blob: 77a800c28754c525c507d69e4982f7cb678f11db [file] [log] [blame]
//===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple Typed Intermediate Language, or TIL, that is used
// by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended
// to be largely independent of clang, in the hope that the analysis can be
// reused for other non-C++ languages. All dependencies on clang/llvm should
// go in ThreadSafetyUtil.h.
//
// Thread safety analysis works by comparing mutex expressions, e.g.
//
// class A { Mutex mu; int dat GUARDED_BY(this->mu); }
// class B { A a; }
//
// void foo(B* b) {
// (*b).a.mu.lock(); // locks (*b).a.mu
// b->a.dat = 0; // substitute &b->a for 'this';
// // requires lock on (&b->a)->mu
// (b->a.mu).unlock(); // unlocks (b->a.mu)
// }
//
// As illustrated by the above example, clang Exprs are not well-suited to
// represent mutex expressions directly, since there is no easy way to compare
// Exprs for equivalence. The thread safety analysis thus lowers clang Exprs
// into a simple intermediate language (IL). The IL supports:
//
// (1) comparisons for semantic equality of expressions
// (2) SSA renaming of variables
// (3) wildcards and pattern matching over expressions
// (4) hash-based expression lookup
//
// The TIL is currently very experimental, is intended only for use within
// the thread safety analysis, and is subject to change without notice.
// After the API stabilizes and matures, it may be appropriate to make this
// more generally available to other analyses.
//
// UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
#include "clang/AST/Decl.h"
#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
namespace clang {
class CallExpr;
class Expr;
class Stmt;
namespace threadSafety {
namespace til {
class BasicBlock;
/// Enum for the different distinct classes of SExpr
enum TIL_Opcode {
#define TIL_OPCODE_DEF(X) COP_##X,
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
};
/// Opcode for unary arithmetic operations.
enum TIL_UnaryOpcode : unsigned char {
UOP_Minus, // -
UOP_BitNot, // ~
UOP_LogicNot // !
};
/// Opcode for binary arithmetic operations.
enum TIL_BinaryOpcode : unsigned char {
BOP_Add, // +
BOP_Sub, // -
BOP_Mul, // *
BOP_Div, // /
BOP_Rem, // %
BOP_Shl, // <<
BOP_Shr, // >>
BOP_BitAnd, // &
BOP_BitXor, // ^
BOP_BitOr, // |
BOP_Eq, // ==
BOP_Neq, // !=
BOP_Lt, // <
BOP_Leq, // <=
BOP_Cmp, // <=>
BOP_LogicAnd, // && (no short-circuit)
BOP_LogicOr // || (no short-circuit)
};
/// Opcode for cast operations.
enum TIL_CastOpcode : unsigned char {
CAST_none = 0,
// Extend precision of numeric type
CAST_extendNum,
// Truncate precision of numeric type
CAST_truncNum,
// Convert to floating point type
CAST_toFloat,
// Convert to integer type
CAST_toInt,
// Convert smart pointer to pointer (C++ only)
CAST_objToPtr
};
const TIL_Opcode COP_Min = COP_Future;
const TIL_Opcode COP_Max = COP_Branch;
const TIL_UnaryOpcode UOP_Min = UOP_Minus;
const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
const TIL_BinaryOpcode BOP_Min = BOP_Add;
const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
const TIL_CastOpcode CAST_Min = CAST_none;
const TIL_CastOpcode CAST_Max = CAST_toInt;
/// Return the name of a unary opcode.
StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
/// Return the name of a binary opcode.
StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
/// ValueTypes are data types that can actually be held in registers.
/// All variables and expressions must have a value type.
/// Pointer types are further subdivided into the various heap-allocated
/// types, such as functions, records, etc.
/// Structured types that are passed by value (e.g. complex numbers)
/// require special handling; they use BT_ValueRef, and size ST_0.
struct ValueType {
enum BaseType : unsigned char {
BT_Void = 0,
BT_Bool,
BT_Int,
BT_Float,
BT_String, // String literals
BT_Pointer,
BT_ValueRef
};
enum SizeType : unsigned char {
ST_0 = 0,
ST_1,
ST_8,
ST_16,
ST_32,
ST_64,
ST_128
};
ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
: Base(B), Size(Sz), Signed(S), VectSize(VS) {}
inline static SizeType getSizeType(unsigned nbytes);
template <class T>
inline static ValueType getValueType();
BaseType Base;
SizeType Size;
bool Signed;
// 0 for scalar, otherwise num elements in vector
unsigned char VectSize;
};
inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
switch (nbytes) {
case 1: return ST_8;
case 2: return ST_16;
case 4: return ST_32;
case 8: return ST_64;
case 16: return ST_128;
default: return ST_0;
}
}
template<>
inline ValueType ValueType::getValueType<void>() {
return ValueType(BT_Void, ST_0, false, 0);
}
template<>
inline ValueType ValueType::getValueType<bool>() {
return ValueType(BT_Bool, ST_1, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int8_t>() {
return ValueType(BT_Int, ST_8, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint8_t>() {
return ValueType(BT_Int, ST_8, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int16_t>() {
return ValueType(BT_Int, ST_16, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint16_t>() {
return ValueType(BT_Int, ST_16, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int32_t>() {
return ValueType(BT_Int, ST_32, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint32_t>() {
return ValueType(BT_Int, ST_32, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int64_t>() {
return ValueType(BT_Int, ST_64, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint64_t>() {
return ValueType(BT_Int, ST_64, false, 0);
}
template<>
inline ValueType ValueType::getValueType<float>() {
return ValueType(BT_Float, ST_32, true, 0);
}
template<>
inline ValueType ValueType::getValueType<double>() {
return ValueType(BT_Float, ST_64, true, 0);
}
template<>
inline ValueType ValueType::getValueType<long double>() {
return ValueType(BT_Float, ST_128, true, 0);
}
template<>
inline ValueType ValueType::getValueType<StringRef>() {
return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
}
template<>
inline ValueType ValueType::getValueType<void*>() {
return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
}
/// Base class for AST nodes in the typed intermediate language.
