blob: 9a694de0f60a00c3763d960a97edee1c261ef211 [file] [log] [blame]
//===-- Disassembler.h ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_CORE_DISASSEMBLER_H
#define LLDB_CORE_DISASSEMBLER_H
#include "lldb/Core/Address.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/FormatEntity.h"
#include "lldb/Core/Opcode.h"
#include "lldb/Core/PluginInterface.h"
#include "lldb/Interpreter/OptionValue.h"
#include "lldb/Symbol/LineEntry.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/FileSpec.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-private-enumerations.h"
#include "lldb/lldb-types.h"
#include "llvm/ADT/StringRef.h"
#include <functional>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
namespace llvm {
template <typename T> class SmallVectorImpl;
}
namespace lldb_private {
class AddressRange;
class DataExtractor;
class Debugger;
class Disassembler;
class Module;
class StackFrame;
class Stream;
class SymbolContext;
class SymbolContextList;
class Target;
struct RegisterInfo;
class Instruction {
public:
Instruction(const Address &address,
AddressClass addr_class = AddressClass::eInvalid);
virtual ~Instruction();
const Address &GetAddress() const { return m_address; }
const char *GetMnemonic(const ExecutionContext *exe_ctx) {
CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
return m_opcode_name.c_str();
}
const char *GetOperands(const ExecutionContext *exe_ctx) {
CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
return m_mnemonics.c_str();
}
const char *GetComment(const ExecutionContext *exe_ctx) {
CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
return m_comment.c_str();
}
virtual void
CalculateMnemonicOperandsAndComment(const ExecutionContext *exe_ctx) = 0;
AddressClass GetAddressClass();
void SetAddress(const Address &addr) {
// Invalidate the address class to lazily discover it if we need to.
m_address_class = AddressClass::eInvalid;
m_address = addr;
}
/// Dump the text representation of this Instruction to a Stream
///
/// Print the (optional) address, (optional) bytes, opcode,
/// operands, and instruction comments to a stream.
///
/// \param[in] s
/// The Stream to add the text to.
///
/// \param[in] show_address
/// Whether the address (using disassembly_addr_format_spec formatting)
/// should be printed.
///
/// \param[in] show_bytes
/// Whether the bytes of the assembly instruction should be printed.
///
/// \param[in] max_opcode_byte_size
/// The size (in bytes) of the largest instruction in the list that
/// we are printing (for text justification/alignment purposes)
/// Only needed if show_bytes is true.
///
/// \param[in] exe_ctx
/// The current execution context, if available. May be used in
/// the assembling of the operands+comments for this instruction.
/// Pass NULL if not applicable.
///
/// \param[in] sym_ctx
/// The SymbolContext for this instruction.
/// Pass NULL if not available/computed.
/// Only needed if show_address is true.
///
/// \param[in] prev_sym_ctx
/// The SymbolContext for the previous instruction. Depending on
/// the disassembly address format specification, a change in
/// Symbol / Function may mean that a line is printed with the new
/// symbol/function name.
/// Pass NULL if unavailable, or if this is the first instruction of
/// the InstructionList.
/// Only needed if show_address is true.
///
/// \param[in] disassembly_addr_format
/// The format specification for how addresses are printed.
/// Only needed if show_address is true.
///
/// \param[in] max_address_text_size
/// The length of the longest address string at the start of the
/// disassembly line that will be printed (the
/// Debugger::FormatDisassemblerAddress() string)
/// so this method can properly align the instruction opcodes.
