blob: c58c41a44c589fc3e5b874e6d0d0efa90036a8bc [file] [log] [blame]
//===--- Parser.h - C Language Parser ---------------------------*- C++ -*-===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// This file defines the Parser interface.
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Lex/CodeCompletionHandler.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/LoopHint.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SaveAndRestore.h"
#include <memory>
#include <stack>
namespace clang {
class PragmaHandler;
class Scope;
class BalancedDelimiterTracker;
class CorrectionCandidateCallback;
class DeclGroupRef;
class DiagnosticBuilder;
class Parser;
class ParsingDeclRAIIObject;
class ParsingDeclSpec;
class ParsingDeclarator;
class ParsingFieldDeclarator;
class ColonProtectionRAIIObject;
class InMessageExpressionRAIIObject;
class PoisonSEHIdentifiersRAIIObject;
class VersionTuple;
class OMPClause;
/// Parser - This implements a parser for the C family of languages. After
/// parsing units of the grammar, productions are invoked to handle whatever has
/// been read.
class Parser : public CodeCompletionHandler {
friend class ColonProtectionRAIIObject;
friend class InMessageExpressionRAIIObject;
friend class PoisonSEHIdentifiersRAIIObject;
friend class ObjCDeclContextSwitch;
friend class ParenBraceBracketBalancer;
friend class BalancedDelimiterTracker;
Preprocessor &PP;
/// Tok - The current token we are peeking ahead. All parsing methods assume
/// that this is valid.
Token Tok;
// PrevTokLocation - The location of the token we previously
// consumed. This token is used for diagnostics where we expected to
// see a token following another token (e.g., the ';' at the end of
// a statement).
SourceLocation PrevTokLocation;
unsigned short ParenCount, BracketCount, BraceCount;
/// Actions - These are the callbacks we invoke as we parse various constructs
/// in the file.
Sema &Actions;
DiagnosticsEngine &Diags;
/// ScopeCache - Cache scopes to reduce malloc traffic.
enum { ScopeCacheSize = 16 };
unsigned NumCachedScopes;
Scope *ScopeCache[ScopeCacheSize];
/// Identifiers used for SEH handling in Borland. These are only
/// allowed in particular circumstances
// __except block
IdentifierInfo *Ident__exception_code,
// __except filter expression
IdentifierInfo *Ident__exception_info,
// __finally
IdentifierInfo *Ident__abnormal_termination,
/// Contextual keywords for Microsoft extensions.
IdentifierInfo *Ident__except;
mutable IdentifierInfo *Ident_sealed;
/// Ident_super - IdentifierInfo for "super", to support fast
/// comparison.
IdentifierInfo *Ident_super;
/// Ident_vector, Ident_pixel, Ident_bool - cached IdentifierInfo's
/// for "vector", "pixel", and "bool" fast comparison. Only present
/// if AltiVec enabled.
IdentifierInfo *Ident_vector;
IdentifierInfo *Ident_pixel;
IdentifierInfo *Ident_bool;
/// Objective-C contextual keywords.
mutable IdentifierInfo *Ident_instancetype;
/// \brief Identifier for "introduced".
IdentifierInfo *Ident_introduced;
/// \brief Identifier for "deprecated".
IdentifierInfo *Ident_deprecated;
/// \brief Identifier for "obsoleted".
IdentifierInfo *Ident_obsoleted;
/// \brief Identifier for "unavailable".
IdentifierInfo *Ident_unavailable;
/// \brief Identifier for "message".
IdentifierInfo *Ident_message;
/// C++0x contextual keywords.
mutable IdentifierInfo *Ident_final;
mutable IdentifierInfo *Ident_override;
// Some token kinds such as C++ type traits can be reverted to identifiers and
// still get used as keywords depending on context.
