourceInfo(TypeSourceInfo *ti) {
TInfo = ti;
}
/// getBuiltinLoc - Return the location of the __builtin_convertvector token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConvertVectorExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
const_child_range children() const {
return const_child_range(&SrcExpr, &SrcExpr + 1);
}
};
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
/// visible way: the type is the same as that of the chosen subexpression,
/// and all predicates (whether it's an l-value, whether it's an integer
/// constant expression, etc.) return the same result as for the chosen
/// sub-expression.
class ChooseExpr : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
SourceLocation BuiltinLoc, RParenLoc;
bool CondIsTrue;
public:
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
QualType t, ExprValueKind VK, ExprObjectKind OK,
SourceLocation RP, bool condIsTrue,
bool TypeDependent, bool ValueDependent)
: Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
(cond->isInstantiationDependent() ||
lhs->isInstantiationDependent() ||
rhs->isInstantiationDependent()),
(cond->containsUnexpandedParameterPack() ||
lhs->containsUnexpandedParameterPack() ||
rhs->containsUnexpandedParameterPack())),
BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// Build an empty __builtin_choose_expr.
explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
/// isConditionTrue - Return whether the condition is true (i.e. not
/// equal to zero).
bool isConditionTrue() const {
assert(!isConditionDependent() &&
"Dependent condition isn't true or false");
return CondIsTrue;
}
void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
bool isConditionDependent() const {
return getCond()->isTypeDependent() || getCond()->isValueDependent();
}
/// getChosenSubExpr - Return the subexpression chosen according to the
/// condition.
Expr *getChosenSubExpr() const {
return isConditionTrue() ? getLHS() : getRHS();
}
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
void setCond(Expr *E) { SubExprs[COND] = E; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ChooseExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
/// TokenLoc - The location of the __null keyword.
SourceLocation TokenLoc;
public:
GNUNullExpr(QualType Ty, SourceLocation Loc)
: Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
false),
TokenLoc(Loc) { }
/// Build an empty GNU __null expression.
explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
/// getTokenLocation - The location of the __null token.
SourceLocation getTokenLocation() const { return TokenLoc; }
void setTokenLocation(SourceLocation L) { TokenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return TokenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return TokenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GNUNullExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// Represents a call to the builtin function \c __builtin_va_arg.
class VAArgExpr : public Expr {
Stmt *Val;
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
SourceLocation BuiltinLoc, RParenLoc;
public:
VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
SourceLocation RPLoc, QualType t, bool IsMS)
: Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
false, (TInfo->getType()->isInstantiationDependentType() ||
e->isInstantiationDependent()),
(TInfo->getType()->containsUnexpandedParameterPack() ||
e->containsUnexpandedParameterPack())),
Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
/// Create an empty __builtin_va_arg expression.
explicit VAArgExpr(EmptyShell Empty)
: Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// Returns whether this is really a Win64 ABI va_arg expression.
bool isMicrosoftABI() const { return TInfo.getInt(); }
void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == VAArgExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// After semantic analysis has completed, given an initializer list,
/// method isSemanticForm() returns true if and only if this is the
/// semantic form of the initializer list (note: the same AST node
/// may at the same time be the syntactic form).
/// Given the semantic form of the initializer list, one can retrieve
/// the syntactic form of that initializer list (when different)
/// using method getSyntacticForm(); the method returns null if applied
/// to a initializer list which is already in syntactic form.
/// Similarly, given the syntactic form (i.e., an initializer list such
/// that isSemanticForm() returns false), one can retrieve the semantic
/// form using method getSemanticForm().
/// Since many initializer lists have the same syntactic and semantic forms,
/// getSyntacticForm() may return NULL, indicating that the current
/// semantic initializer list also serves as its syntactic form.
class InitListExpr : public Expr {
// FIXME: Eliminate this vector in favor of ASTContext allocation
typedef ASTVector<Stmt *> InitExprsTy;
InitExprsTy InitExprs;
SourceLocation LBraceLoc, RBraceLoc;
/// The alternative form of the initializer list (if it exists).
/// The int part of the pair stores whether this initializer list is
/// in semantic form. If not null, the pointer points to:
/// - the syntactic form, if this is in semantic form;
/// - the semantic form, if this is in syntactic form.
llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
/// Either:
/// If this initializer list initializes an array with more elements than
/// there are initializers in the list, specifies an expression to be used
/// for value initialization of the rest of the elements.