class SExpr {
public:
SExpr() = delete;
TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
// Subclasses of SExpr must define the following:
//
// This(const This& E, ...) {
// copy constructor: construct copy of E, with some additional arguments.
// }
//
// template <class V>
// typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// traverse all subexpressions, following the traversal/rewriter interface.
// }
//
// template <class C> typename C::CType compare(CType* E, C& Cmp) {
// compare all subexpressions, following the comparator interface
// }
void *operator new(size_t S, MemRegionRef &R) {
return ::operator new(S, R);
}
/// SExpr objects must be created in an arena.
void *operator new(size_t) = delete;
/// SExpr objects cannot be deleted.
// This declaration is public to workaround a gcc bug that breaks building
// with REQUIRES_EH=1.
void operator delete(void *) = delete;
/// Returns the instruction ID for this expression.
/// All basic block instructions have a unique ID (i.e. virtual register).
unsigned id() const { return SExprID; }
/// Returns the block, if this is an instruction in a basic block,
/// otherwise returns null.
BasicBlock *block() const { return Block; }
/// Set the basic block and instruction ID for this expression.
void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
protected:
SExpr(TIL_Opcode Op) : Opcode(Op) {}
SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {}
const unsigned char Opcode;
unsigned char Reserved = 0;
unsigned short Flags = 0;
unsigned SExprID = 0;
BasicBlock *Block = nullptr;
};
// Contains various helper functions for SExprs.
namespace ThreadSafetyTIL {
inline bool isTrivial(const SExpr *E) {
unsigned Op = E->opcode();
return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
}
} // namespace ThreadSafetyTIL
// Nodes which declare variables
/// A named variable, e.g. "x".
///
/// There are two distinct places in which a Variable can appear in the AST.
/// A variable declaration introduces a new variable, and can occur in 3 places:
/// Let-expressions: (Let (x = t) u)
/// Functions: (Function (x : t) u)
/// Self-applicable functions (SFunction (x) t)
///
/// If a variable occurs in any other location, it is a reference to an existing
/// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
/// allocate a separate AST node for variable references; a reference is just a
/// pointer to the original declaration.
class Variable : public SExpr {
public:
enum VariableKind {
/// Let-variable
VK_Let,
/// Function parameter
VK_Fun,
/// SFunction (self) parameter
VK_SFun
};
Variable(StringRef s, SExpr *D = nullptr)
: SExpr(COP_Variable), Name(s), Definition(D) {
Flags = VK_Let;
}
Variable(SExpr *D, const ValueDecl *Cvd = nullptr)
: SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
Definition(D), Cvdecl(Cvd) {
Flags = VK_Let;
}
Variable(const Variable &Vd, SExpr *D) // rewrite constructor
: SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
Flags = Vd.kind();
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
/// Return the kind of variable (let, function param, or self)
VariableKind kind() const { return static_cast<VariableKind>(Flags); }
/// Return the name of the variable, if any.
StringRef name() const { return Name; }
/// Return the clang declaration for this variable, if any.
const ValueDecl *clangDecl() const { return Cvdecl; }
/// Return the definition of the variable.
/// For let-vars, this is the setting expression.
/// For function and self parameters, it is the type of the variable.
SExpr *definition() { return Definition; }
const SExpr *definition() const { return Definition; }
void setName(StringRef S) { Name = S; }
void setKind(VariableKind K) { Flags = K; }
void setDefinition(SExpr *E) { Definition = E; }
void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This routine is only called for variable references.
return Vs.reduceVariableRef(this);
}
template <class C>
typename C::CType compare(const Variable* E, C& Cmp) const {
return Cmp.compareVariableRefs(this, E);
}
private:
friend class BasicBlock;
friend class Function;
friend class Let;
friend class SFunction;
// The name of the variable.
StringRef Name;
// The TIL type or definition.