/// May be 0 to indicate no indentation/alignment of the opcodes.
virtual void Dump(Stream *s, uint32_t max_opcode_byte_size, bool show_address,
bool show_bytes, const ExecutionContext *exe_ctx,
const SymbolContext *sym_ctx,
const SymbolContext *prev_sym_ctx,
const FormatEntity::Entry *disassembly_addr_format,
size_t max_address_text_size);
virtual bool DoesBranch() = 0;
virtual bool HasDelaySlot();
bool CanSetBreakpoint ();
virtual size_t Decode(const Disassembler &disassembler,
const DataExtractor &data,
lldb::offset_t data_offset) = 0;
virtual void SetDescription(llvm::StringRef) {
} // May be overridden in sub-classes that have descriptions.
lldb::OptionValueSP ReadArray(FILE *in_file, Stream *out_stream,
OptionValue::Type data_type);
lldb::OptionValueSP ReadDictionary(FILE *in_file, Stream *out_stream);
bool DumpEmulation(const ArchSpec &arch);
virtual bool TestEmulation(Stream *stream, const char *test_file_name);
bool Emulate(const ArchSpec &arch, uint32_t evaluate_options, void *baton,
EmulateInstruction::ReadMemoryCallback read_mem_callback,
EmulateInstruction::WriteMemoryCallback write_mem_calback,
EmulateInstruction::ReadRegisterCallback read_reg_callback,
EmulateInstruction::WriteRegisterCallback write_reg_callback);
const Opcode &GetOpcode() const { return m_opcode; }
uint32_t GetData(DataExtractor &data);
struct Operand {
enum class Type {
Invalid = 0,
Register,
Immediate,
Dereference,
Sum,
Product
} m_type = Type::Invalid;
std::vector<Operand> m_children;
lldb::addr_t m_immediate = 0;
ConstString m_register;
bool m_negative = false;
bool m_clobbered = false;
bool IsValid() { return m_type != Type::Invalid; }
static Operand BuildRegister(ConstString &r);
static Operand BuildImmediate(lldb::addr_t imm, bool neg);
static Operand BuildImmediate(int64_t imm);
static Operand BuildDereference(const Operand &ref);
static Operand BuildSum(const Operand &lhs, const Operand &rhs);
static Operand BuildProduct(const Operand &lhs, const Operand &rhs);
};
virtual bool ParseOperands(llvm::SmallVectorImpl<Operand> &operands) {
return false;
}
virtual bool IsCall() { return false; }
protected:
Address m_address; // The section offset address of this instruction
// We include an address class in the Instruction class to
// allow the instruction specify the
// AddressClass::eCodeAlternateISA (currently used for
// thumb), and also to specify data (AddressClass::eData).
// The usual value will be AddressClass::eCode, but often
// when disassembling memory, you might run into data.
// This can help us to disassemble appropriately.
private:
AddressClass m_address_class; // Use GetAddressClass () accessor function!
protected:
Opcode m_opcode; // The opcode for this instruction
std::string m_opcode_name;
std::string m_mnemonics;
std::string m_comment;
bool m_calculated_strings;
void
CalculateMnemonicOperandsAndCommentIfNeeded(const ExecutionContext *exe_ctx) {
if (!m_calculated_strings) {
m_calculated_strings = true;
CalculateMnemonicOperandsAndComment(exe_ctx);
}
}
};
namespace OperandMatchers {
std::function<bool(const Instruction::Operand &)>
MatchBinaryOp(std::function<bool(const Instruction::Operand &)> base,
std::function<bool(const Instruction::Operand &)> left,
std::function<bool(const Instruction::Operand &)> right);
std::function<bool(const Instruction::Operand &)>
MatchUnaryOp(std::function<bool(const Instruction::Operand &)> base,
std::function<bool(const Instruction::Operand &)> child);
std::function<bool(const Instruction::Operand &)>
MatchRegOp(const RegisterInfo &info);
std::function<bool(const Instruction::Operand &)> FetchRegOp(ConstString &reg);
std::function<bool(const Instruction::Operand &)> MatchImmOp(int64_t imm);
std::function<bool(const Instruction::Operand &)> FetchImmOp(int64_t &imm);
std::function<bool(const Instruction::Operand &)>
MatchOpType(Instruction::Operand::Type type);
}
class InstructionList {
public:
InstructionList();
~InstructionList();
size_t GetSize() const;
uint32_t GetMaxOpcocdeByteSize() const;
lldb::InstructionSP GetInstructionAtIndex(size_t idx) const;
/// Get the instruction at the given address.