/// Or
/// If this initializer list initializes a union, specifies which
/// field within the union will be initialized.
llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
public:
InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
/// Build an empty initializer list.
explicit InitListExpr(EmptyShell Empty)
: Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
unsigned getNumInits() const { return InitExprs.size(); }
/// Retrieve the set of initializers.
Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
/// Retrieve the set of initializers.
Expr * const *getInits() const {
return reinterpret_cast<Expr * const *>(InitExprs.data());
}
ArrayRef<Expr *> inits() {
return llvm::makeArrayRef(getInits(), getNumInits());
}
ArrayRef<Expr *> inits() const {
return llvm::makeArrayRef(getInits(), getNumInits());
}
const Expr *getInit(unsigned Init) const {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
Expr *getInit(unsigned Init) {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
void setInit(unsigned Init, Expr *expr) {
assert(Init < getNumInits() && "Initializer access out of range!");
InitExprs[Init] = expr;
if (expr) {
ExprBits.TypeDependent |= expr->isTypeDependent();
ExprBits.ValueDependent |= expr->isValueDependent();
ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
ExprBits.ContainsUnexpandedParameterPack |=
expr->containsUnexpandedParameterPack();
}
}
/// Reserve space for some number of initializers.
void reserveInits(const ASTContext &C, unsigned NumInits);
/// Specify the number of initializers
///
/// If there are more than @p NumInits initializers, the remaining
/// initializers will be destroyed. If there are fewer than @p
/// NumInits initializers, NULL expressions will be added for the
/// unknown initializers.
void resizeInits(const ASTContext &Context, unsigned NumInits);
/// Updates the initializer at index @p Init with the new
/// expression @p expr, and returns the old expression at that
/// location.
///
/// When @p Init is out of range for this initializer list, the
/// initializer list will be extended with NULL expressions to
/// accommodate the new entry.
Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
/// If this initializer list initializes an array with more elements
/// than there are initializers in the list, specifies an expression to be
/// used for value initialization of the rest of the elements.
Expr *getArrayFiller() {
return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
}
const Expr *getArrayFiller() const {
return const_cast<InitListExpr *>(this)->getArrayFiller();
}
void setArrayFiller(Expr *filler);
/// Return true if this is an array initializer and its array "filler"
/// has been set.
bool hasArrayFiller() const { return getArrayFiller(); }
/// If this initializes a union, specifies which field in the
/// union to initialize.
///
/// Typically, this field is the first named field within the
/// union. However, a designated initializer can specify the
/// initialization of a different field within the union.
FieldDecl *getInitializedFieldInUnion() {
return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
}
const FieldDecl *getInitializedFieldInUnion() const {
return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
}
void setInitializedFieldInUnion(FieldDecl *FD) {
assert((FD == nullptr
|| getInitializedFieldInUnion() == nullptr
|| getInitializedFieldInUnion() == FD)
&& "Only one field of a union may be initialized at a time!");
ArrayFillerOrUnionFieldInit = FD;
}
// Explicit InitListExpr's originate from source code (and have valid source
// locations). Implicit InitListExpr's are created by the semantic analyzer.
bool isExplicit() const {
return LBraceLoc.isValid() && RBraceLoc.isValid();
}
// Is this an initializer for an array of characters, initialized by a string
// literal or an @encode?
bool isStringLiteralInit() const;
/// Is this a transparent initializer list (that is, an InitListExpr that is
/// purely syntactic, and whose semantics are that of the sole contained
/// initializer)?
bool isTransparent() const;
/// Is this the zero initializer {0} in a language which considers it
/// idiomatic?
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
SourceLocation getLBraceLoc() const { return LBraceLoc; }
void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
bool isSemanticForm() const { return AltForm.getInt(); }
InitListExpr *getSemanticForm() const {
return isSemanticForm() ? nullptr : AltForm.getPointer();
}
bool isSyntacticForm() const {
return !AltForm.getInt() || !AltForm.getPointer();
}
InitListExpr *getSyntacticForm() const {
return isSemanticForm() ? AltForm.getPointer() : nullptr;
}
void setSyntacticForm(InitListExpr *Init) {
AltForm.setPointer(Init);
AltForm.setInt(true);
Init->AltForm.setPointer(this);
Init->AltForm.setInt(false);
}
bool hadArrayRangeDesignator() const {
return InitListExprBits.HadArrayRangeDesignator != 0;
}
void sawArrayRangeDesignator(bool ARD = true) {
InitListExprBits.HadArrayRangeDesignator = ARD;
}
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == InitListExprClass;
}
// Iterators
child_range children() {
const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()),
cast_away_const(CCR.end()));
}
const_child_range children() const {
// FIXME: This does not include the array filler expression.