llvm::SmallDenseMap<const IdentifierInfo *, tok::TokenKind>
std::unique_ptr<PragmaHandler> AlignHandler;
std::unique_ptr<PragmaHandler> GCCVisibilityHandler;
std::unique_ptr<PragmaHandler> OptionsHandler;
std::unique_ptr<PragmaHandler> PackHandler;
std::unique_ptr<PragmaHandler> MSStructHandler;
std::unique_ptr<PragmaHandler> UnusedHandler;
std::unique_ptr<PragmaHandler> WeakHandler;
std::unique_ptr<PragmaHandler> RedefineExtnameHandler;
std::unique_ptr<PragmaHandler> FPContractHandler;
std::unique_ptr<PragmaHandler> OpenCLExtensionHandler;
std::unique_ptr<PragmaHandler> OpenMPHandler;
std::unique_ptr<PragmaHandler> MSCommentHandler;
std::unique_ptr<PragmaHandler> MSDetectMismatchHandler;
std::unique_ptr<PragmaHandler> MSPointersToMembers;
std::unique_ptr<PragmaHandler> MSVtorDisp;
std::unique_ptr<PragmaHandler> MSInitSeg;
std::unique_ptr<PragmaHandler> MSDataSeg;
std::unique_ptr<PragmaHandler> MSBSSSeg;
std::unique_ptr<PragmaHandler> MSConstSeg;
std::unique_ptr<PragmaHandler> MSCodeSeg;
std::unique_ptr<PragmaHandler> MSSection;
std::unique_ptr<PragmaHandler> OptimizeHandler;
std::unique_ptr<PragmaHandler> LoopHintHandler;
std::unique_ptr<PragmaHandler> UnrollHintHandler;
std::unique_ptr<CommentHandler> CommentSemaHandler;
/// Whether the '>' token acts as an operator or not. This will be
/// true except when we are parsing an expression within a C++
/// template argument list, where the '>' closes the template
/// argument list.
bool GreaterThanIsOperator;
/// ColonIsSacred - When this is false, we aggressively try to recover from
/// code like "foo : bar" as if it were a typo for "foo :: bar". This is not
/// safe in case statements and a few other things. This is managed by the
/// ColonProtectionRAIIObject RAII object.
bool ColonIsSacred;
/// \brief When true, we are directly inside an Objective-C message
/// send expression.
/// This is managed by the \c InMessageExpressionRAIIObject class, and
/// should not be set directly.
bool InMessageExpression;
/// The "depth" of the template parameters currently being parsed.
unsigned TemplateParameterDepth;
/// \brief RAII class that manages the template parameter depth.
class TemplateParameterDepthRAII {
unsigned &Depth;
unsigned AddedLevels;
explicit TemplateParameterDepthRAII(unsigned &Depth)
: Depth(Depth), AddedLevels(0) {}
~TemplateParameterDepthRAII() {
Depth -= AddedLevels;
void operator++() {
void addDepth(unsigned D) {
Depth += D;
AddedLevels += D;
unsigned getDepth() const { return Depth; }
/// Factory object for creating AttributeList objects.
AttributeFactory AttrFactory;
/// \brief Gathers and cleans up TemplateIdAnnotations when parsing of a
/// top-level declaration is finished.
SmallVector<TemplateIdAnnotation *, 16> TemplateIds;
/// \brief Identifiers which have been declared within a tentative parse.
SmallVector<IdentifierInfo *, 8> TentativelyDeclaredIdentifiers;
IdentifierInfo *getSEHExceptKeyword();
/// True if we are within an Objective-C container while parsing C-like decls.
/// This is necessary because Sema thinks we have left the container
/// to parse the C-like decls, meaning Actions.getObjCDeclContext() will
/// be NULL.
bool ParsingInObjCContainer;
bool SkipFunctionBodies;
Parser(Preprocessor &PP, Sema &Actions, bool SkipFunctionBodies);
const LangOptions &getLangOpts() const { return PP.getLangOpts(); }
const TargetInfo &getTargetInfo() const { return PP.getTargetInfo(); }
Preprocessor &getPreprocessor() const { return PP; }
Sema &getActions() const { return Actions; }
AttributeFactory &getAttrFactory() { return AttrFactory; }
const Token &getCurToken() const { return Tok; }
Scope *getCurScope() const { return Actions.getCurScope(); }
void incrementMSLocalManglingNumber() const {
return Actions.incrementMSLocalManglingNumber();
Decl *getObjCDeclContext() const { return Actions.getObjCDeclContext(); }
// Type forwarding. All of these are statically 'void*', but they may all be
// different actual classes based on the actions in place.