SExpr *Definition;
// The clang declaration for this variable.
const ValueDecl *Cvdecl = nullptr;
};
/// Placeholder for an expression that has not yet been created.
/// Used to implement lazy copy and rewriting strategies.
class Future : public SExpr {
public:
enum FutureStatus {
FS_pending,
FS_evaluating,
FS_done
};
Future() : SExpr(COP_Future) {}
virtual ~Future() = delete;
static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
// A lazy rewriting strategy should subclass Future and override this method.
virtual SExpr *compute() { return nullptr; }
// Return the result of this future if it exists, otherwise return null.
SExpr *maybeGetResult() const { return Result; }
// Return the result of this future; forcing it if necessary.
SExpr *result() {
switch (Status) {
case FS_pending:
return force();
case FS_evaluating:
return nullptr; // infinite loop; illegal recursion.
case FS_done:
return Result;
}
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
assert(Result && "Cannot traverse Future that has not been forced.");
return Vs.traverse(Result, Ctx);
}
template <class C>
typename C::CType compare(const Future* E, C& Cmp) const {
if (!Result || !E->Result)
return Cmp.comparePointers(this, E);
return Cmp.compare(Result, E->Result);
}
private:
SExpr* force();
FutureStatus Status = FS_pending;
SExpr *Result = nullptr;
};
/// Placeholder for expressions that cannot be represented in the TIL.
class Undefined : public SExpr {
public:
Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceUndefined(*this);
}
template <class C>
typename C::CType compare(const Undefined* E, C& Cmp) const {
return Cmp.trueResult();
}
private:
const Stmt *Cstmt;
};
/// Placeholder for a wildcard that matches any other expression.
class Wildcard : public SExpr {
public:
Wildcard() : SExpr(COP_Wildcard) {}
Wildcard(const Wildcard &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceWildcard(*this);
}
template <class C>
typename C::CType compare(const Wildcard* E, C& Cmp) const {
return Cmp.trueResult();
}
};
template <class T> class LiteralT;
// Base class for literal values.
class Literal : public SExpr {
public:
Literal(const Expr *C)
: SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {}
Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {}
Literal(const Literal &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
// The clang expression for this literal.
const Expr *clangExpr() const { return Cexpr; }
ValueType valueType() const { return ValType; }
template<class T> const LiteralT<T>& as() const {
return *static_cast<const LiteralT<T>*>(this);
}
template<class T> LiteralT<T>& as() {
return *static_cast<LiteralT<T>*>(this);
}
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
template <class C>
typename C::CType compare(const Literal* E, C& Cmp) const {
// TODO: defer actual comparison to LiteralT
return Cmp.trueResult();
}
private:
const ValueType ValType;
const Expr *Cexpr = nullptr;
};
// Derived class for literal values, which stores the actual value.
template<class T>
class LiteralT : public Literal {
public:
LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {}
LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {}
T value() const { return Val;}
T& value() { return Val; }
private:
T Val;
};
template <class V>
typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
if (Cexpr)
return Vs.reduceLiteral(*this);
switch (ValType.Base) {
case ValueType::BT_Void:
break;
case ValueType::BT_Bool:
return Vs.reduceLiteralT(as<bool>());
case ValueType::BT_Int: {
switch (ValType.Size) {
case ValueType::ST_8:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int8_t>());
else
return Vs.reduceLiteralT(as<uint8_t>());
case ValueType::ST_16:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int16_t>());
else
return Vs.reduceLiteralT(as<uint16_t>());
case ValueType::ST_32:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int32_t>());
else
return Vs.reduceLiteralT(as<uint32_t>());
case ValueType::ST_64:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int64_t>());
else
return Vs.reduceLiteralT(as<uint64_t>());
default:
break;
}
}
case ValueType::BT_Float: {
switch (ValType.Size) {
case ValueType::ST_32:
return Vs.reduceLiteralT(as<float>());
case ValueType::ST_64:
return Vs.reduceLiteralT(as<double>());
default:
break;
}
}
case ValueType::BT_String:
return Vs.reduceLiteralT(as<StringRef>());
case ValueType::BT_Pointer:
return Vs.reduceLiteralT(as<void*>());
case ValueType::BT_ValueRef:
break;
}
return Vs.reduceLiteral(*this);
}
/// A Literal pointer to an object allocated in memory.
/// At compile time, pointer literals are represented by symbolic names.
class LiteralPtr : public SExpr {
public:
LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {
assert(D && "ValueDecl must not be null");
}
LiteralPtr(const LiteralPtr &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
// The clang declaration for the value that this pointer points to.
const ValueDecl *clangDecl() const { return Cvdecl; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceLiteralPtr(*this);
}
template <class C>
typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
private:
const ValueDecl *Cvdecl;
};
/// A function -- a.k.a. lambda abstraction.
/// Functions with multiple arguments are created by currying,
/// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
class Function : public SExpr {
public:
Function(Variable *Vd, SExpr *Bd)
: SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Fun);
}
Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Fun);
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This is a variable declaration, so traverse the definition.
auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
// Tell the rewriter to enter the scope of the function.