if (InitExprs.empty())
return const_child_range(const_child_iterator(), const_child_iterator());
return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
}
typedef InitExprsTy::iterator iterator;
typedef InitExprsTy::const_iterator const_iterator;
typedef InitExprsTy::reverse_iterator reverse_iterator;
typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
iterator begin() { return InitExprs.begin(); }
const_iterator begin() const { return InitExprs.begin(); }
iterator end() { return InitExprs.end(); }
const_iterator end() const { return InitExprs.end(); }
reverse_iterator rbegin() { return InitExprs.rbegin(); }
const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
reverse_iterator rend() { return InitExprs.rend(); }
const_reverse_iterator rend() const { return InitExprs.rend(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
///
/// @code
/// struct point {
/// double x;
/// double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initialization expression will be 1.0.
class DesignatedInitExpr final
: public Expr,
private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
public:
/// Forward declaration of the Designator class.
class Designator;
private:
/// The location of the '=' or ':' prior to the actual initializer
/// expression.
SourceLocation EqualOrColonLoc;
/// Whether this designated initializer used the GNU deprecated
/// syntax rather than the C99 '=' syntax.
unsigned GNUSyntax : 1;
/// The number of designators in this initializer expression.
unsigned NumDesignators : 15;
/// The number of subexpressions of this initializer expression,
/// which contains both the initializer and any additional
/// expressions used by array and array-range designators.
unsigned NumSubExprs : 16;
/// The designators in this designated initialization
/// expression.
Designator *Designators;
DesignatedInitExpr(const ASTContext &C, QualType Ty,
llvm::ArrayRef<Designator> Designators,
SourceLocation EqualOrColonLoc, bool GNUSyntax,
ArrayRef<Expr *> IndexExprs, Expr *Init);
explicit DesignatedInitExpr(unsigned NumSubExprs)
: Expr(DesignatedInitExprClass, EmptyShell()),
NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
public:
/// A field designator, e.g., ".x".
struct FieldDesignator {
/// Refers to the field that is being initialized. The low bit
/// of this field determines whether this is actually a pointer
/// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
/// initially constructed, a field designator will store an
/// IdentifierInfo*. After semantic analysis has resolved that
/// name, the field designator will instead store a FieldDecl*.
uintptr_t NameOrField;
/// The location of the '.' in the designated initializer.
unsigned DotLoc;
/// The location of the field name in the designated initializer.
unsigned FieldLoc;
};
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator {
/// Location of the first index expression within the designated
/// initializer expression's list of subexpressions.
unsigned Index;
/// The location of the '[' starting the array range designator.
unsigned LBracketLoc;
/// The location of the ellipsis separating the start and end
/// indices. Only valid for GNU array-range designators.
unsigned EllipsisLoc;
/// The location of the ']' terminating the array range designator.
unsigned RBracketLoc;
};
/// Represents a single C99 designator.
///
/// @todo This class is infuriatingly similar to clang::Designator,
/// but minor differences (storing indices vs. storing pointers)
/// keep us from reusing it. Try harder, later, to rectify these
/// differences.
class Designator {
/// The kind of designator this describes.
enum {
FieldDesignator,
ArrayDesignator,
ArrayRangeDesignator
} Kind;
union {
/// A field designator, e.g., ".x".
struct FieldDesignator Field;
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator ArrayOrRange;
};
friend class DesignatedInitExpr;
public:
Designator() {}
/// Initializes a field designator.
Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
SourceLocation FieldLoc)
: Kind(FieldDesignator) {
Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
Field.DotLoc = DotLoc.getRawEncoding();
Field.FieldLoc = FieldLoc.getRawEncoding();
}
/// Initializes an array designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation RBracketLoc)
: Kind(ArrayDesignator) {
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
}
/// Initializes a GNU array-range designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
: Kind(ArrayRangeDesignator) {
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
}
bool isFieldDesignator() const { return Kind == FieldDesignator; }
bool isArrayDesignator() const { return Kind == ArrayDesignator; }
bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
IdentifierInfo *getFieldName() const;
FieldDecl *getField() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return nullptr;
else
return reinterpret_cast<FieldDecl *>(Field.NameOrField);
}
void setField(FieldDecl *FD) {
assert(Kind == FieldDesignator && "Only valid on a field designator");
Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
}
SourceLocation getDotLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return SourceLocation::getFromRawEncoding(Field.DotLoc);
}
SourceLocation getFieldLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return SourceLocation::getFromRawEncoding(Field.FieldLoc);
}
SourceLocation getLBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
}
SourceLocation getRBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
}
SourceLocation getEllipsisLoc() const {
assert(Kind == ArrayRangeDesignator &&
"Only valid on an array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
}
unsigned getFirstExprIndex() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return ArrayOrRange.Index;
}
SourceLocation getBeginLoc() const LLVM_READONLY {
if (Kind == FieldDesignator)
return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
else
return getLBracketLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
}
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getBeginLoc(), getEndLoc());
}
};
static DesignatedInitExpr *Create(const ASTContext &C,
llvm::ArrayRef<Designator> Designators,
ArrayRef<Expr*> IndexExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax, Expr *Init);
static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
unsigned NumIndexExprs);
/// Returns the number of designators in this initializer.