///
/// \return
/// A valid \a InstructionSP if the address could be found, or null
/// otherwise.
lldb::InstructionSP GetInstructionAtAddress(const Address &addr);
//------------------------------------------------------------------
/// Get the index of the next branch instruction.
///
/// Given a list of instructions, find the next branch instruction
/// in the list by returning an index.
///
/// @param[in] start
/// The instruction index of the first instruction to check.
///
/// @param[in] ignore_calls
/// It true, then fine the first branch instruction that isn't
/// a function call (a branch that calls and returns to the next
/// instruction). If false, find the instruction index of any
/// branch in the list.
///
/// @param[out] found_calls
/// If non-null, this will be set to true if any calls were found in
/// extending the range.
///
/// @return
/// The instruction index of the first branch that is at or past
/// \a start. Returns UINT32_MAX if no matching branches are
/// found.
//------------------------------------------------------------------
uint32_t GetIndexOfNextBranchInstruction(uint32_t start,
bool ignore_calls,
bool *found_calls) const;
uint32_t GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
Target &target);
uint32_t GetIndexOfInstructionAtAddress(const Address &addr);
void Clear();
void Append(lldb::InstructionSP &inst_sp);
void Dump(Stream *s, bool show_address, bool show_bytes,
const ExecutionContext *exe_ctx);
private:
typedef std::vector<lldb::InstructionSP> collection;
typedef collection::iterator iterator;
typedef collection::const_iterator const_iterator;
collection m_instructions;
};
class PseudoInstruction : public Instruction {
public:
PseudoInstruction();
~PseudoInstruction() override;
bool DoesBranch() override;
bool HasDelaySlot() override;
void CalculateMnemonicOperandsAndComment(
const ExecutionContext *exe_ctx) override {
// TODO: fill this in and put opcode name into Instruction::m_opcode_name,
// mnemonic into Instruction::m_mnemonics, and any comment into
// Instruction::m_comment
}
size_t Decode(const Disassembler &disassembler, const DataExtractor &data,
lldb::offset_t data_offset) override;
void SetOpcode(size_t opcode_size, void *opcode_data);
void SetDescription(llvm::StringRef description) override;
protected:
std::string m_description;
PseudoInstruction(const PseudoInstruction &) = delete;
const PseudoInstruction &operator=(const PseudoInstruction &) = delete;
};
class Disassembler : public std::enable_shared_from_this<Disassembler>,
public PluginInterface {
public:
enum {
eOptionNone = 0u,
eOptionShowBytes = (1u << 0),
eOptionRawOuput = (1u << 1),
eOptionMarkPCSourceLine = (1u << 2), // Mark the source line that contains
// the current PC (mixed mode only)
eOptionMarkPCAddress =
(1u << 3) // Mark the disassembly line the contains the PC
};
enum HexImmediateStyle {
eHexStyleC,
eHexStyleAsm,
};
// FindPlugin should be lax about the flavor string (it is too annoying to
// have various internal uses of the disassembler fail because the global
// flavor string gets set wrong. Instead, if you get a flavor string you
// don't understand, use the default. Folks who care to check can use the
// FlavorValidForArchSpec method on the disassembler they got back.