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
typedef OpaquePtr<TemplateName> TemplateTy;
typedef SmallVector<TemplateParameterList *, 4> TemplateParameterLists;
typedef clang::ExprResult ExprResult;
typedef clang::StmtResult StmtResult;
typedef clang::BaseResult BaseResult;
typedef clang::MemInitResult MemInitResult;
typedef clang::TypeResult TypeResult;
typedef Expr *ExprArg;
typedef MutableArrayRef<Stmt*> MultiStmtArg;
typedef Sema::FullExprArg FullExprArg;
ExprResult ExprError() { return ExprResult(true); }
StmtResult StmtError() { return StmtResult(true); }
ExprResult ExprError(const DiagnosticBuilder &) { return ExprError(); }
StmtResult StmtError(const DiagnosticBuilder &) { return StmtError(); }
ExprResult ExprEmpty() { return ExprResult(false); }
// Parsing methods.
/// Initialize - Warm up the parser.
void Initialize();
/// ParseTopLevelDecl - Parse one top-level declaration. Returns true if
/// the EOF was encountered.
bool ParseTopLevelDecl(DeclGroupPtrTy &Result);
bool ParseTopLevelDecl() {
DeclGroupPtrTy Result;
return ParseTopLevelDecl(Result);
/// ConsumeToken - Consume the current 'peek token' and lex the next one.
/// This does not work with special tokens: string literals, code completion
/// and balanced tokens must be handled using the specific consume methods.
/// Returns the location of the consumed token.
SourceLocation ConsumeToken() {
assert(!isTokenSpecial() &&
"Should consume special tokens with Consume*Token");
PrevTokLocation = Tok.getLocation();
return PrevTokLocation;
bool TryConsumeToken(tok::TokenKind Expected) {
if (Tok.isNot(Expected))
return false;
assert(!isTokenSpecial() &&
"Should consume special tokens with Consume*Token");
PrevTokLocation = Tok.getLocation();
return true;
bool TryConsumeToken(tok::TokenKind Expected, SourceLocation &Loc) {
if (!TryConsumeToken(Expected))
return false;
Loc = PrevTokLocation;
return true;
// Low-Level token peeking and consumption methods.
/// isTokenParen - Return true if the cur token is '(' or ')'.
bool isTokenParen() const {
return Tok.getKind() == tok::l_paren || Tok.getKind() == tok::r_paren;
/// isTokenBracket - Return true if the cur token is '[' or ']'.
bool isTokenBracket() const {
return Tok.getKind() == tok::l_square || Tok.getKind() == tok::r_square;
/// isTokenBrace - Return true if the cur token is '{' or '}'.
bool isTokenBrace() const {
return Tok.getKind() == tok::l_brace || Tok.getKind() == tok::r_brace;
/// isTokenStringLiteral - True if this token is a string-literal.
bool isTokenStringLiteral() const {
return tok::isStringLiteral(Tok.getKind());
/// isTokenSpecial - True if this token requires special consumption methods.
bool isTokenSpecial() const {
return isTokenStringLiteral() || isTokenParen() || isTokenBracket() ||
isTokenBrace() ||;
/// \brief Returns true if the current token is '=' or is a type of '='.
/// For typos, give a fixit to '='
bool isTokenEqualOrEqualTypo();
/// ConsumeAnyToken - Dispatch to the right Consume* method based on the
/// current token type. This should only be used in cases where the type of
/// the token really isn't known, e.g. in error recovery.
SourceLocation ConsumeAnyToken(bool ConsumeCodeCompletionTok = false) {
if (isTokenParen())
return ConsumeParen();
if (isTokenBracket())
return ConsumeBracket();
if (isTokenBrace())
return ConsumeBrace();
if (isTokenStringLiteral())
return ConsumeStringToken();
if (
return ConsumeCodeCompletionTok ? ConsumeCodeCompletionToken()
: handleUnexpectedCodeCompletionToken();
return ConsumeToken();
/// ConsumeParen - This consume method keeps the paren count up-to-date.
SourceLocation ConsumeParen() {
assert(isTokenParen() && "wrong consume method");
if (Tok.getKind() == tok::l_paren)
else if (ParenCount)
--ParenCount; // Don't let unbalanced )'s drive the count negative.