unsigned size() const { return NumDesignators; }
// Iterator access to the designators.
llvm::MutableArrayRef<Designator> designators() {
return {Designators, NumDesignators};
}
llvm::ArrayRef<Designator> designators() const {
return {Designators, NumDesignators};
}
Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
const Designator *getDesignator(unsigned Idx) const {
return &designators()[Idx];
}
void setDesignators(const ASTContext &C, const Designator *Desigs,
unsigned NumDesigs);
Expr *getArrayIndex(const Designator &D) const;
Expr *getArrayRangeStart(const Designator &D) const;
Expr *getArrayRangeEnd(const Designator &D) const;
/// Retrieve the location of the '=' that precedes the
/// initializer value itself, if present.
SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
/// Determines whether this designated initializer used the
/// deprecated GNU syntax for designated initializers.
bool usesGNUSyntax() const { return GNUSyntax; }
void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
/// Retrieve the initializer value.
Expr *getInit() const {
return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
}
void setInit(Expr *init) {
*child_begin() = init;
}
/// Retrieve the total number of subexpressions in this
/// designated initializer expression, including the actual
/// initialized value and any expressions that occur within array
/// and array-range designators.
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr *getSubExpr(unsigned Idx) const {
assert(Idx < NumSubExprs && "Subscript out of range");
return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
}
void setSubExpr(unsigned Idx, Expr *E) {
assert(Idx < NumSubExprs && "Subscript out of range");
getTrailingObjects<Stmt *>()[Idx] = E;
}
/// Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void ExpandDesignator(const ASTContext &C, unsigned Idx,
const Designator *First, const Designator *Last);
SourceRange getDesignatorsSourceRange() const;
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitExprClass;
}
// Iterators
child_range children() {
Stmt **begin = getTrailingObjects<Stmt *>();
return child_range(begin, begin + NumSubExprs);
}
const_child_range children() const {
Stmt * const *begin = getTrailingObjects<Stmt *>();
return const_child_range(begin, begin + NumSubExprs);
}
friend TrailingObjects;
};
/// Represents a place-holder for an object not to be initialized by
/// anything.
///
/// This only makes sense when it appears as part of an updater of a
/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
/// initializes a big object, and the NoInitExpr's mark the spots within the
/// big object not to be overwritten by the updater.
///
/// \see DesignatedInitUpdateExpr
class NoInitExpr : public Expr {
public:
explicit NoInitExpr(QualType ty)
: Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
false, false, ty->isInstantiationDependentType(), false) { }
explicit NoInitExpr(EmptyShell Empty)
: Expr(NoInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == NoInitExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
// In cases like:
// struct Q { int a, b, c; };
// Q *getQ();
// void foo() {
// struct A { Q q; } a = { *getQ(), .q.b = 3 };
// }
//
// We will have an InitListExpr for a, with type A, and then a
// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
//
class DesignatedInitUpdateExpr : public Expr {
// BaseAndUpdaterExprs[0] is the base expression;
// BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
Stmt *BaseAndUpdaterExprs[2];
public:
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
Expr *baseExprs, SourceLocation rBraceLoc);
explicit DesignatedInitUpdateExpr(EmptyShell Empty)
: Expr(DesignatedInitUpdateExprClass, Empty) { }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitUpdateExprClass;
}
Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
InitListExpr *getUpdater() const {
return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
}
void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
// Iterators
// children = the base and the updater
child_range children() {
return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
}
const_child_range children() const {
return const_child_range(&BaseAndUpdaterExprs[0],
&BaseAndUpdaterExprs[0] + 2);
}
};
/// Represents a loop initializing the elements of an array.
///
/// The need to initialize the elements of an array occurs in a number of
/// contexts:
///
/// * in the implicit copy/move constructor for a class with an array member
/// * when a lambda-expression captures an array by value
/// * when a decomposition declaration decomposes an array
///
/// There are two subexpressions: a common expression (the source array)
/// that is evaluated once up-front, and a per-element initializer that
/// runs once for each array element.
