blob: 8e4299ea70e8e8d39cde6f2c60dfb3488e7ca308 [file] [log] [blame]
//===- ThreadSafetyTIL.h ---------------------------------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT in the llvm repository for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple Typed Intermediate Language, or TIL, that is used
// by the thread safety analysis (See ThreadSafety.cpp). The TIL is intended
// to be largely independent of clang, in the hope that the analysis can be
// reused for other non-C++ languages. All dependencies on clang/llvm should
// go in ThreadSafetyUtil.h.
//
// Thread safety analysis works by comparing mutex expressions, e.g.
//
// class A { Mutex mu; int dat GUARDED_BY(this->mu); }
// class B { A a; }
//
// void foo(B* b) {
// (*b).a.mu.lock(); // locks (*b).a.mu
// b->a.dat = 0; // substitute &b->a for 'this';
// // requires lock on (&b->a)->mu
// (b->a.mu).unlock(); // unlocks (b->a.mu)
// }
//
// As illustrated by the above example, clang Exprs are not well-suited to
// represent mutex expressions directly, since there is no easy way to compare
// Exprs for equivalence. The thread safety analysis thus lowers clang Exprs
// into a simple intermediate language (IL). The IL supports:
//
// (1) comparisons for semantic equality of expressions
// (2) SSA renaming of variables
// (3) wildcards and pattern matching over expressions
// (4) hash-based expression lookup
//
// The TIL is currently very experimental, is intended only for use within
// the thread safety analysis, and is subject to change without notice.
// After the API stabilizes and matures, it may be appropriate to make this
// more generally available to other analyses.
//
// UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_THREAD_SAFETY_TIL_H
#define LLVM_CLANG_THREAD_SAFETY_TIL_H
// All clang include dependencies for this file must be put in
// ThreadSafetyUtil.h.
#include "ThreadSafetyUtil.h"
#include <stdint.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <utility>
namespace clang {
namespace threadSafety {
namespace til {
enum TIL_Opcode {
#define TIL_OPCODE_DEF(X) COP_##X,
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
};
enum TIL_UnaryOpcode : unsigned char {
UOP_Minus, // -
UOP_BitNot, // ~
UOP_LogicNot // !
};
enum TIL_BinaryOpcode : unsigned char {
BOP_Mul, // *
BOP_Div, // /
BOP_Rem, // %
BOP_Add, // +
BOP_Sub, // -
BOP_Shl, // <<
BOP_Shr, // >>
BOP_BitAnd, // &
BOP_BitXor, // ^
BOP_BitOr, // |
BOP_Eq, // ==
BOP_Neq, // !=
BOP_Lt, // <
BOP_Leq, // <=
BOP_LogicAnd, // &&
BOP_LogicOr // ||
};
enum TIL_CastOpcode : unsigned char {
CAST_none = 0,
CAST_extendNum, // extend precision of numeric type
CAST_truncNum, // truncate precision of numeric type
CAST_toFloat, // convert to floating point type
CAST_toInt, // convert to integer type
};
const TIL_Opcode COP_Min = COP_Future;
const TIL_Opcode COP_Max = COP_Branch;
const TIL_UnaryOpcode UOP_Min = UOP_Minus;
const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
const TIL_BinaryOpcode BOP_Min = BOP_Mul;
const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
const TIL_CastOpcode CAST_Min = CAST_none;
const TIL_CastOpcode CAST_Max = CAST_toInt;
StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
// ValueTypes are data types that can actually be held in registers.
// All variables and expressions must have a vBNF_Nonealue type.
// Pointer types are further subdivided into the various heap-allocated
// types, such as functions, records, etc.
// Structured types that are passed by value (e.g. complex numbers)
// require special handling; they use BT_ValueRef, and size ST_0.