PrevTokLocation = Tok.getLocation();
return PrevTokLocation;
/// ConsumeBracket - This consume method keeps the bracket count up-to-date.
SourceLocation ConsumeBracket() {
assert(isTokenBracket() && "wrong consume method");
if (Tok.getKind() == tok::l_square)
else if (BracketCount)
--BracketCount; // Don't let unbalanced ]'s drive the count negative.
PrevTokLocation = Tok.getLocation();
return PrevTokLocation;
/// ConsumeBrace - This consume method keeps the brace count up-to-date.
SourceLocation ConsumeBrace() {
assert(isTokenBrace() && "wrong consume method");
if (Tok.getKind() == tok::l_brace)
else if (BraceCount)
--BraceCount; // Don't let unbalanced }'s drive the count negative.
PrevTokLocation = Tok.getLocation();
return PrevTokLocation;
/// ConsumeStringToken - Consume the current 'peek token', lexing a new one
/// and returning the token kind. This method is specific to strings, as it
/// handles string literal concatenation, as per C99, translation
/// phase #6.
SourceLocation ConsumeStringToken() {
assert(isTokenStringLiteral() &&
"Should only consume string literals with this method");
PrevTokLocation = Tok.getLocation();
return PrevTokLocation;
/// \brief Consume the current code-completion token.
/// This routine can be called to consume the code-completion token and
/// continue processing in special cases where \c cutOffParsing() isn't
/// desired, such as token caching or completion with lookahead.
SourceLocation ConsumeCodeCompletionToken() {
PrevTokLocation = Tok.getLocation();
return PrevTokLocation;
///\ brief When we are consuming a code-completion token without having
/// matched specific position in the grammar, provide code-completion results
/// based on context.
/// \returns the source location of the code-completion token.
SourceLocation handleUnexpectedCodeCompletionToken();
/// \brief Abruptly cut off parsing; mainly used when we have reached the
/// code-completion point.
void cutOffParsing() {
if (PP.isCodeCompletionEnabled())
// Cut off parsing by acting as if we reached the end-of-file.
/// \brief Determine if we're at the end of the file or at a transition
/// between modules.
bool isEofOrEom() {
tok::TokenKind Kind = Tok.getKind();
return Kind == tok::eof || Kind == tok::annot_module_begin ||
Kind == tok::annot_module_end || Kind == tok::annot_module_include;
/// \brief Initialize all pragma handlers.
void initializePragmaHandlers();
/// \brief Destroy and reset all pragma handlers.
void resetPragmaHandlers();
/// \brief Handle the annotation token produced for #pragma unused(...)
void HandlePragmaUnused();
/// \brief Handle the annotation token produced for
/// #pragma GCC visibility...
void HandlePragmaVisibility();
/// \brief Handle the annotation token produced for
/// #pragma pack...
void HandlePragmaPack();
/// \brief Handle the annotation token produced for
/// #pragma ms_struct...
void HandlePragmaMSStruct();
/// \brief Handle the annotation token produced for
/// #pragma comment...
void HandlePragmaMSComment();
void HandlePragmaMSPointersToMembers();
void HandlePragmaMSVtorDisp();
void HandlePragmaMSPragma();
bool HandlePragmaMSSection(StringRef PragmaName,
SourceLocation PragmaLocation);
bool HandlePragmaMSSegment(StringRef PragmaName,
SourceLocation PragmaLocation);
bool HandlePragmaMSInitSeg(StringRef PragmaName,
SourceLocation PragmaLocation);
/// \brief Handle the annotation token produced for
/// #pragma align...
void HandlePragmaAlign();
/// \brief Handle the annotation token produced for
/// #pragma weak id...
void HandlePragmaWeak();
/// \brief Handle the annotation token produced for
/// #pragma weak id = id...
void HandlePragmaWeakAlias();
/// \brief Handle the annotation token produced for
/// #pragma redefine_extname...
void HandlePragmaRedefineExtname();
/// \brief Handle the annotation token produced for
/// #pragma STDC FP_CONTRACT...
void HandlePragmaFPContract();
/// \brief Handle the annotation token produced for
/// #pragma OPENCL EXTENSION...
void HandlePragmaOpenCLExtension();
/// \brief Handle the annotation token produced for
/// #pragma clang __debug captured
StmtResult HandlePragmaCaptured();
/// \brief Handle the annotation token produced for
/// #pragma clang loop and #pragma unroll.
