blob: 9f34d026b1ba8103d9ab5e4d21638a42ea5d963a [file] [log] [blame]
//===- TypeHashing.h ---------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_CODEVIEW_TYPEHASHING_H
#define LLVM_DEBUGINFO_CODEVIEW_TYPEHASHING_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/DebugInfo/CodeView/TypeCollection.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/Support/FormatProviders.h"
#include <type_traits>
namespace llvm {
namespace codeview {
/// A locally hashed type represents a straightforward hash code of a serialized
/// record. The record is simply serialized, and then the bytes are hashed by
/// a standard algorithm. This is sufficient for the case of de-duplicating
/// records within a single sequence of types, because if two records both have
/// a back-reference to the same type in the same stream, they will both have
/// the same numeric value for the TypeIndex of the back reference.
struct LocallyHashedType {
hash_code Hash;
ArrayRef<uint8_t> RecordData;
/// Given a type, compute its local hash.
static LocallyHashedType hashType(ArrayRef<uint8_t> RecordData);
/// Given a sequence of types, compute all of the local hashes.
template <typename Range>
static std::vector<LocallyHashedType> hashTypes(Range &&Records) {
std::vector<LocallyHashedType> Hashes;
Hashes.reserve(std::distance(std::begin(Records), std::end(Records)));
for (const auto &R : Records)
Hashes.push_back(hashType(R));
return Hashes;
}
static std::vector<LocallyHashedType>
hashTypeCollection(TypeCollection &Types) {
std::vector<LocallyHashedType> Hashes;
Types.ForEachRecord([&Hashes](TypeIndex TI, const CVType &Type) {
Hashes.push_back(hashType(Type.RecordData));
});
return Hashes;
}
};
enum class GlobalTypeHashAlg : uint16_t {
SHA1 = 0, // standard 20-byte SHA1 hash
SHA1_8 // last 8-bytes of standard SHA1 hash
};
/// A globally hashed type represents a hash value that is sufficient to
/// uniquely identify a record across multiple type streams or type sequences.
/// This works by, for any given record A which references B, replacing the
/// TypeIndex that refers to B with a previously-computed global hash for B. As
/// this is a recursive algorithm (e.g. the global hash of B also depends on the
/// global hashes of the types that B refers to), a global hash can uniquely
/// identify identify that A occurs in another stream that has a completely
/// different graph structure. Although the hash itself is slower to compute,
/// probing is much faster with a globally hashed type, because the hash itself
/// is considered "as good as" the original type. Since type records can be
/// quite large, this makes the equality comparison of the hash much faster than
/// equality comparison of a full record.
struct GloballyHashedType {
GloballyHashedType() = default;
GloballyHashedType(StringRef H)
: GloballyHashedType(ArrayRef<uint8_t>(H.bytes_begin(), H.bytes_end())) {}
GloballyHashedType(ArrayRef<uint8_t> H) {
assert(H.size() == 8);
::memcpy(Hash.data(), H.data(), 8);
}
std::array<uint8_t, 8> Hash;
bool empty() const { return *(const uint64_t*)Hash.data() == 0; }
friend inline bool operator==(const GloballyHashedType &L,
const GloballyHashedType &R) {
return L.Hash == R.Hash;
}
friend inline bool operator!=(const GloballyHashedType &L,
const GloballyHashedType &R) {
return !(L.Hash == R.Hash);
}
/// Given a sequence of bytes representing a record, compute a global hash for
/// this record. Due to the nature of global hashes incorporating the hashes
/// of referenced records, this function requires a list of types and ids
/// that RecordData might reference, indexable by TypeIndex.
static GloballyHashedType hashType(ArrayRef<uint8_t> RecordData,
ArrayRef<GloballyHashedType> PreviousTypes,
ArrayRef<GloballyHashedType> PreviousIds);
/// Given a sequence of bytes representing a record, compute a global hash for
/// this record. Due to the nature of global hashes incorporating the hashes
/// of referenced records, this function requires a list of types and ids
/// that RecordData might reference, indexable by TypeIndex.