struct ValueType {
enum BaseType : unsigned char {
BT_Void = 0,
BT_Bool,
BT_Int,
BT_Float,
BT_String, // String literals
BT_Pointer,
BT_ValueRef
};
enum SizeType : unsigned char {
ST_0 = 0,
ST_1,
ST_8,
ST_16,
ST_32,
ST_64,
ST_128
};
inline static SizeType getSizeType(unsigned nbytes);
template <class T>
inline static ValueType getValueType();
ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
: Base(B), Size(Sz), Signed(S), VectSize(VS)
{ }
BaseType Base;
SizeType Size;
bool Signed;
unsigned char VectSize; // 0 for scalar, otherwise num elements in vector
};
inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
switch (nbytes) {
case 1: return ST_8;
case 2: return ST_16;
case 4: return ST_32;
case 8: return ST_64;
case 16: return ST_128;
default: return ST_0;
}
}
template<>
inline ValueType ValueType::getValueType<void>() {
return ValueType(BT_Void, ST_0, false, 0);
}
template<>
inline ValueType ValueType::getValueType<bool>() {
return ValueType(BT_Bool, ST_1, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int8_t>() {
return ValueType(BT_Int, ST_8, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint8_t>() {
return ValueType(BT_Int, ST_8, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int16_t>() {
return ValueType(BT_Int, ST_16, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint16_t>() {
return ValueType(BT_Int, ST_16, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int32_t>() {
return ValueType(BT_Int, ST_32, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint32_t>() {
return ValueType(BT_Int, ST_32, false, 0);
}
template<>
inline ValueType ValueType::getValueType<int64_t>() {
return ValueType(BT_Int, ST_64, true, 0);
}
template<>
inline ValueType ValueType::getValueType<uint64_t>() {
return ValueType(BT_Int, ST_64, false, 0);
}
template<>
inline ValueType ValueType::getValueType<float>() {
return ValueType(BT_Float, ST_32, true, 0);
}
template<>
inline ValueType ValueType::getValueType<double>() {
return ValueType(BT_Float, ST_64, true, 0);
}
template<>
inline ValueType ValueType::getValueType<long double>() {
return ValueType(BT_Float, ST_128, true, 0);
}
template<>
inline ValueType ValueType::getValueType<StringRef>() {
return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
}
template<>
inline ValueType ValueType::getValueType<void*>() {
return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
}
// Base class for AST nodes in the typed intermediate language.
class SExpr {
public:
TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
// Subclasses of SExpr must define the following:
//
// This(const This& E, ...) {
// copy constructor: construct copy of E, with some additional arguments.
// }
//
// template <class V>
// typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// traverse all subexpressions, following the traversal/rewriter interface.
// }
//
// template <class C> typename C::CType compare(CType* E, C& Cmp) {
// compare all subexpressions, following the comparator interface
// }
void *operator new(size_t S, MemRegionRef &R) {
return ::operator new(S, R);
}
// SExpr objects cannot be deleted.
// This declaration is public to workaround a gcc bug that breaks building
// with REQUIRES_EH=1.
void operator delete(void *) LLVM_DELETED_FUNCTION;
protected:
SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}
SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}
const unsigned char Opcode;
unsigned char Reserved;
unsigned short Flags;
private:
SExpr() LLVM_DELETED_FUNCTION;
// SExpr objects must be created in an arena.
void *operator new(size_t) LLVM_DELETED_FUNCTION;
};
// Class for owning references to SExprs.
// Includes attach/detach logic for counting variable references and lazy
// rewriting strategies.
class SExprRef {
public:
SExprRef() : Ptr(nullptr) { }
SExprRef(std::nullptr_t P) : Ptr(nullptr) { }
SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }
// Defined after Variable and Future, below.
inline SExprRef(SExpr *P);
inline ~SExprRef();
SExpr *get() { return Ptr; }
const SExpr *get() const { return Ptr; }
SExpr *operator->() { return get(); }
const SExpr *operator->() const { return get(); }
SExpr &operator*() { return *Ptr; }
const SExpr &operator*() const { return *Ptr; }
bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }
bool operator!=(const SExprRef &R) const { return !operator==(R); }
bool operator==(const SExpr *P) const { return Ptr == P; }
bool operator!=(const SExpr *P) const { return !operator==(P); }
bool operator==(std::nullptr_t) const { return Ptr == nullptr; }
bool operator!=(std::nullptr_t) const { return Ptr != nullptr; }
inline void reset(SExpr *E);
private:
inline void attach();
inline void detach();
SExpr *Ptr;
};
// Contains various helper functions for SExprs.
namespace ThreadSafetyTIL {
inline bool isTrivial(const SExpr *E) {
unsigned Op = E->opcode();
return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
}
}
// Nodes which declare variables
class Function;
class SFunction;
class BasicBlock;
class Let;
// A named variable, e.g. "x".
//
// There are two distinct places in which a Variable can appear in the AST.
// A variable declaration introduces a new variable, and can occur in 3 places:
// Let-expressions: (Let (x = t) u)
// Functions: (Function (x : t) u)
// Self-applicable functions (SFunction (x) t)
//
// If a variable occurs in any other location, it is a reference to an existing
// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
// allocate a separate AST node for variable references; a reference is just a
// pointer to the original declaration.