LoopHint HandlePragmaLoopHint();
/// GetLookAheadToken - This peeks ahead N tokens and returns that token
/// without consuming any tokens. LookAhead(0) returns 'Tok', LookAhead(1)
/// returns the token after Tok, etc.
/// Note that this differs from the Preprocessor's LookAhead method, because
/// the Parser always has one token lexed that the preprocessor doesn't.
const Token &GetLookAheadToken(unsigned N) {
if (N == 0 || return Tok;
return PP.LookAhead(N-1);
/// NextToken - This peeks ahead one token and returns it without
/// consuming it.
const Token &NextToken() {
return PP.LookAhead(0);
/// getTypeAnnotation - Read a parsed type out of an annotation token.
static ParsedType getTypeAnnotation(Token &Tok) {
return ParsedType::getFromOpaquePtr(Tok.getAnnotationValue());
static void setTypeAnnotation(Token &Tok, ParsedType T) {
/// \brief Read an already-translated primary expression out of an annotation
/// token.
static ExprResult getExprAnnotation(Token &Tok) {
return ExprResult::getFromOpaquePointer(Tok.getAnnotationValue());
/// \brief Set the primary expression corresponding to the given annotation
/// token.
static void setExprAnnotation(Token &Tok, ExprResult ER) {
// If NeedType is true, then TryAnnotateTypeOrScopeToken will try harder to
// find a type name by attempting typo correction.
bool TryAnnotateTypeOrScopeToken(bool EnteringContext = false,
bool NeedType = false);
bool TryAnnotateTypeOrScopeTokenAfterScopeSpec(bool EnteringContext,
bool NeedType,
CXXScopeSpec &SS,
bool IsNewScope);
bool TryAnnotateCXXScopeToken(bool EnteringContext = false);
enum AnnotatedNameKind {
/// Annotation has failed and emitted an error.
/// The identifier is a tentatively-declared name.
/// The identifier is a template name. FIXME: Add an annotation for that.
/// The identifier can't be resolved.
/// Annotation was successful.
AnnotatedNameKind TryAnnotateName(bool IsAddressOfOperand,
CorrectionCandidateCallback *CCC = nullptr);
/// Push a tok::annot_cxxscope token onto the token stream.
void AnnotateScopeToken(CXXScopeSpec &SS, bool IsNewAnnotation);
/// TryAltiVecToken - Check for context-sensitive AltiVec identifier tokens,
/// replacing them with the non-context-sensitive keywords. This returns
/// true if the token was replaced.
bool TryAltiVecToken(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid) {
if (!getLangOpts().AltiVec ||
(Tok.getIdentifierInfo() != Ident_vector &&
Tok.getIdentifierInfo() != Ident_pixel &&
Tok.getIdentifierInfo() != Ident_bool))
return false;
return TryAltiVecTokenOutOfLine(DS, Loc, PrevSpec, DiagID, isInvalid);
/// TryAltiVecVectorToken - Check for context-sensitive AltiVec vector
/// identifier token, replacing it with the non-context-sensitive __vector.
/// This returns true if the token was replaced.
bool TryAltiVecVectorToken() {
if (!getLangOpts().AltiVec ||
Tok.getIdentifierInfo() != Ident_vector) return false;
return TryAltiVecVectorTokenOutOfLine();
bool TryAltiVecVectorTokenOutOfLine();
bool TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid);
/// TryKeywordIdentFallback - For compatibility with system headers using
/// keywords as identifiers, attempt to convert the current token to an
/// identifier and optionally disable the keyword for the remainder of the
/// translation unit. This returns false if the token was not replaced,
/// otherwise emits a diagnostic and returns true.
bool TryKeywordIdentFallback(bool DisableKeyword);
/// TryIdentKeywordUpgrade - Convert the current identifier token back to
/// its original kind and return true if it was disabled by
/// TryKeywordIdentFallback(), otherwise return false. Use this to
/// contextually enable keywords.
bool TryIdentKeywordUpgrade();
/// \brief Get the TemplateIdAnnotation from the token.