static lldb::DisassemblerSP
FindPlugin(const ArchSpec &arch, const char *flavor, const char *plugin_name);
// This version will use the value in the Target settings if flavor is NULL;
static lldb::DisassemblerSP FindPluginForTarget(const Target &target,
const ArchSpec &arch,
const char *flavor,
const char *plugin_name);
struct Limit {
enum { Bytes, Instructions } kind;
lldb::addr_t value;
};
static lldb::DisassemblerSP
DisassembleRange(const ArchSpec &arch, const char *plugin_name,
const char *flavor, Target &target,
const AddressRange &disasm_range, bool prefer_file_cache);
static lldb::DisassemblerSP
DisassembleBytes(const ArchSpec &arch, const char *plugin_name,
const char *flavor, const Address &start, const void *bytes,
size_t length, uint32_t max_num_instructions,
bool data_from_file);
static bool Disassemble(Debugger &debugger, const ArchSpec &arch,
const char *plugin_name, const char *flavor,
const ExecutionContext &exe_ctx, const Address &start,
Limit limit, bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines, uint32_t options,
Stream &strm);
static bool Disassemble(Debugger &debugger, const ArchSpec &arch,
StackFrame &frame, Stream &strm);
// Constructors and Destructors
Disassembler(const ArchSpec &arch, const char *flavor);
~Disassembler() override;
void PrintInstructions(Debugger &debugger, const ArchSpec &arch,
const ExecutionContext &exe_ctx,
bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines, uint32_t options,
Stream &strm);
size_t ParseInstructions(Target &target, Address address, Limit limit,
Stream *error_strm_ptr, bool prefer_file_cache);
virtual size_t DecodeInstructions(const Address &base_addr,
const DataExtractor &data,
lldb::offset_t data_offset,
size_t num_instructions, bool append,
bool data_from_file) = 0;
InstructionList &GetInstructionList();
const InstructionList &GetInstructionList() const;
const ArchSpec &GetArchitecture() const { return m_arch; }
const char *GetFlavor() const { return m_flavor.c_str(); }
virtual bool FlavorValidForArchSpec(const lldb_private::ArchSpec &arch,
const char *flavor) = 0;
protected:
// SourceLine and SourceLinesToDisplay structures are only used in the mixed
// source and assembly display methods internal to this class.
struct SourceLine {
FileSpec file;
uint32_t line;
uint32_t column;
SourceLine() : file(), line(LLDB_INVALID_LINE_NUMBER), column(0) {}
bool operator==(const SourceLine &rhs) const {
return file == rhs.file && line == rhs.line && rhs.column == column;
}
bool operator!=(const SourceLine &rhs) const {
return file != rhs.file || line != rhs.line || column != rhs.column;
}
bool IsValid() const { return line != LLDB_INVALID_LINE_NUMBER; }
};
struct SourceLinesToDisplay {
std::vector<SourceLine> lines;
// index of the "current" source line, if we want to highlight that when
// displaying the source lines. (as opposed to the surrounding source
// lines provided to give context)
size_t current_source_line;
// Whether to print a blank line at the end of the source lines.
bool print_source_context_end_eol;
SourceLinesToDisplay()
: lines(), current_source_line(-1), print_source_context_end_eol(true) {
}
};
// Get the function's declaration line number, hopefully a line number
// earlier than the opening curly brace at the start of the function body.
static SourceLine GetFunctionDeclLineEntry(const SymbolContext &sc);
// Add the provided SourceLine to the map of filenames-to-source-lines-seen.
static void AddLineToSourceLineTables(
SourceLine &line,
std::map<FileSpec, std::set<uint32_t>> &source_lines_seen);
// Given a source line, determine if we should print it when we're doing
// mixed source & assembly output. We're currently using the
// target.process.thread.step-avoid-regexp setting (which is used for
// stepping over inlined STL functions by default) to determine what source
// lines to avoid showing.
//
// Returns true if this source line should be elided (if the source line
// should not be displayed).
static bool
ElideMixedSourceAndDisassemblyLine(const ExecutionContext &exe_ctx,
const SymbolContext &sc, SourceLine &line);
static bool
ElideMixedSourceAndDisassemblyLine(const ExecutionContext &exe_ctx,
const SymbolContext &sc, LineEntry &line) {
SourceLine sl;
sl.file = line.file;
sl.line = line.line;
sl.column = line.column;
return ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, sl);
};
// Classes that inherit from Disassembler can see and modify these
ArchSpec m_arch;
InstructionList m_instruction_list;
lldb::addr_t m_base_addr;
std::string m_flavor;
private:
// For Disassembler only
Disassembler(const Disassembler &) = delete;
const Disassembler &operator=(const Disassembler &) = delete;
};
} // namespace lldb_private
#endif // LLDB_CORE_DISASSEMBLER_H