class Variable : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
// Let-variable, function parameter, or self-variable
enum VariableKind {
VK_Let,
VK_LetBB,
VK_Fun,
VK_SFun
};
// These are defined after SExprRef contructor, below
inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);
inline Variable(StringRef s, SExpr *D = nullptr);
inline Variable(const Variable &Vd, SExpr *D);
VariableKind kind() const { return static_cast<VariableKind>(Flags); }
const StringRef name() const { return Name; }
const clang::ValueDecl *clangDecl() const { return Cvdecl; }
// Returns the definition (for let vars) or type (for parameter & self vars)
SExpr *definition() { return Definition.get(); }
const SExpr *definition() const { return Definition.get(); }
void attachVar() const { ++NumUses; }
void detachVar() const { assert(NumUses > 0); --NumUses; }
unsigned getID() const { return Id; }
unsigned getBlockID() const { return BlockID; }
void setName(StringRef S) { Name = S; }
void setID(unsigned Bid, unsigned I) {
BlockID = static_cast<unsigned short>(Bid);
Id = static_cast<unsigned short>(I);
}
void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
void setDefinition(SExpr *E);
void setKind(VariableKind K) { Flags = K; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This routine is only called for variable references.
return Vs.reduceVariableRef(this);
}
template <class C> typename C::CType compare(Variable* E, C& Cmp) {
return Cmp.compareVariableRefs(this, E);
}
private:
friend class Function;
friend class SFunction;
friend class BasicBlock;
friend class Let;
StringRef Name; // The name of the variable.
SExprRef Definition; // The TIL type or definition
const clang::ValueDecl *Cvdecl; // The clang declaration for this variable.
unsigned short BlockID;
unsigned short Id;
mutable unsigned NumUses;
};
// Placeholder for an expression that has not yet been created.
// Used to implement lazy copy and rewriting strategies.
class Future : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
enum FutureStatus {
FS_pending,
FS_evaluating,
FS_done
};
Future() :
SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)
{}
private:
virtual ~Future() LLVM_DELETED_FUNCTION;
public:
// Registers the location in the AST where this future is stored.
// Forcing the future will automatically update the AST.
static inline void registerLocation(SExprRef *Member) {
if (Future *F = dyn_cast_or_null<Future>(Member->get()))
F->Location = Member;
}
// A lazy rewriting strategy should subclass Future and override this method.
virtual SExpr *create() { return nullptr; }
// Return the result of this future if it exists, otherwise return null.
SExpr *maybeGetResult() {
return Result;
}
// Return the result of this future; forcing it if necessary.
SExpr *result() {
switch (Status) {
case FS_pending:
force();
return Result;
case FS_evaluating:
return nullptr; // infinite loop; illegal recursion.
case FS_done:
return Result;
}
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
assert(Result && "Cannot traverse Future that has not been forced.");
return Vs.traverse(Result, Ctx);
}
template <class C> typename C::CType compare(Future* E, C& Cmp) {
if (!Result || !E->Result)
return Cmp.comparePointers(this, E);
return Cmp.compare(Result, E->Result);
}
private:
// Force the future.
inline void force();
FutureStatus Status;
SExpr *Result;
SExprRef *Location;
};
inline void SExprRef::attach() {
if (!Ptr)
return;
TIL_Opcode Op = Ptr->opcode();
if (Op == COP_Variable) {
cast<Variable>(Ptr)->attachVar();
} else if (Op == COP_Future) {
cast<Future>(Ptr)->registerLocation(this);
}
}
inline void SExprRef::detach() {
if (Ptr && Ptr->opcode() == COP_Variable) {
cast<Variable>(Ptr)->detachVar();
}
}
inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {
attach();
}
inline SExprRef::~SExprRef() {
detach();
}
inline void SExprRef::reset(SExpr *P) {
detach();
Ptr = P;
attach();
}
inline Variable::Variable(StringRef s, SExpr *D)
: SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),
BlockID(0), Id(0), NumUses(0) {
Flags = VK_Let;
}
inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)
: SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {
Flags = VK_Let;
}
inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor
: SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),
BlockID(0), Id(0), NumUses(0) {
Flags = Vd.kind();
}
inline void Variable::setDefinition(SExpr *E) {
Definition.reset(E);
}
void Future::force() {
Status = FS_evaluating;
SExpr *R = create();
Result = R;
if (Location)
Location->reset(R);
Status = FS_done;
}
// Placeholder for C++ expressions that cannot be represented in the TIL.
class Undefined : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
Undefined(const clang::Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceUndefined(*this);
}
template <class C> typename C::CType compare(Undefined* E, C& Cmp) {
return Cmp.comparePointers(Cstmt, E->Cstmt);
}
private:
const clang::Stmt *Cstmt;
};
// Placeholder for a wildcard that matches any other expression.
class Wildcard : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
Wildcard() : SExpr(COP_Wildcard) {}
Wildcard(const Wildcard &W) : SExpr(W) {}
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceWildcard(*this);
}
template <class C> typename C::CType compare(Wildcard* E, C& Cmp) {
return Cmp.trueResult();
}
};
template <class T> class LiteralT;
// Base class for literal values.
class Literal : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
Literal(const clang::Expr *C)
: SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C)
{ }
Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT), Cexpr(nullptr) {}
Literal(const Literal &L) : SExpr(L), ValType(L.ValType), Cexpr(L.Cexpr) {}
// The clang expression for this literal.