TemplateIdAnnotation *takeTemplateIdAnnotation(const Token &tok);
/// TentativeParsingAction - An object that is used as a kind of "tentative
/// parsing transaction". It gets instantiated to mark the token position and
/// after the token consumption is done, Commit() or Revert() is called to
/// either "commit the consumed tokens" or revert to the previously marked
/// token position. Example:
/// TentativeParsingAction TPA(*this);
/// ConsumeToken();
/// ....
/// TPA.Revert();
class TentativeParsingAction {
Parser &P;
Token PrevTok;
size_t PrevTentativelyDeclaredIdentifierCount;
unsigned short PrevParenCount, PrevBracketCount, PrevBraceCount;
bool isActive;
explicit TentativeParsingAction(Parser& p) : P(p) {
PrevTok = P.Tok;
PrevTentativelyDeclaredIdentifierCount =
PrevParenCount = P.ParenCount;
PrevBracketCount = P.BracketCount;
PrevBraceCount = P.BraceCount;
isActive = true;
void Commit() {
assert(isActive && "Parsing action was finished!");
isActive = false;
void Revert() {
assert(isActive && "Parsing action was finished!");
P.Tok = PrevTok;
P.ParenCount = PrevParenCount;
P.BracketCount = PrevBracketCount;
P.BraceCount = PrevBraceCount;
isActive = false;
~TentativeParsingAction() {
assert(!isActive && "Forgot to call Commit or Revert!");
class UnannotatedTentativeParsingAction;
/// ObjCDeclContextSwitch - An object used to switch context from
/// an objective-c decl context to its enclosing decl context and
/// back.
class ObjCDeclContextSwitch {
Parser &P;
Decl *DC;
SaveAndRestore<bool> WithinObjCContainer;
explicit ObjCDeclContextSwitch(Parser &p)
: P(p), DC(p.getObjCDeclContext()),
WithinObjCContainer(P.ParsingInObjCContainer, DC != nullptr) {
if (DC)
~ObjCDeclContextSwitch() {
if (DC)
/// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the
/// input. If so, it is consumed and false is returned.
/// If a trivial punctuator misspelling is encountered, a FixIt error
/// diagnostic is issued and false is returned after recovery.
/// If the input is malformed, this emits the specified diagnostic and true is
/// returned.
bool ExpectAndConsume(tok::TokenKind ExpectedTok,
unsigned Diag = diag::err_expected,
StringRef DiagMsg = "");
/// \brief The parser expects a semicolon and, if present, will consume it.
/// If the next token is not a semicolon, this emits the specified diagnostic,
/// or, if there's just some closing-delimiter noise (e.g., ')' or ']') prior
/// to the semicolon, consumes that extra token.
bool ExpectAndConsumeSemi(unsigned DiagID);
/// \brief The kind of extra semi diagnostic to emit.
enum ExtraSemiKind {
OutsideFunction = 0,
InsideStruct = 1,
InstanceVariableList = 2,
AfterMemberFunctionDefinition = 3
/// \brief Consume any extra semi-colons until the end of the line.
void ConsumeExtraSemi(ExtraSemiKind Kind, unsigned TST = TST_unspecified);
// Scope manipulation
/// ParseScope - Introduces a new scope for parsing. The kind of
/// scope is determined by ScopeFlags. Objects of this type should
/// be created on the stack to coincide with the position where the
/// parser enters the new scope, and this object's constructor will
/// create that new scope. Similarly, once the object is destroyed
/// the parser will exit the scope.
class ParseScope {
Parser *Self;
ParseScope(const ParseScope &) LLVM_DELETED_FUNCTION;
void operator=(const ParseScope &) LLVM_DELETED_FUNCTION;
// ParseScope - Construct a new object to manage a scope in the
// parser Self where the new Scope is created with the flags
// ScopeFlags, but only when we aren't about to enter a compound statement.