///
/// Within the per-element initializer, the common expression may be referenced
/// via an OpaqueValueExpr, and the current index may be obtained via an
/// ArrayInitIndexExpr.
class ArrayInitLoopExpr : public Expr {
Stmt *SubExprs[2];
explicit ArrayInitLoopExpr(EmptyShell Empty)
: Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
public:
explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
: Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
CommonInit->isValueDependent() || ElementInit->isValueDependent(),
T->isInstantiationDependentType(),
CommonInit->containsUnexpandedParameterPack() ||
ElementInit->containsUnexpandedParameterPack()),
SubExprs{CommonInit, ElementInit} {}
/// Get the common subexpression shared by all initializations (the source
/// array).
OpaqueValueExpr *getCommonExpr() const {
return cast<OpaqueValueExpr>(SubExprs[0]);
}
/// Get the initializer to use for each array element.
Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
llvm::APInt getArraySize() const {
return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
->getSize();
}
static bool classof(const Stmt *S) {
return S->getStmtClass() == ArrayInitLoopExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCommonExpr()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getCommonExpr()->getEndLoc();
}
child_range children() {
return child_range(SubExprs, SubExprs + 2);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + 2);
}
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents the index of the current element of an array being
/// initialized by an ArrayInitLoopExpr. This can only appear within the
/// subexpression of an ArrayInitLoopExpr.
class ArrayInitIndexExpr : public Expr {
explicit ArrayInitIndexExpr(EmptyShell Empty)
: Expr(ArrayInitIndexExprClass, Empty) {}
public:
explicit ArrayInitIndexExpr(QualType T)
: Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
false, false, false, false) {}
static bool classof(const Stmt *S) {
return S->getStmtClass() == ArrayInitIndexExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
friend class ASTReader;
friend class ASTStmtReader;
};
/// Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr {
public:
explicit ImplicitValueInitExpr(QualType ty)
: Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
false, false, ty->isInstantiationDependentType(), false) { }
/// Construct an empty implicit value initialization.
explicit ImplicitValueInitExpr(EmptyShell Empty)
: Expr(ImplicitValueInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitValueInitExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class ParenListExpr : public Expr {
Stmt **Exprs;
unsigned NumExprs;
SourceLocation LParenLoc, RParenLoc;
public:
ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
ArrayRef<Expr*> exprs, SourceLocation rparenloc);
/// Build an empty paren list.
explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
unsigned getNumExprs() const { return NumExprs; }
const Expr* getExpr(unsigned Init) const {
assert(Init < getNumExprs() && "Initializer access out of range!");
return cast_or_null<Expr>(Exprs[Init]);
}
Expr* getExpr(unsigned Init) {
assert(Init < getNumExprs() && "Initializer access out of range!");
return cast_or_null<Expr>(Exprs[Init]);
}
Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
ArrayRef<Expr *> exprs() {
return llvm::makeArrayRef(getExprs(), getNumExprs());
}
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenListExprClass;
}
// Iterators
child_range children() {
return child_range(&Exprs[0], &Exprs[0]+NumExprs);
}
const_child_range children() const {
return const_child_range(&Exprs[0], &Exprs[0] + NumExprs);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents a C11 generic selection.
///
/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
/// expression, followed by one or more generic associations. Each generic
/// association specifies a type name and an expression, or "default" and an
/// expression (in which case it is known as a default generic association).
/// The type and value of the generic selection are identical to those of its
/// result expression, which is defined as the expression in the generic
/// association with a type name that is compatible with the type of the
/// controlling expression, or the expression in the default generic association
/// if no types are compatible. For example:
///
/// @code
/// _Generic(X, double: 1, float: 2, default: 3)
/// @endcode
///
/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
/// or 3 if "hello".
///
/// As an extension, generic selections are allowed in C++, where the following
/// additional semantics apply:
///
/// Any generic selection whose controlling expression is type-dependent or
/// which names a dependent type in its association list is result-dependent,
/// which means that the choice of result expression is dependent.
/// Result-dependent generic associations are both type- and value-dependent.
class GenericSelectionExpr : public Expr {
enum { CONTROLLING, END_EXPR };
TypeSourceInfo **AssocTypes;
Stmt **SubExprs;
unsigned NumAssocs, ResultIndex;
SourceLocation GenericLoc, DefaultLoc, RParenLoc;
public:
GenericSelectionExpr(const ASTContext &Context,
SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo*> AssocTypes,
ArrayRef<Expr*> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// This constructor is used in the result-dependent case.