Variable *Nvd = Vs.enterScope(*VarDecl, E0);
auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
Vs.exitScope(*VarDecl);
return Vs.reduceFunction(*this, Nvd, E1);
}
template <class C>
typename C::CType compare(const Function* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
return Ct;
Cmp.enterScope(variableDecl(), E->variableDecl());
Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExpr* Body;
};
/// A self-applicable function.
/// A self-applicable function can be applied to itself. It's useful for
/// implementing objects and late binding.
class SFunction : public SExpr {
public:
SFunction(Variable *Vd, SExpr *B)
: SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
Vd->Definition = this;
}
SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
Vd->Definition = this;
}
static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// A self-variable points to the SFunction itself.
// A rewrite must introduce the variable with a null definition, and update
// it after 'this' has been rewritten.
Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
Vs.exitScope(*VarDecl);
// A rewrite operation will call SFun constructor to set Vvd->Definition.
return Vs.reduceSFunction(*this, Nvd, E1);
}
template <class C>
typename C::CType compare(const SFunction* E, C& Cmp) const {
Cmp.enterScope(variableDecl(), E->variableDecl());
typename C::CType Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExpr* Body;
};
/// A block of code -- e.g. the body of a function.
class Code : public SExpr {
public:
Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
: SExpr(C), ReturnType(T), Body(B) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
SExpr *returnType() { return ReturnType; }
const SExpr *returnType() const { return ReturnType; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
return Vs.reduceCode(*this, Nt, Nb);
}
template <class C>
typename C::CType compare(const Code* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(body(), E->body());
}
private:
SExpr* ReturnType;
SExpr* Body;
};
/// A typed, writable location in memory
class Field : public SExpr {
public:
Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
: SExpr(C), Range(R), Body(B) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
SExpr *range() { return Range; }
const SExpr *range() const { return Range; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
return Vs.reduceField(*this, Nr, Nb);
}
template <class C>
typename C::CType compare(const Field* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(range(), E->range());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(body(), E->body());
}
private:
SExpr* Range;
SExpr* Body;
};
/// Apply an argument to a function.
/// Note that this does not actually call the function. Functions are curried,
/// so this returns a closure in which the first parameter has been applied.
/// Once all parameters have been applied, Call can be used to invoke the
/// function.
class Apply : public SExpr {
public:
Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor
: SExpr(A), Fun(F), Arg(Ar) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
SExpr *fun() { return Fun; }
const SExpr *fun() const { return Fun; }
SExpr *arg() { return Arg; }
const SExpr *arg() const { return Arg; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
return Vs.reduceApply(*this, Nf, Na);
}
template <class C>
typename C::CType compare(const Apply* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(fun(), E->fun());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(arg(), E->arg());
}
private:
SExpr* Fun;
SExpr* Arg;
};
/// Apply a self-argument to a self-applicable function.
class SApply : public SExpr {
public:
SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
: SExpr(A), Sfun(Sf), Arg(Ar) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
SExpr *sfun() { return Sfun; }
const SExpr *sfun() const { return Sfun; }
SExpr *arg() { return Arg ? Arg : Sfun; }
const SExpr *arg() const { return Arg ? Arg : Sfun; }
bool isDelegation() const { return Arg != nullptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
: nullptr;
return Vs.reduceSApply(*this, Nf, Na);
}
template <class C>
typename C::CType compare(const SApply* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
return Ct;
return Cmp.compare(arg(), E->arg());
}
private:
SExpr* Sfun;
SExpr* Arg;
};
/// Project a named slot from a C++ struct or class.
class Project : public SExpr {
public:
Project(SExpr *R, const ValueDecl *Cvd)
: SExpr(COP_Project), Rec(R), Cvdecl(Cvd) {
assert(Cvd && "ValueDecl must not be null");
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
SExpr *record() { return Rec; }
const SExpr *record() const { return Rec; }
const ValueDecl *clangDecl() const { return Cvdecl; }
bool isArrow() const { return (Flags & 0x01) != 0; }
void setArrow(bool b) {
if (b) Flags |= 0x01;
else Flags &= 0xFFFE;
}
StringRef slotName() const {
if (Cvdecl->getDeclName().isIdentifier())
return Cvdecl->getName();
if (!SlotName) {
SlotName = "";
llvm::raw_string_ostream OS(*SlotName);
Cvdecl->printName(OS);
}
return *SlotName;
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
return Vs.reduceProject(*this, Nr);
}
template <class C>
typename C::CType compare(const Project* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(record(), E->record());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
private:
SExpr* Rec;
mutable llvm::Optional<std::string> SlotName;
const ValueDecl *Cvdecl;
};
/// Call a function (after all arguments have been applied).
