blob: fe23303e14da2461fa7e0f37015e886503c626d2 [file] [log] [blame]
//===-- ConstString.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_UTILITY_CONSTSTRING_H
#define LLDB_UTILITY_CONSTSTRING_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/FormatVariadic.h"
#include <cstddef>
namespace lldb_private {
class Stream;
}
namespace llvm {
class raw_ostream;
}
namespace lldb_private {
/// \class ConstString ConstString.h "lldb/Utility/ConstString.h"
/// A uniqued constant string class.
///
/// Provides an efficient way to store strings as uniqued strings. After the
/// strings are uniqued, finding strings that are equal to one another is very
/// fast as just the pointers need to be compared. It also allows for many
/// common strings from many different sources to be shared to keep the memory
/// footprint low.
///
/// No reference counting is done on strings that are added to the string
/// pool, once strings are added they are in the string pool for the life of
/// the program.
class ConstString {
public:
/// Default constructor
///
/// Initializes the string to an empty string.
ConstString() = default;
explicit ConstString(const llvm::StringRef &s);
/// Construct with C String value
///
/// Constructs this object with a C string by looking to see if the
/// C string already exists in the global string pool. If it doesn't
/// exist, it is added to the string pool.
///
/// \param[in] cstr
/// A NULL terminated C string to add to the string pool.
explicit ConstString(const char *cstr);
/// Construct with C String value with max length
///
/// Constructs this object with a C string with a length. If \a max_cstr_len
/// is greater than the actual length of the string, the string length will
/// be truncated. This allows substrings to be created without the need to
/// NULL terminate the string as it is passed into this function.
///
/// \param[in] cstr
/// A pointer to the first character in the C string. The C
/// string can be NULL terminated in a buffer that contains
/// more characters than the length of the string, or the
/// string can be part of another string and a new substring
/// can be created.
///
/// \param[in] max_cstr_len
/// The max length of \a cstr. If the string length of \a cstr
/// is less than \a max_cstr_len, then the string will be
/// truncated. If the string length of \a cstr is greater than
/// \a max_cstr_len, then only max_cstr_len bytes will be used
/// from \a cstr.
explicit ConstString(const char *cstr, size_t max_cstr_len);
/// C string equality binary predicate function object for ConstString
/// objects.
struct StringIsEqual {
/// C equality test.
///
/// Two C strings are equal when they are contained in ConstString objects
/// when their pointer values are equal to each other.
///
/// \return
/// Returns \b true if the C string in \a lhs is equal to
/// the C string value in \a rhs, \b false otherwise.
bool operator()(const char *lhs, const char *rhs) const {
return lhs == rhs;
}
};
/// Convert to bool operator.
///
/// This allows code to check a ConstString object to see if it contains a
/// valid string using code such as:
///
/// \code
/// ConstString str(...);
/// if (str)
/// { ...
/// \endcode
///
/// \return
/// /b True this object contains a valid non-empty C string, \b
/// false otherwise.
explicit operator bool() const { return !IsEmpty(); }
/// Equal to operator
///
/// Returns true if this string is equal to the string in \a rhs. This
/// operation is very fast as it results in a pointer comparison since all
/// strings are in a uniqued in a global string pool.
///
/// \param[in] rhs
/// Another string object to compare this object to.
///
/// \return
/// true if this object is equal to \a rhs.
/// false if this object is not equal to \a rhs.
bool operator==(ConstString rhs) const {
// We can do a pointer compare to compare these strings since they must
// come from the same pool in order to be equal.
return m_string == rhs.m_string;
}
/// Equal to operator against a non-ConstString value.
///
/// Returns true if this string is equal to the string in \a rhs. This
/// overload is usually slower than comparing against a ConstString value.
/// However, if the rhs string not already a ConstString and it is impractical
/// to turn it into a non-temporary variable, then this overload is faster.
///
/// \param[in] rhs
/// Another string object to compare this object to.
///
/// \return
/// \b true if this object is equal to \a rhs.
/// \b false if this object is not equal to \a rhs.
bool operator==(const char *rhs) const {
// ConstString differentiates between empty strings and nullptr strings, but
// StringRef doesn't. Therefore we have to do this check manually now.
if (m_string == nullptr && rhs != nullptr)
return false;
if (m_string != nullptr && rhs == nullptr)
return false;
return GetStringRef() == rhs;
}
/// Not equal to operator
///
/// Returns true if this string is not equal to the string in \a rhs. This
/// operation is very fast as it results in a pointer comparison since all
/// strings are in a uniqued in a global string pool.
///
/// \param[in] rhs
/// Another string object to compare this object to.
///
/// \return
/// \b true if this object is not equal to \a rhs.
/// \b false if this object is equal to \a rhs.
bool operator!=(ConstString rhs) const { return m_string != rhs.m_string; }
/// Not equal to operator against a non-ConstString value.