ParseScope(Parser *Self, unsigned ScopeFlags, bool EnteredScope = true,
bool BeforeCompoundStmt = false)
: Self(Self) {
if (EnteredScope && !BeforeCompoundStmt)
else {
if (BeforeCompoundStmt)
this->Self = nullptr;
// Exit - Exit the scope associated with this object now, rather
// than waiting until the object is destroyed.
void Exit() {
if (Self) {
Self = nullptr;
~ParseScope() {
/// EnterScope - Start a new scope.
void EnterScope(unsigned ScopeFlags);
/// ExitScope - Pop a scope off the scope stack.
void ExitScope();
/// \brief RAII object used to modify the scope flags for the current scope.
class ParseScopeFlags {
Scope *CurScope;
unsigned OldFlags;
ParseScopeFlags(const ParseScopeFlags &) LLVM_DELETED_FUNCTION;
void operator=(const ParseScopeFlags &) LLVM_DELETED_FUNCTION;
ParseScopeFlags(Parser *Self, unsigned ScopeFlags, bool ManageFlags = true);
// Diagnostic Emission and Error recovery.
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID);
DiagnosticBuilder Diag(unsigned DiagID) {
return Diag(Tok, DiagID);
void SuggestParentheses(SourceLocation Loc, unsigned DK,
SourceRange ParenRange);
void CheckNestedObjCContexts(SourceLocation AtLoc);
/// \brief Control flags for SkipUntil functions.
enum SkipUntilFlags {
StopAtSemi = 1 << 0, ///< Stop skipping at semicolon
/// \brief Stop skipping at specified token, but don't skip the token itself
StopBeforeMatch = 1 << 1,
StopAtCodeCompletion = 1 << 2 ///< Stop at code completion
friend LLVM_CONSTEXPR SkipUntilFlags operator|(SkipUntilFlags L,
SkipUntilFlags R) {
return static_cast<SkipUntilFlags>(static_cast<unsigned>(L) |
/// SkipUntil - Read tokens until we get to the specified token, then consume
/// it (unless StopBeforeMatch is specified). Because we cannot guarantee
/// that the token will ever occur, this skips to the next token, or to some
/// likely good stopping point. If Flags has StopAtSemi flag, skipping will
/// stop at a ';' character.
/// If SkipUntil finds the specified token, it returns true, otherwise it
/// returns false.
bool SkipUntil(tok::TokenKind T,
SkipUntilFlags Flags = static_cast<SkipUntilFlags>(0)) {
return SkipUntil(llvm::makeArrayRef(T), Flags);
bool SkipUntil(tok::TokenKind T1, tok::TokenKind T2,
SkipUntilFlags Flags = static_cast<SkipUntilFlags>(0)) {
tok::TokenKind TokArray[] = {T1, T2};
return SkipUntil(TokArray, Flags);
bool SkipUntil(tok::TokenKind T1, tok::TokenKind T2, tok::TokenKind T3,
SkipUntilFlags Flags = static_cast<SkipUntilFlags>(0)) {
tok::TokenKind TokArray[] = {T1, T2, T3};
return SkipUntil(TokArray, Flags);
bool SkipUntil(ArrayRef<tok::TokenKind> Toks,
SkipUntilFlags Flags = static_cast<SkipUntilFlags>(0));
/// SkipMalformedDecl - Read tokens until we get to some likely good stopping
/// point for skipping past a simple-declaration.
void SkipMalformedDecl();
// Lexing and parsing of C++ inline methods.
struct ParsingClass;
/// [class.mem]p1: "... the class is regarded as complete within
/// - function bodies
/// - default arguments
/// - exception-specifications (TODO: C++0x)
/// - and brace-or-equal-initializers for non-static data members
/// (including such things in nested classes)."
/// LateParsedDeclarations build the tree of those elements so they can
/// be parsed after parsing the top-level class.
class LateParsedDeclaration {
virtual ~LateParsedDeclaration();
virtual void ParseLexedMethodDeclarations();
virtual void ParseLexedMemberInitializers();
virtual void ParseLexedMethodDefs();
virtual void ParseLexedAttributes();
/// Inner node of the LateParsedDeclaration tree that parses
/// all its members recursively.
class LateParsedClass : public LateParsedDeclaration {
LateParsedClass(Parser *P, ParsingClass *C);
virtual ~LateParsedClass();
void ParseLexedMethodDeclarations() override;
void ParseLexedMemberInitializers() override;
void ParseLexedMethodDefs() override;
void ParseLexedAttributes() override;
Parser *Self;
ParsingClass *Class;
/// Contains the lexed tokens of an attribute with arguments that
/// may reference member variables and so need to be parsed at the
/// end of the class declaration after parsing all other member
/// member declarations.