class Call : public SExpr {
public:
Call(SExpr *T, const CallExpr *Ce = nullptr)
: SExpr(COP_Call), Target(T), Cexpr(Ce) {}
Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
SExpr *target() { return Target; }
const SExpr *target() const { return Target; }
const CallExpr *clangCallExpr() const { return Cexpr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
return Vs.reduceCall(*this, Nt);
}
template <class C>
typename C::CType compare(const Call* E, C& Cmp) const {
return Cmp.compare(target(), E->target());
}
private:
SExpr* Target;
const CallExpr *Cexpr;
};
/// Allocate memory for a new value on the heap or stack.
class Alloc : public SExpr {
public:
enum AllocKind {
AK_Stack,
AK_Heap
};
Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
AllocKind kind() const { return static_cast<AllocKind>(Flags); }
SExpr *dataType() { return Dtype; }
const SExpr *dataType() const { return Dtype; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
return Vs.reduceAlloc(*this, Nd);
}
template <class C>
typename C::CType compare(const Alloc* E, C& Cmp) const {
typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(dataType(), E->dataType());
}
private:
SExpr* Dtype;
};
/// Load a value from memory.
class Load : public SExpr {
public:
Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
SExpr *pointer() { return Ptr; }
const SExpr *pointer() const { return Ptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
return Vs.reduceLoad(*this, Np);
}
template <class C>
typename C::CType compare(const Load* E, C& Cmp) const {
return Cmp.compare(pointer(), E->pointer());
}
private:
SExpr* Ptr;
};
/// Store a value to memory.
/// The destination is a pointer to a field, the source is the value to store.
class Store : public SExpr {
public:
Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
SExpr *destination() { return Dest; } // Address to store to
const SExpr *destination() const { return Dest; }
SExpr *source() { return Source; } // Value to store
const SExpr *source() const { return Source; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx));
auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
return Vs.reduceStore(*this, Np, Nv);
}
template <class C>
typename C::CType compare(const Store* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(destination(), E->destination());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(source(), E->source());
}
private:
SExpr* Dest;
SExpr* Source;
};
/// If p is a reference to an array, then p[i] is a reference to the i'th
/// element of the array.
class ArrayIndex : public SExpr {
public:
ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
SExpr *array() { return Array; }
const SExpr *array() const { return Array; }
SExpr *index() { return Index; }
const SExpr *index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
return Vs.reduceArrayIndex(*this, Na, Ni);
}
template <class C>
typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(index(), E->index());
}
private:
SExpr* Array;
SExpr* Index;
};
/// Pointer arithmetic, restricted to arrays only.
/// If p is a reference to an array, then p + n, where n is an integer, is
/// a reference to a subarray.
class ArrayAdd : public SExpr {
public:
ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
SExpr *array() { return Array; }
const SExpr *array() const { return Array; }
SExpr *index() { return Index; }
const SExpr *index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
return Vs.reduceArrayAdd(*this, Na, Ni);
}
template <class C>
typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(index(), E->index());
}
private:
SExpr* Array;
SExpr* Index;
};
/// Simple arithmetic unary operations, e.g. negate and not.
/// These operations have no side-effects.
class UnaryOp : public SExpr {
public:
UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
Flags = Op;
}
UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
TIL_UnaryOpcode unaryOpcode() const {
return static_cast<TIL_UnaryOpcode>(Flags);
}
SExpr *expr() { return Expr0; }
const SExpr *expr() const { return Expr0; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
return Vs.reduceUnaryOp(*this, Ne);
}
template <class C>
typename C::CType compare(const UnaryOp* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr(), E->expr());
}
private:
SExpr* Expr0;
};
/// Simple arithmetic binary operations, e.g. +, -, etc.
/// These operations have no side effects.
class BinaryOp : public SExpr {
public:
BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
: SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
Flags = Op;
}
BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
: SExpr(B), Expr0(E0), Expr1(E1) {
Flags = B.Flags;
}
static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
TIL_BinaryOpcode binaryOpcode() const {
return static_cast<TIL_BinaryOpcode>(Flags);
}
SExpr *expr0() { return Expr0; }
const SExpr *expr0() const { return Expr0; }
SExpr *expr1() { return Expr1; }
const SExpr *expr1() const { return Expr1; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
return Vs.reduceBinaryOp(*this, Ne0, Ne1);
}
template <class C>
typename C::CType compare(const BinaryOp* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
if (Cmp.notTrue(Ct))
return Ct;
Ct = Cmp.compare(expr0(), E->expr0());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr1(), E->expr1());
}
private:
SExpr* Expr0;
SExpr* Expr1;
};
/// Cast expressions.
/// Cast expressions are essentially unary operations, but we treat them
/// as a distinct AST node because they only change the type of the result.
class Cast : public SExpr {
public:
Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
TIL_CastOpcode castOpcode() const {
return static_cast<TIL_CastOpcode>(Flags);
}
SExpr *expr() { return Expr0; }
const SExpr *expr() const { return Expr0; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
return Vs.reduceCast(*this, Ne);
}
template <class C>
typename C::CType compare(const Cast* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(castOpcode(), E->castOpcode());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr(), E->expr());
}
private:
SExpr* Expr0;
};
class SCFG;
/// Phi Node, for code in SSA form.