const clang::Expr *clangExpr() const { return Cexpr; }
ValueType valueType() const { return ValType; }
template<class T> const LiteralT<T>& as() const {
return *static_cast<const LiteralT<T>*>(this);
}
template<class T> LiteralT<T>& as() {
return *static_cast<LiteralT<T>*>(this);
}
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
template <class C> typename C::CType compare(Literal* E, C& Cmp) {
// TODO -- use value, not pointer equality
return Cmp.comparePointers(Cexpr, E->Cexpr);
}
private:
const ValueType ValType;
const clang::Expr *Cexpr;
};
// Derived class for literal values, which stores the actual value.
template<class T>
class LiteralT : public Literal {
public:
LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) { }
LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) { }
T value() const { return Val;}
T& value() { return Val; }
private:
T Val;
};
template <class V>
typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
if (Cexpr)
return Vs.reduceLiteral(*this);
switch (ValType.Base) {
case ValueType::BT_Void:
break;
case ValueType::BT_Bool:
return Vs.reduceLiteralT(as<bool>());
case ValueType::BT_Int: {
switch (ValType.Size) {
case ValueType::ST_8:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int8_t>());
else
return Vs.reduceLiteralT(as<uint8_t>());
case ValueType::ST_16:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int16_t>());
else
return Vs.reduceLiteralT(as<uint16_t>());
case ValueType::ST_32:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int32_t>());
else
return Vs.reduceLiteralT(as<uint32_t>());
case ValueType::ST_64:
if (ValType.Signed)
return Vs.reduceLiteralT(as<int64_t>());
else
return Vs.reduceLiteralT(as<uint64_t>());
default:
break;
}
}
case ValueType::BT_Float: {
switch (ValType.Size) {
case ValueType::ST_32:
return Vs.reduceLiteralT(as<float>());
case ValueType::ST_64:
return Vs.reduceLiteralT(as<double>());
default:
break;
}
}
case ValueType::BT_String:
return Vs.reduceLiteralT(as<StringRef>());
case ValueType::BT_Pointer:
return Vs.reduceLiteralT(as<void*>());
case ValueType::BT_ValueRef:
break;
}
return Vs.reduceLiteral(*this);
}
// Literal pointer to an object allocated in memory.
// At compile time, pointer literals are represented by symbolic names.
class LiteralPtr : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
LiteralPtr(const clang::ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
LiteralPtr(const LiteralPtr &R) : SExpr(R), Cvdecl(R.Cvdecl) {}
// The clang declaration for the value that this pointer points to.
const clang::ValueDecl *clangDecl() const { return Cvdecl; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceLiteralPtr(*this);
}
template <class C> typename C::CType compare(LiteralPtr* E, C& Cmp) {
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
private:
const clang::ValueDecl *Cvdecl;
};
// A function -- a.k.a. lambda abstraction.
// Functions with multiple arguments are created by currying,
// e.g. (function (x: Int) (function (y: Int) (add x y)))
class Function : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
Function(Variable *Vd, SExpr *Bd)
: SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Fun);
}
Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Fun);
}
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body.get(); }
const SExpr *body() const { return Body.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This is a variable declaration, so traverse the definition.
auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
// Tell the rewriter to enter the scope of the function.
Variable *Nvd = Vs.enterScope(*VarDecl, E0);
auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
Vs.exitScope(*VarDecl);
return Vs.reduceFunction(*this, Nvd, E1);
}
template <class C> typename C::CType compare(Function* E, C& Cmp) {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
return Ct;
Cmp.enterScope(variableDecl(), E->variableDecl());
Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExprRef Body;
};
// A self-applicable function.
// A self-applicable function can be applied to itself. It's useful for
// implementing objects and late binding
class SFunction : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
SFunction(Variable *Vd, SExpr *B)
: SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
Vd->Definition.reset(this);
}
SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
Vd->Definition.reset(this);
}
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body.get(); }
const SExpr *body() const { return Body.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// A self-variable points to the SFunction itself.
// A rewrite must introduce the variable with a null definition, and update
// it after 'this' has been rewritten.
Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
Vs.exitScope(*VarDecl);
// A rewrite operation will call SFun constructor to set Vvd->Definition.
return Vs.reduceSFunction(*this, Nvd, E1);
}
template <class C> typename C::CType compare(SFunction* E, C& Cmp) {
Cmp.enterScope(variableDecl(), E->variableDecl());
typename C::CType Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExprRef Body;
};
// A block of code -- e.g. the body of a function.
class Code : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
: SExpr(C), ReturnType(T), Body(B) {}
SExpr *returnType() { return ReturnType.get(); }
const SExpr *returnType() const { return ReturnType.get(); }
SExpr *body() { return Body.get(); }
const SExpr *body() const { return Body.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
return Vs.reduceCode(*this, Nt, Nb);
}
template <class C> typename C::CType compare(Code* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(body(), E->body());
}
private:
SExprRef ReturnType;
SExprRef Body;
};
// A typed, writable location in memory
class Field : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
: SExpr(C), Range(R), Body(B) {}
SExpr *range() { return Range.get(); }
const SExpr *range() const { return Range.get(); }
SExpr *body() { return Body.get(); }
const SExpr *body() const { return Body.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx));
return Vs.reduceField(*this, Nr, Nb);
}
template <class C> typename C::CType compare(Field* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(range(), E->range());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(body(), E->body());
}
private:
SExprRef Range;
SExprRef Body;
};
// Apply an argument to a function
class Apply : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor
: SExpr(A), Fun(F), Arg(Ar)
{}
SExpr *fun() { return Fun.get(); }
const SExpr *fun() const { return Fun.get(); }
SExpr *arg() { return Arg.get(); }
const SExpr *arg() const { return Arg.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
return Vs.reduceApply(*this, Nf, Na);
}
template <class C> typename C::CType compare(Apply* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(fun(), E->fun());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(arg(), E->arg());
}
private:
SExprRef Fun;
SExprRef Arg;
};
// Apply a self-argument to a self-applicable function
class SApply : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
: SExpr(A), Sfun(Sf), Arg(Ar) {}
SExpr *sfun() { return Sfun.get(); }
const SExpr *sfun() const { return Sfun.get(); }
SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
bool isDelegation() const { return Arg == nullptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
: nullptr;
return Vs.reduceSApply(*this, Nf, Na);
}
template <class C> typename C::CType compare(SApply* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
return Ct;
return Cmp.compare(arg(), E->arg());
}
private:
SExprRef Sfun;
SExprRef Arg;
};
// Project a named slot from a C++ struct or class.
class Project : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
Project(SExpr *R, StringRef SName)
: SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
{ }
Project(SExpr *R, clang::ValueDecl *Cvd)
: SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
{ }
Project(const Project &P, SExpr *R)
: SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
{ }
SExpr *record() { return Rec.get(); }
const SExpr *record() const { return Rec.get(); }
const clang::ValueDecl *clangValueDecl() const { return Cvdecl; }
StringRef slotName() const {
if (Cvdecl)
return Cvdecl->getName();
else
return SlotName;
}
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
return Vs.reduceProject(*this, Nr);
}
template <class C> typename C::CType compare(Project* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(record(), E->record());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
private:
SExprRef Rec;
StringRef SlotName;
clang::ValueDecl *Cvdecl;
};
// Call a function (after all arguments have been applied).
class Call : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
Call(SExpr *T, const clang::CallExpr *Ce = nullptr)
: SExpr(COP_Call), Target(T), Cexpr(Ce) {}
Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
SExpr *target() { return Target.get(); }
const SExpr *target() const { return Target.get(); }
const clang::CallExpr *clangCallExpr() const { return Cexpr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
return Vs.reduceCall(*this, Nt);
}
template <class C> typename C::CType compare(Call* E, C& Cmp) {
return Cmp.compare(target(), E->target());
}
private:
SExprRef Target;
const clang::CallExpr *Cexpr;
};
// Allocate memory for a new value on the heap or stack.
class Alloc : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
enum AllocKind {
AK_Stack,
AK_Heap
};
Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
AllocKind kind() const { return static_cast<AllocKind>(Flags); }
SExpr *dataType() { return Dtype.get(); }
const SExpr *dataType() const { return Dtype.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
return Vs.reduceAlloc(*this, Nd);
}
template <class C> typename C::CType compare(Alloc* E, C& Cmp) {
typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(dataType(), E->dataType());
}
private:
SExprRef Dtype;
};
// Load a value from memory.
class Load : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
SExpr *pointer() { return Ptr.get(); }
const SExpr *pointer() const { return Ptr.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
return Vs.reduceLoad(*this, Np);
}
template <class C> typename C::CType compare(Load* E, C& Cmp) {
return Cmp.compare(pointer(), E->pointer());
}
private:
SExprRef Ptr;
};
// Store a value to memory.
// Source is a pointer, destination is the value to store.
class Store : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
SExpr *destination() { return Dest.get(); } // Address to store to
const SExpr *destination() const { return Dest.get(); }
SExpr *source() { return Source.get(); } // Value to store
const SExpr *source() const { return Source.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx));
auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
return Vs.reduceStore(*this, Np, Nv);
}
template <class C> typename C::CType compare(Store* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(destination(), E->destination());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(source(), E->source());
}
private:
SExprRef Dest;
SExprRef Source;
};
// If p is a reference to an array, then first(p) is a reference to the first
// element. The usual array notation p[i] becomes first(p + i).
class ArrayIndex : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
SExpr *array() { return Array.get(); }
const SExpr *array() const { return Array.get(); }
SExpr *index() { return Index.get(); }
const SExpr *index() const { return Index.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
return Vs.reduceArrayIndex(*this, Na, Ni);
}
template <class C> typename C::CType compare(ArrayIndex* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(index(), E->index());
}
private:
SExprRef Array;
SExprRef Index;
};
// Pointer arithmetic, restricted to arrays only.