GenericSelectionExpr(const ASTContext &Context,
SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo*> AssocTypes,
ArrayRef<Expr*> AssocExprs,
SourceLocation DefaultLoc, SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack);
explicit GenericSelectionExpr(EmptyShell Empty)
: Expr(GenericSelectionExprClass, Empty) { }
unsigned getNumAssocs() const { return NumAssocs; }
SourceLocation getGenericLoc() const { return GenericLoc; }
SourceLocation getDefaultLoc() const { return DefaultLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
const Expr *getAssocExpr(unsigned i) const {
return cast<Expr>(SubExprs[END_EXPR+i]);
}
Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
ArrayRef<Expr *> getAssocExprs() const {
return NumAssocs
? llvm::makeArrayRef(
&reinterpret_cast<Expr **>(SubExprs)[END_EXPR], NumAssocs)
: None;
}
const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
return AssocTypes[i];
}
TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
ArrayRef<TypeSourceInfo *> getAssocTypeSourceInfos() const {
return NumAssocs ? llvm::makeArrayRef(&AssocTypes[0], NumAssocs) : None;
}
QualType getAssocType(unsigned i) const {
if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
return TS->getType();
else
return QualType();
}
const Expr *getControllingExpr() const {
return cast<Expr>(SubExprs[CONTROLLING]);
}
Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
/// Whether this generic selection is result-dependent.
bool isResultDependent() const { return ResultIndex == -1U; }
/// The zero-based index of the result expression's generic association in
/// the generic selection's association list. Defined only if the
/// generic selection is not result-dependent.
unsigned getResultIndex() const {
assert(!isResultDependent() && "Generic selection is result-dependent");
return ResultIndex;
}
/// The generic selection's result expression. Defined only if the
/// generic selection is not result-dependent.
const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
SourceLocation getBeginLoc() const LLVM_READONLY { return GenericLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GenericSelectionExprClass;
}
child_range children() {
return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + END_EXPR + NumAssocs);
}
friend class ASTStmtReader;
};
//===----------------------------------------------------------------------===//
// Clang Extensions
//===----------------------------------------------------------------------===//
/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side. For example
/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
public:
ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
IdentifierInfo &accessor, SourceLocation loc)
: Expr(ExtVectorElementExprClass, ty, VK,
(VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
base->isTypeDependent(), base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
Base(base), Accessor(&accessor), AccessorLoc(loc) {}
/// Build an empty vector element expression.
explicit ExtVectorElementExpr(EmptyShell Empty)
: Expr(ExtVectorElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const;
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const;
/// getEncodedElementAccess - Encode the elements accessed into an llvm
/// aggregate Constant of ConstantInt(s).
void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBase()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return AccessorLoc; }
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExtVectorElementExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
const_child_range children() const {
return const_child_range(&Base, &Base + 1);
}
};
/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
BlockDecl *TheBlock;
public:
BlockExpr(BlockDecl *BD, QualType ty)
: Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
ty->isDependentType(), ty->isDependentType(),
ty->isInstantiationDependentType() || BD->isDependentContext(),
false),
TheBlock(BD) {}
/// Build an empty block expression.
explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
const BlockDecl *getBlockDecl() const { return TheBlock; }
BlockDecl *getBlockDecl() { return TheBlock; }
void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
// Convenience functions for probing the underlying BlockDecl.
SourceLocation getCaretLocation() const;
const Stmt *getBody() const;
Stmt *getBody();
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCaretLocation();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getBody()->getEndLoc();
}
/// getFunctionType - Return the underlying function type for this block.
const FunctionProtoType *getFunctionType() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == BlockExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
/// This AST node provides support for reinterpreting a type to another
/// type of the same size.
class AsTypeExpr : public Expr {
private:
Stmt *SrcExpr;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
public:
AsTypeExpr(Expr* SrcExpr, QualType DstType,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation BuiltinLoc, SourceLocation RParenLoc)
: Expr(AsTypeExprClass, DstType, VK, OK,
DstType->isDependentType(),
DstType->isDependentType() || SrcExpr->isValueDependent(),
(DstType->isInstantiationDependentType() ||
SrcExpr->isInstantiationDependent()),
(DstType->containsUnexpandedParameterPack() ||
SrcExpr->containsUnexpandedParameterPack())),
SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getBuiltinLoc - Return the location of the __builtin_astype token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AsTypeExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
const_child_range children() const {
return const_child_range(&SrcExpr, &SrcExpr + 1);
}
};
/// PseudoObjectExpr - An expression which accesses a pseudo-object
/// l-value. A pseudo-object is an abstract object, accesses to which
/// are translated to calls. The pseudo-object expression has a
/// syntactic form, which shows how the expression was actually
/// written in the source code, and a semantic form, which is a series
/// of expressions to be executed in order which detail how the
/// operation is actually evaluated. Optionally, one of the semantic
/// forms may also provide a result value for the expression.