static GloballyHashedType hashType(CVType Type,
ArrayRef<GloballyHashedType> PreviousTypes,
ArrayRef<GloballyHashedType> PreviousIds) {
return hashType(Type.RecordData, PreviousTypes, PreviousIds);
}
/// Given a sequence of combined type and ID records, compute global hashes
/// for each of them, returning the results in a vector of hashed types.
template <typename Range>
static std::vector<GloballyHashedType> hashTypes(Range &&Records) {
std::vector<GloballyHashedType> Hashes;
bool UnresolvedRecords = false;
for (const auto &R : Records) {
GloballyHashedType H = hashType(R, Hashes, Hashes);
if (H.empty())
UnresolvedRecords = true;
Hashes.push_back(H);
}
// In some rare cases, there might be records with forward references in the
// stream. Several passes might be needed to fully hash each record in the
// Type stream. However this occurs on very small OBJs generated by MASM,
// with a dozen records at most. Therefore this codepath isn't
// time-critical, as it isn't taken in 99% of cases.
while (UnresolvedRecords) {
UnresolvedRecords = false;
auto HashIt = Hashes.begin();
for (const auto &R : Records) {
if (HashIt->empty()) {
GloballyHashedType H = hashType(R, Hashes, Hashes);
if (H.empty())
UnresolvedRecords = true;
else
*HashIt = H;
}
++HashIt;
}
}
return Hashes;
}
/// Given a sequence of combined type and ID records, compute global hashes
/// for each of them, returning the results in a vector of hashed types.
template <typename Range>
static std::vector<GloballyHashedType>
hashIds(Range &&Records, ArrayRef<GloballyHashedType> TypeHashes) {
std::vector<GloballyHashedType> IdHashes;
for (const auto &R : Records)
IdHashes.push_back(hashType(R, TypeHashes, IdHashes));
return IdHashes;
}
static std::vector<GloballyHashedType>
hashTypeCollection(TypeCollection &Types) {
std::vector<GloballyHashedType> Hashes;
Types.ForEachRecord([&Hashes](TypeIndex TI, const CVType &Type) {
Hashes.push_back(hashType(Type.RecordData, Hashes, Hashes));
});
return Hashes;
}
};
static_assert(std::is_trivially_copyable<GloballyHashedType>::value,
"GloballyHashedType must be trivially copyable so that we can "
"reinterpret_cast arrays of hash data to arrays of "
"GloballyHashedType");
} // namespace codeview
template <> struct DenseMapInfo<codeview::LocallyHashedType> {
static codeview::LocallyHashedType Empty;
static codeview::LocallyHashedType Tombstone;
static codeview::LocallyHashedType getEmptyKey() { return Empty; }
static codeview::LocallyHashedType getTombstoneKey() { return Tombstone; }
static unsigned getHashValue(codeview::LocallyHashedType Val) {
return Val.Hash;
}
static bool isEqual(codeview::LocallyHashedType LHS,
codeview::LocallyHashedType RHS) {
if (LHS.Hash != RHS.Hash)
return false;
return LHS.RecordData == RHS.RecordData;
}
};
template <> struct DenseMapInfo<codeview::GloballyHashedType> {
static codeview::GloballyHashedType Empty;
static codeview::GloballyHashedType Tombstone;
static codeview::GloballyHashedType getEmptyKey() { return Empty; }
static codeview::GloballyHashedType getTombstoneKey() { return Tombstone; }
static unsigned getHashValue(codeview::GloballyHashedType Val) {
return *reinterpret_cast<const unsigned *>(Val.Hash.data());
}
static bool isEqual(codeview::GloballyHashedType LHS,
codeview::GloballyHashedType RHS) {
return LHS == RHS;
}
};
template <> struct format_provider<codeview::LocallyHashedType> {
public:
static void format(const codeview::LocallyHashedType &V,
llvm::raw_ostream &Stream, StringRef Style) {
write_hex(Stream, V.Hash, HexPrintStyle::Upper, 8);
}
};
template <> struct format_provider<codeview::GloballyHashedType> {
public:
static void format(const codeview::GloballyHashedType &V,
llvm::raw_ostream &Stream, StringRef Style) {
for (uint8_t B : V.Hash) {
write_hex(Stream, B, HexPrintStyle::Upper, 2);
}
}
};
} // namespace llvm
#endif