// If p is a reference to an array, then p + n, where n is an integer, is
// a reference to a subarray.
class ArrayAdd : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
SExpr *array() { return Array.get(); }
const SExpr *array() const { return Array.get(); }
SExpr *index() { return Index.get(); }
const SExpr *index() const { return Index.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
return Vs.reduceArrayAdd(*this, Na, Ni);
}
template <class C> typename C::CType compare(ArrayAdd* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(index(), E->index());
}
private:
SExprRef Array;
SExprRef Index;
};
// Simple unary operation -- e.g. !, ~, etc.
class UnaryOp : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
Flags = Op;
}
UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
TIL_UnaryOpcode unaryOpcode() const {
return static_cast<TIL_UnaryOpcode>(Flags);
}
SExpr *expr() { return Expr0.get(); }
const SExpr *expr() const { return Expr0.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
return Vs.reduceUnaryOp(*this, Ne);
}
template <class C> typename C::CType compare(UnaryOp* E, C& Cmp) {
typename C::CType Ct =
Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr(), E->expr());
}
private:
SExprRef Expr0;
};
// Simple binary operation -- e.g. +, -, etc.
class BinaryOp : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
: SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
Flags = Op;
}
BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
: SExpr(B), Expr0(E0), Expr1(E1) {
Flags = B.Flags;
}
TIL_BinaryOpcode binaryOpcode() const {
return static_cast<TIL_BinaryOpcode>(Flags);
}
SExpr *expr0() { return Expr0.get(); }
const SExpr *expr0() const { return Expr0.get(); }
SExpr *expr1() { return Expr1.get(); }
const SExpr *expr1() const { return Expr1.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
return Vs.reduceBinaryOp(*this, Ne0, Ne1);
}
template <class C> typename C::CType compare(BinaryOp* E, C& Cmp) {
typename C::CType Ct =
Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
if (Cmp.notTrue(Ct))
return Ct;
Ct = Cmp.compare(expr0(), E->expr0());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr1(), E->expr1());
}
private:
SExprRef Expr0;
SExprRef Expr1;
};
// Cast expression
class Cast : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
TIL_CastOpcode castOpcode() const {
return static_cast<TIL_CastOpcode>(Flags);
}
SExpr *expr() { return Expr0.get(); }
const SExpr *expr() const { return Expr0.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
return Vs.reduceCast(*this, Ne);
}
template <class C> typename C::CType compare(Cast* E, C& Cmp) {
typename C::CType Ct =
Cmp.compareIntegers(castOpcode(), E->castOpcode());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(expr(), E->expr());
}
private:
SExprRef Expr0;
};
class SCFG;
class Phi : public SExpr {
public:
// TODO: change to SExprRef
typedef SimpleArray<SExpr *> ValArray;
// In minimal SSA form, all Phi nodes are MultiVal.
// During conversion to SSA, incomplete Phi nodes may be introduced, which
// are later determined to be SingleVal, and are thus redundant.
enum Status {
PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
PH_SingleVal, // Phi node has one distinct value, and can be eliminated
PH_Incomplete // Phi node is incomplete
};
static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
Phi() : SExpr(COP_Phi) {}
Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
const ValArray &values() const { return Values; }
ValArray &values() { return Values; }
Status status() const { return static_cast<Status>(Flags); }
void setStatus(Status s) { Flags = s; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<typename V::R_SExpr>
Nvs(Vs, Values.size());
for (auto *Val : Values) {
Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
}
return Vs.reducePhi(*this, Nvs);
}
template <class C> typename C::CType compare(Phi *E, C &Cmp) {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
ValArray Values;
};
// A basic block is part of an SCFG, and can be treated as a function in
// continuation passing style. It consists of a sequence of phi nodes, which
// are "arguments" to the function, followed by a sequence of instructions.