/// Each Phi node has an array of possible values that it can take,
/// depending on where control flow comes from.
class Phi : public SExpr {
public:
using ValArray = SimpleArray<SExpr *>;
// In minimal SSA form, all Phi nodes are MultiVal.
// During conversion to SSA, incomplete Phi nodes may be introduced, which
// are later determined to be SingleVal, and are thus redundant.
enum Status {
PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
PH_SingleVal, // Phi node has one distinct value, and can be eliminated
PH_Incomplete // Phi node is incomplete
};
Phi() : SExpr(COP_Phi) {}
Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
const ValArray &values() const { return Values; }
ValArray &values() { return Values; }
Status status() const { return static_cast<Status>(Flags); }
void setStatus(Status s) { Flags = s; }
/// Return the clang declaration of the variable for this Phi node, if any.
const ValueDecl *clangDecl() const { return Cvdecl; }
/// Set the clang variable associated with this Phi node.
void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<typename V::R_SExpr>
Nvs(Vs, Values.size());
for (const auto *Val : Values)
Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
return Vs.reducePhi(*this, Nvs);
}
template <class C>
typename C::CType compare(const Phi *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
ValArray Values;
const ValueDecl* Cvdecl = nullptr;
};
/// Base class for basic block terminators: Branch, Goto, and Return.
class Terminator : public SExpr {
protected:
Terminator(TIL_Opcode Op) : SExpr(Op) {}
Terminator(const SExpr &E) : SExpr(E) {}
public:
static bool classof(const SExpr *E) {
return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
}
/// Return the list of basic blocks that this terminator can branch to.
ArrayRef<BasicBlock *> successors();
ArrayRef<BasicBlock *> successors() const {
return const_cast<Terminator*>(this)->successors();
}
};
/// Jump to another basic block.
/// A goto instruction is essentially a tail-recursive call into another
/// block. In addition to the block pointer, it specifies an index into the
/// phi nodes of that block. The index can be used to retrieve the "arguments"
/// of the call.
class Goto : public Terminator {
public:
Goto(BasicBlock *B, unsigned I)
: Terminator(COP_Goto), TargetBlock(B), Index(I) {}
Goto(const Goto &G, BasicBlock *B, unsigned I)
: Terminator(COP_Goto), TargetBlock(B), Index(I) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
const BasicBlock *targetBlock() const { return TargetBlock; }
BasicBlock *targetBlock() { return TargetBlock; }
/// Returns the index into the
unsigned index() const { return Index; }
/// Return the list of basic blocks that this terminator can branch to.
ArrayRef<BasicBlock *> successors() { return TargetBlock; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
return Vs.reduceGoto(*this, Ntb);
}
template <class C>
typename C::CType compare(const Goto *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
BasicBlock *TargetBlock;
unsigned Index;
};
/// A conditional branch to two other blocks.
/// Note that unlike Goto, Branch does not have an index. The target blocks
/// must be child-blocks, and cannot have Phi nodes.
class Branch : public Terminator {
public:
Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
: Terminator(COP_Branch), Condition(C) {
Branches[0] = T;
Branches[1] = E;
}
Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
: Terminator(Br), Condition(C) {
Branches[0] = T;
Branches[1] = E;
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
const SExpr *condition() const { return Condition; }
SExpr *condition() { return Condition; }
const BasicBlock *thenBlock() const { return Branches[0]; }
BasicBlock *thenBlock() { return Branches[0]; }
const BasicBlock *elseBlock() const { return Branches[1]; }
BasicBlock *elseBlock() { return Branches[1]; }
/// Return the list of basic blocks that this terminator can branch to.
ArrayRef<BasicBlock*> successors() {
return llvm::makeArrayRef(Branches);
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
return Vs.reduceBranch(*this, Nc, Ntb, Nte);
}
template <class C>
typename C::CType compare(const Branch *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
SExpr *Condition;
BasicBlock *Branches[2];
};
/// Return from the enclosing function, passing the return value to the caller.
/// Only the exit block should end with a return statement.
class Return : public Terminator {
public:
Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
/// Return an empty list.
ArrayRef<BasicBlock *> successors() { return None; }
SExpr *returnValue() { return Retval; }
const SExpr *returnValue() const { return Retval; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
return Vs.reduceReturn(*this, Ne);
}
template <class C>
typename C::CType compare(const Return *E, C &Cmp) const {
return Cmp.compare(Retval, E->Retval);
}
private:
SExpr* Retval;
};
inline ArrayRef<BasicBlock*> Terminator::successors() {
switch (opcode()) {
case COP_Goto: return cast<Goto>(this)->successors();
case COP_Branch: return cast<Branch>(this)->successors();
case COP_Return: return cast<Return>(this)->successors();
default:
return None;
}
}
/// A basic block is part of an SCFG. It can be treated as a function in
/// continuation passing style. A block consists of a sequence of phi nodes,
/// which are "arguments" to the function, followed by a sequence of
/// instructions. It ends with a Terminator, which is a Branch or Goto to
/// another basic block in the same SCFG.
class BasicBlock : public SExpr {
public:
using InstrArray = SimpleArray<SExpr *>;
using BlockArray = SimpleArray<BasicBlock *>;
// TopologyNodes are used to overlay tree structures on top of the CFG,
// such as dominator and postdominator trees. Each block is assigned an
// ID in the tree according to a depth-first search. Tree traversals are
// always up, towards the parents.
struct TopologyNode {
int NodeID = 0;
// Includes this node, so must be > 1.
int SizeOfSubTree = 0;
// Pointer to parent.
