blob: 2aaaf78f9cd0eed8a202d6f7ad0b25b0f5fe4dca [file] [log] [blame]
//===---- MatchSwitch.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the `MatchSwitch` abstraction for building a "switch"
// statement, where each case of the switch is defined by an AST matcher. The
// cases are considered in order, like pattern matching in functional
// languages.
//
// Currently, the design is catered towards simplifying the implementation of
// `DataflowAnalysis` transfer functions. Based on experience here, this
// library may be generalized and moved to ASTMatchers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_MATCHSWITCH_H_
#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_MATCHSWITCH_H_
#include "clang/AST/ASTContext.h"
#include "clang/AST/Stmt.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "llvm/ADT/StringRef.h"
#include <functional>
#include <string>
#include <utility>
#include <vector>
namespace clang {
namespace dataflow {
/// A common form of state shared between the cases of a transfer function.
template <typename LatticeT> struct TransferState {
TransferState(LatticeT &Lattice, Environment &Env)
: Lattice(Lattice), Env(Env) {}
/// Current lattice element.
LatticeT &Lattice;
Environment &Env;
};
/// Matches against `Stmt` and, based on its structure, dispatches to an
/// appropriate handler.
template <typename State>
using MatchSwitch = std::function<void(const Stmt &, ASTContext &, State &)>;
/// Collects cases of a "match switch": a collection of matchers paired with
/// callbacks, which together define a switch that can be applied to a
/// `Stmt`. This structure can simplify the definition of `transfer` functions
/// that rely on pattern-matching.
///
/// For example, consider an analysis that handles particular function calls. It
/// can define the `MatchSwitch` once, in the constructor of the analysis, and
/// then reuse it each time that `transfer` is called, with a fresh state value.
///
/// \code
/// MatchSwitch<TransferState<MyLattice> BuildSwitch() {
/// return MatchSwitchBuilder<TransferState<MyLattice>>()
/// .CaseOf(callExpr(callee(functionDecl(hasName("foo")))), TransferFooCall)
/// .CaseOf(callExpr(argumentCountIs(2),
/// callee(functionDecl(hasName("bar")))),
/// TransferBarCall)
/// .Build();
/// }
/// \endcode
template <typename State> class MatchSwitchBuilder {
public:
/// Registers an action that will be triggered by the match of a pattern
/// against the input statement.
///
/// Requirements:
///
/// `Node` should be a subclass of `Stmt`.
template <typename Node>
MatchSwitchBuilder &&
CaseOf(ast_matchers::internal::Matcher<Stmt> M,
std::function<void(const Node *,
const ast_matchers::MatchFinder::MatchResult &,
State &)>
A) && {
Matchers.push_back(std::move(M));
Actions.push_back(
[A = std::move(A)](const Stmt *Stmt,
const ast_matchers::MatchFinder::MatchResult &R,
State &S) { A(cast<Node>(Stmt), R, S); });
return std::move(*this);
}
MatchSwitch<State> Build() && {
return [Matcher = BuildMatcher(), Actions = std::move(Actions)](
const Stmt &Stmt, ASTContext &Context, State &S) {
auto Results = ast_matchers::matchDynamic(Matcher, Stmt, Context);
if (Results.empty())
return;
// Look through the map for the first binding of the form "TagN..." use
// that to select the action.
for (const auto &Element : Results[0].getMap()) {
llvm::StringRef ID(Element.first);
size_t Index = 0;
if (ID.consume_front("Tag") && !ID.getAsInteger(10, Index) &&
Index < Actions.size()) {
Actions[Index](
&Stmt,
ast_matchers::MatchFinder::MatchResult(Results[0], &Context), S);
return;
}
}
};
}
private:
ast_matchers::internal::DynTypedMatcher BuildMatcher() {
using ast_matchers::anything;
using ast_matchers::stmt;
using ast_matchers::unless;
using ast_matchers::internal::DynTypedMatcher;
if (Matchers.empty())
return stmt(unless(anything()));
for (int I = 0, N = Matchers.size(); I < N; ++I) {
std::string Tag = ("Tag" + llvm::Twine(I)).str();
// Many matchers are not bindable, so ensure that tryBind will work.
Matchers[I].setAllowBind(true);
auto M = *Matchers[I].tryBind(Tag);
// Each anyOf explicitly controls the traversal kind. The anyOf itself is
// set to `TK_AsIs` to ensure no nodes are skipped, thereby deferring to
// the kind of the branches. Then, each branch is either left as is, if
// the kind is already set, or explicitly set to `TK_AsIs`. We choose this
// setting because it is the default interpretation of matchers.
Matchers[I] =
!M.getTraversalKind() ? M.withTraversalKind(TK_AsIs) : std::move(M);
}
// The matcher type on the cases ensures that `Expr` kind is compatible with
// all of the matchers.
return DynTypedMatcher::constructVariadic(
DynTypedMatcher::VO_AnyOf, ASTNodeKind::getFromNodeKind<Stmt>(),
std::move(Matchers));
}
std::vector<ast_matchers::internal::DynTypedMatcher> Matchers;
std::vector<std::function<void(
const Stmt *, const ast_matchers::MatchFinder::MatchResult &, State &)>>
Actions;
};
} // namespace dataflow
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_MATCHSWITCH_H_