///
/// Returns true if this string is not equal to the string in \a rhs. This
/// overload is usually slower than comparing against a ConstString value.
/// However, if the rhs string not already a ConstString and it is impractical
/// to turn it into a non-temporary variable, then this overload is faster.
///
/// \param[in] rhs
/// Another string object to compare this object to.
///
/// \return \b true if this object is not equal to \a rhs, false otherwise.
bool operator!=(const char *rhs) const { return !(*this == rhs); }
bool operator<(ConstString rhs) const;
/// Get the string value as a C string.
///
/// Get the value of the contained string as a NULL terminated C string
/// value.
///
/// If \a value_if_empty is nullptr, then nullptr will be returned.
///
/// \return Returns \a value_if_empty if the string is empty, otherwise
/// the C string value contained in this object.
const char *AsCString(const char *value_if_empty = nullptr) const {
return (IsEmpty() ? value_if_empty : m_string);
}
/// Get the string value as a llvm::StringRef
///
/// \return
/// Returns a new llvm::StringRef object filled in with the
/// needed data.
llvm::StringRef GetStringRef() const {
return llvm::StringRef(m_string, GetLength());
}
/// Get the string value as a C string.
///
/// Get the value of the contained string as a NULL terminated C string
/// value. Similar to the ConstString::AsCString() function, yet this
/// function will always return nullptr if the string is not valid. So this
/// function is a direct accessor to the string pointer value.
///
/// \return
/// Returns nullptr the string is invalid, otherwise the C string
/// value contained in this object.
const char *GetCString() const { return m_string; }
/// Get the length in bytes of string value.
///
/// The string pool stores the length of the string, so we can avoid calling
/// strlen() on the pointer value with this function.
///
/// \return
/// Returns the number of bytes that this string occupies in
/// memory, not including the NULL termination byte.
size_t GetLength() const;
/// Clear this object's state.
///
/// Clear any contained string and reset the value to the empty string
/// value.
void Clear() { m_string = nullptr; }
/// Equal to operator
///
/// Returns true if this string is equal to the string in \a rhs. If case
/// sensitive equality is tested, this operation is very fast as it results
/// in a pointer comparison since all strings are in a uniqued in a global
/// string pool.
///
/// \param[in] lhs
/// The Left Hand Side const ConstString object reference.
///
/// \param[in] rhs
/// The Right Hand Side const ConstString object reference.
///
/// \param[in] case_sensitive
/// Case sensitivity. If true, case sensitive equality
/// will be tested, otherwise character case will be ignored
///
/// \return \b true if this object is equal to \a rhs, \b false otherwise.
static bool Equals(ConstString lhs, ConstString rhs,
const bool case_sensitive = true);
/// Compare two string objects.
///
/// Compares the C string values contained in \a lhs and \a rhs and returns
/// an integer result.
///
/// NOTE: only call this function when you want a true string
/// comparison. If you want string equality use the, use the == operator as
/// it is much more efficient. Also if you want string inequality, use the
/// != operator for the same reasons.
///
/// \param[in] lhs
/// The Left Hand Side const ConstString object reference.
///
/// \param[in] rhs
/// The Right Hand Side const ConstString object reference.
///
/// \param[in] case_sensitive
/// Case sensitivity of compare. If true, case sensitive compare
/// will be performed, otherwise character case will be ignored
///
/// \return -1 if lhs < rhs, 0 if lhs == rhs, 1 if lhs > rhs
static int Compare(ConstString lhs, ConstString rhs,
const bool case_sensitive = true);
/// Dump the object description to a stream.
///
/// Dump the string value to the stream \a s. If the contained string is
/// empty, print \a value_if_empty to the stream instead. If \a
/// value_if_empty is nullptr, then nothing will be dumped to the stream.
///
/// \param[in] s
/// The stream that will be used to dump the object description.
///
/// \param[in] value_if_empty
/// The value to dump if the string is empty. If nullptr, nothing
/// will be output to the stream.
void Dump(Stream *s, const char *value_if_empty = nullptr) const;
/// Dump the object debug description to a stream.
///
/// \param[in] s
/// The stream that will be used to dump the object description.
void DumpDebug(Stream *s) const;
/// Test for empty string.
///
/// \return
/// \b true if the contained string is empty.
/// \b false if the contained string is not empty.
bool IsEmpty() const { return m_string == nullptr || m_string[0] == '\0'; }
/// Test for null string.
///
/// \return
/// \b true if there is no string associated with this instance.
/// \b false if there is a string associated with this instance.
bool IsNull() const { return m_string == nullptr; }
/// Set the C string value.
///
/// Set the string value in the object by uniquing the \a cstr string value
/// in our global string pool.