BasicBlock *Parent = nullptr;
TopologyNode() = default;
bool isParentOf(const TopologyNode& OtherNode) {
return OtherNode.NodeID > NodeID &&
OtherNode.NodeID < NodeID + SizeOfSubTree;
}
bool isParentOfOrEqual(const TopologyNode& OtherNode) {
return OtherNode.NodeID >= NodeID &&
OtherNode.NodeID < NodeID + SizeOfSubTree;
}
};
explicit BasicBlock(MemRegionRef A)
: SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {}
BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
Terminator *T)
: SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false),
Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
/// Returns the block ID. Every block has a unique ID in the CFG.
int blockID() const { return BlockID; }
/// Returns the number of predecessors.
size_t numPredecessors() const { return Predecessors.size(); }
size_t numSuccessors() const { return successors().size(); }
const SCFG* cfg() const { return CFGPtr; }
SCFG* cfg() { return CFGPtr; }
const BasicBlock *parent() const { return DominatorNode.Parent; }
BasicBlock *parent() { return DominatorNode.Parent; }
const InstrArray &arguments() const { return Args; }
InstrArray &arguments() { return Args; }
InstrArray &instructions() { return Instrs; }
const InstrArray &instructions() const { return Instrs; }
/// Returns a list of predecessors.
/// The order of predecessors in the list is important; each phi node has
/// exactly one argument for each precessor, in the same order.
BlockArray &predecessors() { return Predecessors; }
const BlockArray &predecessors() const { return Predecessors; }
ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
const Terminator *terminator() const { return TermInstr; }
Terminator *terminator() { return TermInstr; }
void setTerminator(Terminator *E) { TermInstr = E; }
bool Dominates(const BasicBlock &Other) {
return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
}
bool PostDominates(const BasicBlock &Other) {
return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
}
/// Add a new argument.
void addArgument(Phi *V) {
Args.reserveCheck(1, Arena);
Args.push_back(V);
}
/// Add a new instruction.
void addInstruction(SExpr *V) {
Instrs.reserveCheck(1, Arena);
Instrs.push_back(V);
}
// Add a new predecessor, and return the phi-node index for it.
// Will add an argument to all phi-nodes, initialized to nullptr.
unsigned addPredecessor(BasicBlock *Pred);
// Reserve space for Nargs arguments.
void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); }
// Reserve space for Nins instructions.
void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
// Reserve space for NumPreds predecessors, including space in phi nodes.
void reservePredecessors(unsigned NumPreds);
/// Return the index of BB, or Predecessors.size if BB is not a predecessor.
unsigned findPredecessorIndex(const BasicBlock *BB) const {
auto I = llvm::find(Predecessors, BB);
return std::distance(Predecessors.cbegin(), I);
}
template <class V>
typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<SExpr*> Nas(Vs, Args.size());
typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
// Entering the basic block should do any scope initialization.
Vs.enterBasicBlock(*this);
for (const auto *E : Args) {
auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
Nas.push_back(Ne);
}
for (const auto *E : Instrs) {
auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
Nis.push_back(Ne);
}
auto Nt = Vs.traverse(TermInstr, Ctx);
// Exiting the basic block should handle any scope cleanup.
Vs.exitBasicBlock(*this);
return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
}
template <class C>
typename C::CType compare(const BasicBlock *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
friend class SCFG;
// assign unique ids to all instructions
unsigned renumberInstrs(unsigned id);
unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
void computeDominator();
void computePostDominator();
// The arena used to allocate this block.
MemRegionRef Arena;
// The CFG that contains this block.
SCFG *CFGPtr = nullptr;
// Unique ID for this BB in the containing CFG. IDs are in topological order.
unsigned BlockID : 31;
// Bit to determine if a block has been visited during a traversal.
bool Visited : 1;
// Predecessor blocks in the CFG.
BlockArray Predecessors;
// Phi nodes. One argument per predecessor.
InstrArray Args;
// Instructions.
InstrArray Instrs;
// Terminating instruction.
Terminator *TermInstr = nullptr;
// The dominator tree.
TopologyNode DominatorNode;
// The post-dominator tree.