///
/// If any of the semantic-form expressions is an OpaqueValueExpr,
/// that OVE is required to have a source expression, and it is bound
/// to the result of that source expression. Such OVEs may appear
/// only in subsequent semantic-form expressions and as
/// sub-expressions of the syntactic form.
///
/// PseudoObjectExpr should be used only when an operation can be
/// usefully described in terms of fairly simple rewrite rules on
/// objects and functions that are meant to be used by end-developers.
/// For example, under the Itanium ABI, dynamic casts are implemented
/// as a call to a runtime function called __dynamic_cast; using this
/// class to describe that would be inappropriate because that call is
/// not really part of the user-visible semantics, and instead the
/// cast is properly reflected in the AST and IR-generation has been
/// taught to generate the call as necessary. In contrast, an
/// Objective-C property access is semantically defined to be
/// equivalent to a particular message send, and this is very much
/// part of the user model. The name of this class encourages this
/// modelling design.
class PseudoObjectExpr final
: public Expr,
private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
// PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
// Always at least two, because the first sub-expression is the
// syntactic form.
// PseudoObjectExprBits.ResultIndex - The index of the
// sub-expression holding the result. 0 means the result is void,
// which is unambiguous because it's the index of the syntactic
// form. Note that this is therefore 1 higher than the value passed
// in to Create, which is an index within the semantic forms.
// Note also that ASTStmtWriter assumes this encoding.
Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
const Expr * const *getSubExprsBuffer() const {
return getTrailingObjects<Expr *>();
}
PseudoObjectExpr(QualType type, ExprValueKind VK,
Expr *syntactic, ArrayRef<Expr*> semantic,
unsigned resultIndex);
PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
unsigned getNumSubExprs() const {
return PseudoObjectExprBits.NumSubExprs;
}
public:
/// NoResult - A value for the result index indicating that there is
/// no semantic result.
enum : unsigned { NoResult = ~0U };
static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
ArrayRef<Expr*> semantic,
unsigned resultIndex);
static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
unsigned numSemanticExprs);
/// Return the syntactic form of this expression, i.e. the
/// expression it actually looks like. Likely to be expressed in
/// terms of OpaqueValueExprs bound in the semantic form.
Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
/// Return the index of the result-bearing expression into the semantics
/// expressions, or PseudoObjectExpr::NoResult if there is none.
unsigned getResultExprIndex() const {
if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
return PseudoObjectExprBits.ResultIndex - 1;
}
/// Return the result-bearing expression, or null if there is none.
Expr *getResultExpr() {
if (PseudoObjectExprBits.ResultIndex == 0)
return nullptr;
return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
}
const Expr *getResultExpr() const {
return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
}
unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
typedef Expr * const *semantics_iterator;
typedef const Expr * const *const_semantics_iterator;
semantics_iterator semantics_begin() {
return getSubExprsBuffer() + 1;
}
const_semantics_iterator semantics_begin() const {
return getSubExprsBuffer() + 1;
}
semantics_iterator semantics_end() {
return getSubExprsBuffer() + getNumSubExprs();
}
const_semantics_iterator semantics_end() const {
return getSubExprsBuffer() + getNumSubExprs();
}
llvm::iterator_range<semantics_iterator> semantics() {
return llvm::make_range(semantics_begin(), semantics_end());
}
llvm::iterator_range<const_semantics_iterator> semantics() const {
return llvm::make_range(semantics_begin(), semantics_end());
}
Expr *getSemanticExpr(unsigned index) {
assert(index + 1 < getNumSubExprs());
return getSubExprsBuffer()[index + 1];
}
const Expr *getSemanticExpr(unsigned index) const {
return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
}
SourceLocation getExprLoc() const LLVM_READONLY {
return getSyntacticForm()->getExprLoc();
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSyntacticForm()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSyntacticForm()->getEndLoc();
}
child_range children() {
const_child_range CCR =
const_cast<const PseudoObjectExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()),
cast_away_const(CCR.end()));
}
const_child_range children() const {
Stmt *const *cs = const_cast<Stmt *const *>(
reinterpret_cast<const Stmt *const *>(getSubExprsBuffer()));
return const_child_range(cs, cs + getNumSubExprs());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == PseudoObjectExprClass;
}
friend TrailingObjects;
friend class ASTStmtReader;
};
/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>,
/// and corresponding __opencl_atomic_* for OpenCL 2.0.