///
/// If the C string already exists in the global string pool, it finds the
/// current entry and returns the existing value. If it doesn't exist, it is
/// added to the string pool.
///
/// \param[in] cstr
/// A NULL terminated C string to add to the string pool.
void SetCString(const char *cstr);
void SetString(const llvm::StringRef &s);
/// Set the C string value and its mangled counterpart.
///
/// Object files and debug symbols often use mangled string to represent the
/// linkage name for a symbol, function or global. The string pool can
/// efficiently store these values and their counterparts so when we run
/// into another instance of a mangled name, we can avoid calling the name
/// demangler over and over on the same strings and then trying to unique
/// them.
///
/// \param[in] demangled
/// The demangled string to correlate with the \a mangled name.
///
/// \param[in] mangled
/// The already uniqued mangled ConstString to correlate the
/// soon to be uniqued version of \a demangled.
void SetStringWithMangledCounterpart(llvm::StringRef demangled,
ConstString mangled);
/// Retrieve the mangled or demangled counterpart for a mangled or demangled
/// ConstString.
///
/// Object files and debug symbols often use mangled string to represent the
/// linkage name for a symbol, function or global. The string pool can
/// efficiently store these values and their counterparts so when we run
/// into another instance of a mangled name, we can avoid calling the name
/// demangler over and over on the same strings and then trying to unique
/// them.
///
/// \param[in] counterpart
/// A reference to a ConstString object that might get filled in
/// with the demangled/mangled counterpart.
///
/// \return
/// /b True if \a counterpart was filled in with the counterpart
/// /b false otherwise.
bool GetMangledCounterpart(ConstString &counterpart) const;
/// Set the C string value with length.
///
/// Set the string value in the object by uniquing \a cstr_len bytes
/// starting at the \a cstr string value in our global string pool. If trim
/// is true, then \a cstr_len indicates a maximum length of the CString and
/// if the actual length of the string is less, then it will be trimmed.
///
/// If the C string already exists in the global string pool, it finds the
/// current entry and returns the existing value. If it doesn't exist, it is
/// added to the string pool.
///
/// \param[in] cstr
/// A NULL terminated C string to add to the string pool.
///
/// \param[in] cstr_len
/// The maximum length of the C string.
void SetCStringWithLength(const char *cstr, size_t cstr_len);
/// Set the C string value with the minimum length between \a fixed_cstr_len
/// and the actual length of the C string. This can be used for data
/// structures that have a fixed length to store a C string where the string
/// might not be NULL terminated if the string takes the entire buffer.
void SetTrimmedCStringWithLength(const char *cstr, size_t fixed_cstr_len);
/// Get the memory cost of this object.
///
/// Return the size in bytes that this object takes in memory. This returns
/// the size in bytes of this object, which does not include any the shared
/// string values it may refer to.
///
/// \return
/// The number of bytes that this object occupies in memory.
size_t MemorySize() const { return sizeof(ConstString); }
struct MemoryStats {
size_t GetBytesTotal() const { return bytes_total; }
size_t GetBytesUsed() const { return bytes_used; }
size_t GetBytesUnused() const { return bytes_total - bytes_used; }
size_t bytes_total = 0;
size_t bytes_used = 0;
};
static MemoryStats GetMemoryStats();
protected:
template <typename T, typename Enable> friend struct ::llvm::DenseMapInfo;
/// Only used by DenseMapInfo.
static ConstString FromStringPoolPointer(const char *ptr) {
ConstString s;
s.m_string = ptr;
return s;
};
const char *m_string = nullptr;
};
/// Stream the string value \a str to the stream \a s
Stream &operator<<(Stream &s, ConstString str);
} // namespace lldb_private
namespace llvm {
template <> struct format_provider<lldb_private::ConstString> {
static void format(const lldb_private::ConstString &CS, llvm::raw_ostream &OS,
llvm::StringRef Options);
};
/// DenseMapInfo implementation.
/// \{
template <> struct DenseMapInfo<lldb_private::ConstString> {
static inline lldb_private::ConstString getEmptyKey() {
return lldb_private::ConstString::FromStringPoolPointer(
DenseMapInfo<const char *>::getEmptyKey());
}
static inline lldb_private::ConstString getTombstoneKey() {
return lldb_private::ConstString::FromStringPoolPointer(
DenseMapInfo<const char *>::getTombstoneKey());
}
static unsigned getHashValue(lldb_private::ConstString val) {
return DenseMapInfo<const char *>::getHashValue(val.m_string);
}
static bool isEqual(lldb_private::ConstString LHS,
lldb_private::ConstString RHS) {
return LHS == RHS;
}
};
/// \}
inline raw_ostream &operator<<(raw_ostream &os, lldb_private::ConstString s) {
os << s.GetStringRef();
return os;
}
} // namespace llvm
#endif // LLDB_UTILITY_CONSTSTRING_H