TopologyNode PostDominatorNode;
};
/// An SCFG is a control-flow graph. It consists of a set of basic blocks,
/// each of which terminates in a branch to another basic block. There is one
/// entry point, and one exit point.
class SCFG : public SExpr {
public:
using BlockArray = SimpleArray<BasicBlock *>;
using iterator = BlockArray::iterator;
using const_iterator = BlockArray::const_iterator;
SCFG(MemRegionRef A, unsigned Nblocks)
: SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) {
Entry = new (A) BasicBlock(A);
Exit = new (A) BasicBlock(A);
auto *V = new (A) Phi();
Exit->addArgument(V);
Exit->setTerminator(new (A) Return(V));
add(Entry);
add(Exit);
}
SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
: SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) {
// TODO: set entry and exit!
}
static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
/// Return true if this CFG is valid.
bool valid() const { return Entry && Exit && Blocks.size() > 0; }
/// Return true if this CFG has been normalized.
/// After normalization, blocks are in topological order, and block and
/// instruction IDs have been assigned.
bool normal() const { return Normal; }
iterator begin() { return Blocks.begin(); }
iterator end() { return Blocks.end(); }
const_iterator begin() const { return cbegin(); }
const_iterator end() const { return cend(); }
const_iterator cbegin() const { return Blocks.cbegin(); }
const_iterator cend() const { return Blocks.cend(); }
const BasicBlock *entry() const { return Entry; }
BasicBlock *entry() { return Entry; }
const BasicBlock *exit() const { return Exit; }
BasicBlock *exit() { return Exit; }
/// Return the number of blocks in the CFG.
/// Block::blockID() will return a number less than numBlocks();
size_t numBlocks() const { return Blocks.size(); }
/// Return the total number of instructions in the CFG.
/// This is useful for building instruction side-tables;
/// A call to SExpr::id() will return a number less than numInstructions().
unsigned numInstructions() { return NumInstructions; }
inline void add(BasicBlock *BB) {
assert(BB->CFGPtr == nullptr);
BB->CFGPtr = this;
Blocks.reserveCheck(1, Arena);
Blocks.push_back(BB);
}
void setEntry(BasicBlock *BB) { Entry = BB; }
void setExit(BasicBlock *BB) { Exit = BB; }
void computeNormalForm();
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
Vs.enterCFG(*this);
typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
for (const auto *B : Blocks) {
Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
}
Vs.exitCFG(*this);
return Vs.reduceSCFG(*this, Bbs);
}
template <class C>
typename C::CType compare(const SCFG *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
// assign unique ids to all instructions
void renumberInstrs();
MemRegionRef Arena;
BlockArray Blocks;
BasicBlock *Entry = nullptr;
BasicBlock *Exit = nullptr;
unsigned NumInstructions = 0;
bool Normal = false;
};
/// An identifier, e.g. 'foo' or 'x'.
/// This is a pseduo-term; it will be lowered to a variable or projection.
class Identifier : public SExpr {
public:
Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {}
Identifier(const Identifier &) = default;
static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
StringRef name() const { return Name; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceIdentifier(*this);
}
template <class C>
typename C::CType compare(const Identifier* E, C& Cmp) const {
return Cmp.compareStrings(name(), E->name());
}
private:
StringRef Name;
};
/// An if-then-else expression.
/// This is a pseduo-term; it will be lowered to a branch in a CFG.
class IfThenElse : public SExpr {
public:
IfThenElse(SExpr *C, SExpr *T, SExpr *E)
: SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {}
IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
: SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {}
static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
SExpr *condition() { return Condition; } // Address to store to
const SExpr *condition() const { return Condition; }
SExpr *thenExpr() { return ThenExpr; } // Value to store
const SExpr *thenExpr() const { return ThenExpr; }
SExpr *elseExpr() { return ElseExpr; } // Value to store
const SExpr *elseExpr() const { return ElseExpr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx));
auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx));
return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
}
template <class C>
typename C::CType compare(const IfThenElse* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(condition(), E->condition());
if (Cmp.notTrue(Ct))
return Ct;
Ct = Cmp.compare(thenExpr(), E->thenExpr());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(elseExpr(), E->elseExpr());
}
private:
SExpr* Condition;
SExpr* ThenExpr;
SExpr* ElseExpr;
};
/// A let-expression, e.g. let x=t; u.
/// This is a pseduo-term; it will be lowered to instructions in a CFG.
class Let : public SExpr {
public:
Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Let);
}
Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Let);
}
static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body; }
const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This is a variable declaration, so traverse the definition.
auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
// Tell the rewriter to enter the scope of the let variable.
Variable *Nvd = Vs.enterScope(*VarDecl, E0);
auto E1 = Vs.traverse(Body, Ctx);
Vs.exitScope(*VarDecl);
return Vs.reduceLet(*this, Nvd, E1);
}
template <class C>
typename C::CType compare(const Let* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
return Ct;
Cmp.enterScope(variableDecl(), E->variableDecl());
Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExpr* Body;
};
const SExpr *getCanonicalVal(const SExpr *E);
SExpr* simplifyToCanonicalVal(SExpr *E);
void simplifyIncompleteArg(til::Phi *Ph);
} // namespace til
} // namespace threadSafety
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H