/// All of these instructions take one primary pointer, at least one memory
/// order. The instructions for which getScopeModel returns non-null value
/// take one synch scope.
class AtomicExpr : public Expr {
public:
enum AtomicOp {
#define BUILTIN(ID, TYPE, ATTRS)
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
#include "clang/Basic/Builtins.def"
// Avoid trailing comma
BI_First = 0
};
private:
/// Location of sub-expressions.
/// The location of Scope sub-expression is NumSubExprs - 1, which is
/// not fixed, therefore is not defined in enum.
enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
Stmt *SubExprs[END_EXPR + 1];
unsigned NumSubExprs;
SourceLocation BuiltinLoc, RParenLoc;
AtomicOp Op;
friend class ASTStmtReader;
public:
AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
AtomicOp op, SourceLocation RP);
/// Determine the number of arguments the specified atomic builtin
/// should have.
static unsigned getNumSubExprs(AtomicOp Op);
/// Build an empty AtomicExpr.
explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
Expr *getPtr() const {
return cast<Expr>(SubExprs[PTR]);
}
Expr *getOrder() const {
return cast<Expr>(SubExprs[ORDER]);
}
Expr *getScope() const {
assert(getScopeModel() && "No scope");
return cast<Expr>(SubExprs[NumSubExprs - 1]);
}
Expr *getVal1() const {
if (Op == AO__c11_atomic_init || Op == AO__opencl_atomic_init)
return cast<Expr>(SubExprs[ORDER]);
assert(NumSubExprs > VAL1);
return cast<Expr>(SubExprs[VAL1]);
}
Expr *getOrderFail() const {
assert(NumSubExprs > ORDER_FAIL);
return cast<Expr>(SubExprs[ORDER_FAIL]);
}
Expr *getVal2() const {
if (Op == AO__atomic_exchange)
return cast<Expr>(SubExprs[ORDER_FAIL]);
assert(NumSubExprs > VAL2);
return cast<Expr>(SubExprs[VAL2]);
}
Expr *getWeak() const {
assert(NumSubExprs > WEAK);
return cast<Expr>(SubExprs[WEAK]);
}
QualType getValueType() const;
AtomicOp getOp() const { return Op; }
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
const Expr * const *getSubExprs() const {
return reinterpret_cast<Expr * const *>(SubExprs);
}
bool isVolatile() const {
return getPtr()->getType()->getPointeeType().isVolatileQualified();
}
bool isCmpXChg() const {
return getOp() == AO__c11_atomic_compare_exchange_strong ||
getOp() == AO__c11_atomic_compare_exchange_weak ||
getOp() == AO__opencl_atomic_compare_exchange_strong ||
getOp() == AO__opencl_atomic_compare_exchange_weak ||
getOp() == AO__atomic_compare_exchange ||
getOp() == AO__atomic_compare_exchange_n;
}
bool isOpenCL() const {
return getOp() >= AO__opencl_atomic_init &&
getOp() <= AO__opencl_atomic_fetch_max;
}
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AtomicExprClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs+NumSubExprs);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + NumSubExprs);
}
/// Get atomic scope model for the atomic op code.
/// \return empty atomic scope model if the atomic op code does not have
/// scope operand.
static std::unique_ptr<AtomicScopeModel> getScopeModel(AtomicOp Op) {
auto Kind =
(Op >= AO__opencl_atomic_load && Op <= AO__opencl_atomic_fetch_max)
? AtomicScopeModelKind::OpenCL
: AtomicScopeModelKind::None;
return AtomicScopeModel::create(Kind);
}
/// Get atomic scope model.
/// \return empty atomic scope model if this atomic expression does not have
/// scope operand.
std::unique_ptr<AtomicScopeModel> getScopeModel() const {
return getScopeModel(getOp());
}
};
/// TypoExpr - Internal placeholder for expressions where typo correction
/// still needs to be performed and/or an error diagnostic emitted.
class TypoExpr : public Expr {
public:
TypoExpr(QualType T)
: Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
/*isTypeDependent*/ true,
/*isValueDependent*/ true,
/*isInstantiationDependent*/ true,
/*containsUnexpandedParameterPack*/ false) {
assert(T->isDependentType() && "TypoExpr given a non-dependent type");
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == TypoExprClass;
}
};
} // end namespace clang
#endif // LLVM_CLANG_AST_EXPR_H