// Both arguments and instructions define new variables. It ends with a
// branch or goto to another basic block in the same SCFG.
class BasicBlock : public SExpr {
public:
typedef SimpleArray<Variable*> VarArray;
typedef SimpleArray<BasicBlock*> BlockArray;
static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)
: SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
Parent(P), Terminator(nullptr)
{ }
BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)
: SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),
Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),
Terminator(T)
{ }
unsigned blockID() const { return BlockID; }
unsigned numPredecessors() const { return Predecessors.size(); }
const SCFG* cfg() const { return CFGPtr; }
SCFG* cfg() { return CFGPtr; }
const BasicBlock *parent() const { return Parent; }
BasicBlock *parent() { return Parent; }
const VarArray &arguments() const { return Args; }
VarArray &arguments() { return Args; }
const VarArray &instructions() const { return Instrs; }
VarArray &instructions() { return Instrs; }
const BlockArray &predecessors() const { return Predecessors; }
BlockArray &predecessors() { return Predecessors; }
const SExpr *terminator() const { return Terminator.get(); }
SExpr *terminator() { return Terminator.get(); }
void setBlockID(unsigned i) { BlockID = i; }
void setParent(BasicBlock *P) { Parent = P; }
void setTerminator(SExpr *E) { Terminator.reset(E); }
// Add a new argument. V must define a phi-node.
void addArgument(Variable *V) {
V->setKind(Variable::VK_LetBB);
Args.reserveCheck(1, Arena);
Args.push_back(V);
}
// Add a new instruction.
void addInstruction(Variable *V) {
V->setKind(Variable::VK_LetBB);
Instrs.reserveCheck(1, Arena);
Instrs.push_back(V);
}
// Add a new predecessor, and return the phi-node index for it.
// Will add an argument to all phi-nodes, initialized to nullptr.
unsigned addPredecessor(BasicBlock *Pred);
// Reserve space for Nargs arguments.
void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); }
// Reserve space for Nins instructions.
void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
// Reserve space for NumPreds predecessors, including space in phi nodes.
void reservePredecessors(unsigned NumPreds);
// Return the index of BB, or Predecessors.size if BB is not a predecessor.
unsigned findPredecessorIndex(const BasicBlock *BB) const {
auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
return std::distance(Predecessors.cbegin(), I);
}
// Set id numbers for variables.
void renumberVars();
template <class V>
typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<Variable*> Nas(Vs, Args.size());
typename V::template Container<Variable*> Nis(Vs, Instrs.size());
// Entering the basic block should do any scope initialization.
Vs.enterBasicBlock(*this);
for (auto *A : Args) {
auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));
Variable *Nvd = Vs.enterScope(*A, Ne);
Nas.push_back(Nvd);
}
for (auto *I : Instrs) {
auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));
Variable *Nvd = Vs.enterScope(*I, Ne);
Nis.push_back(Nvd);
}
auto Nt = Vs.traverse(Terminator, Ctx);
// Exiting the basic block should handle any scope cleanup.
Vs.exitBasicBlock(*this);
return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
}
template <class C> typename C::CType compare(BasicBlock *E, C &Cmp) {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
friend class SCFG;
MemRegionRef Arena;
SCFG *CFGPtr; // The CFG that contains this block.
unsigned BlockID; // unique id for this BB in the containing CFG
BasicBlock *Parent; // The parent block is the enclosing lexical scope.
// The parent dominates this block.
BlockArray Predecessors; // Predecessor blocks in the CFG.
VarArray Args; // Phi nodes. One argument per predecessor.
VarArray Instrs; // Instructions.
SExprRef Terminator; // Branch or Goto
};
// An SCFG is a control-flow graph. It consists of a set of basic blocks, each
// of which terminates in a branch to another basic block. There is one
// entry point, and one exit point.
class SCFG : public SExpr {
public:
typedef SimpleArray<BasicBlock *> BlockArray;
typedef BlockArray::iterator iterator;
typedef BlockArray::const_iterator const_iterator;
static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
SCFG(MemRegionRef A, unsigned Nblocks)
: SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
Entry(nullptr), Exit(nullptr) {
Entry = new (A) BasicBlock(A, nullptr);
Exit = new (A) BasicBlock(A, Entry);
auto *V = new (A) Variable(new (A) Phi());
Exit->addArgument(V);
add(Entry);
add(Exit);
}
SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
: SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
Entry(nullptr), Exit(nullptr) {
// TODO: set entry and exit!
}
iterator begin() { return Blocks.begin(); }
iterator end() { return Blocks.end(); }
const_iterator begin() const { return cbegin(); }
const_iterator end() const { return cend(); }
const_iterator cbegin() const { return Blocks.cbegin(); }
const_iterator cend() const { return Blocks.cend(); }
const BasicBlock *entry() const { return Entry; }
BasicBlock *entry() { return Entry; }
const BasicBlock *exit() const { return Exit; }
BasicBlock *exit() { return Exit; }
inline void add(BasicBlock *BB) {
assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);
BB->setBlockID(Blocks.size());
BB->CFGPtr = this;
Blocks.reserveCheck(1, Arena);
Blocks.push_back(BB);
}
void setEntry(BasicBlock *BB) { Entry = BB; }
void setExit(BasicBlock *BB) { Exit = BB; }
// Set varable ids in all blocks.
void renumberVars();
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
Vs.enterCFG(*this);
typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
for (auto *B : Blocks) {
Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
}
Vs.exitCFG(*this);
return Vs.reduceSCFG(*this, Bbs);
}
template <class C> typename C::CType compare(SCFG *E, C &Cmp) {
// TODO -- implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
MemRegionRef Arena;
BlockArray Blocks;
BasicBlock *Entry;
BasicBlock *Exit;
};
class Goto : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
Goto(BasicBlock *B, unsigned I)
: SExpr(COP_Goto), TargetBlock(B), Index(I) {}
Goto(const Goto &G, BasicBlock *B, unsigned I)
: SExpr(COP_Goto), TargetBlock(B), Index(I) {}
const BasicBlock *targetBlock() const { return TargetBlock; }
BasicBlock *targetBlock() { return TargetBlock; }
unsigned index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
return Vs.reduceGoto(*this, Ntb);
}
template <class C> typename C::CType compare(Goto *E, C &Cmp) {
// TODO -- implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
BasicBlock *TargetBlock;
unsigned Index; // Index into Phi nodes of target block.
};
class Branch : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)
: SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
ThenIndex(TI), ElseIndex(EI)
{}
Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,
unsigned TI, unsigned EI)
: SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
ThenIndex(TI), ElseIndex(EI)
{}
const SExpr *condition() const { return Condition; }
SExpr *condition() { return Condition; }
const BasicBlock *thenBlock() const { return ThenBlock; }
BasicBlock *thenBlock() { return ThenBlock; }
const BasicBlock *elseBlock() const { return ElseBlock; }
BasicBlock *elseBlock() { return ElseBlock; }
unsigned thenIndex() const { return ThenIndex; }
unsigned elseIndex() const { return ElseIndex; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);
BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);
return Vs.reduceBranch(*this, Nc, Ntb, Nte);
}
template <class C> typename C::CType compare(Branch *E, C &Cmp) {
// TODO -- implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
SExpr *Condition;
BasicBlock *ThenBlock;
BasicBlock *ElseBlock;
unsigned ThenIndex;
unsigned ElseIndex;
};
// An identifier, e.g. 'foo' or 'x'.
// This is a pseduo-term; it will be lowered to a variable or projection.
class Identifier : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) { }
Identifier(const Identifier& I) : SExpr(I), Name(I.Name) { }
StringRef name() const { return Name; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
return Vs.reduceIdentifier(*this);
}
template <class C> typename C::CType compare(Identifier* E, C& Cmp) {
return Cmp.compareStrings(name(), E->name());
}
private:
StringRef Name;
};
// An if-then-else expression.
// This is a pseduo-term; it will be lowered to a branch in a CFG.
class IfThenElse : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
IfThenElse(SExpr *C, SExpr *T, SExpr *E)
: SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E)
{ }
IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
: SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
{ }
SExpr *condition() { return Condition.get(); } // Address to store to
const SExpr *condition() const { return Condition.get(); }
SExpr *thenExpr() { return ThenExpr.get(); } // Value to store
const SExpr *thenExpr() const { return ThenExpr.get(); }
SExpr *elseExpr() { return ElseExpr.get(); } // Value to store
const SExpr *elseExpr() const { return ElseExpr.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx));
auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx));
return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
}
template <class C> typename C::CType compare(IfThenElse* E, C& Cmp) {
typename C::CType Ct = Cmp.compare(condition(), E->condition());
if (Cmp.notTrue(Ct))
return Ct;
Ct = Cmp.compare(thenExpr(), E->thenExpr());
if (Cmp.notTrue(Ct))
return Ct;
return Cmp.compare(elseExpr(), E->elseExpr());
}
private:
SExprRef Condition;
SExprRef ThenExpr;
SExprRef ElseExpr;
};
// A let-expression, e.g. let x=t; u.
// This is a pseduo-term; it will be lowered to instructions in a CFG.
class Let : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Let);
}
Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
Vd->setKind(Variable::VK_Let);
}
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
SExpr *body() { return Body.get(); }
const SExpr *body() const { return Body.get(); }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
// This is a variable declaration, so traverse the definition.
auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
// Tell the rewriter to enter the scope of the let variable.
Variable *Nvd = Vs.enterScope(*VarDecl, E0);
auto E1 = Vs.traverse(Body, Ctx);
Vs.exitScope(*VarDecl);
return Vs.reduceLet(*this, Nvd, E1);
}
template <class C> typename C::CType compare(Let* E, C& Cmp) {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
return Ct;
Cmp.enterScope(variableDecl(), E->variableDecl());
Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
return Ct;
}
private:
Variable *VarDecl;
SExprRef Body;
};
SExpr *getCanonicalVal(SExpr *E);
void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
} // end namespace til
} // end namespace threadSafety
} // end namespace clang
#endif // LLVM_CLANG_THREAD_SAFETY_TIL_H