/// FIXME: Perhaps we should change the name of LateParsedDeclaration to
/// LateParsedTokens.
struct LateParsedAttribute : public LateParsedDeclaration {
Parser *Self;
CachedTokens Toks;
IdentifierInfo &AttrName;
SourceLocation AttrNameLoc;
SmallVector<Decl*, 2> Decls;
explicit LateParsedAttribute(Parser *P, IdentifierInfo &Name,
SourceLocation Loc)
: Self(P), AttrName(Name), AttrNameLoc(Loc) {}
void ParseLexedAttributes() override;
void addDecl(Decl *D) { Decls.push_back(D); }
// A list of late-parsed attributes. Used by ParseGNUAttributes.
class LateParsedAttrList: public SmallVector<LateParsedAttribute *, 2> {
LateParsedAttrList(bool PSoon = false) : ParseSoon(PSoon) { }
bool parseSoon() { return ParseSoon; }
bool ParseSoon; // Are we planning to parse these shortly after creation?
/// Contains the lexed tokens of a member function definition
/// which needs to be parsed at the end of the class declaration
/// after parsing all other member declarations.
struct LexedMethod : public LateParsedDeclaration {
Parser *Self;
Decl *D;
CachedTokens Toks;
/// \brief Whether this member function had an associated template
/// scope. When true, D is a template declaration.
/// otherwise, it is a member function declaration.
bool TemplateScope;
explicit LexedMethod(Parser* P, Decl *MD)
: Self(P), D(MD), TemplateScope(false) {}
void ParseLexedMethodDefs() override;
/// LateParsedDefaultArgument - Keeps track of a parameter that may
/// have a default argument that cannot be parsed yet because it
/// occurs within a member function declaration inside the class
/// (C++ [class.mem]p2).
struct LateParsedDefaultArgument {
explicit LateParsedDefaultArgument(Decl *P,
CachedTokens *Toks = nullptr)
: Param(P), Toks(Toks) { }
/// Param - The parameter declaration for this parameter.
Decl *Param;
/// Toks - The sequence of tokens that comprises the default
/// argument expression, not including the '=' or the terminating
/// ')' or ','. This will be NULL for parameters that have no
/// default argument.
CachedTokens *Toks;
/// LateParsedMethodDeclaration - A method declaration inside a class that
/// contains at least one entity whose parsing needs to be delayed
/// until the class itself is completely-defined, such as a default
/// argument (C++ [class.mem]p2).
struct LateParsedMethodDeclaration : public LateParsedDeclaration {
explicit LateParsedMethodDeclaration(Parser *P, Decl *M)
: Self(P), Method(M), TemplateScope(false),
ExceptionSpecTokens(nullptr) {}
void ParseLexedMethodDeclarations() override;
Parser* Self;
/// Method - The method declaration.
Decl *Method;
/// \brief Whether this member function had an associated template
/// scope. When true, D is a template declaration.
/// othewise, it is a member function declaration.
bool TemplateScope;
/// DefaultArgs - Contains the parameters of the function and
/// their default arguments. At least one of the parameters will
/// have a default argument, but all of the parameters of the
/// method will be stored so that they can be reintroduced into
/// scope at the appropriate times.
SmallVector<LateParsedDefaultArgument, 8> DefaultArgs;
/// \brief The set of tokens that make up an exception-specification that
/// has not yet been parsed.
CachedTokens *ExceptionSpecTokens;
/// LateParsedMemberInitializer - An initializer for a non-static class data
/// member whose parsing must to be delayed until the class is completely
/// defined (C++11 [class.mem]p2).
struct LateParsedMemberInitializer : public LateParsedDeclaration {
LateParsedMemberInitializer(Parser *P, Decl *FD)
: Self(P), Field(FD) { }
void ParseLexedMemberInitializers() override;
Parser *Self;
/// Field - The field declaration.
Decl *Field;
/// CachedTokens - The sequence of tokens that comprises the initializer,
/// including any leading '='.
CachedTokens Toks;
/// LateParsedDeclarationsContainer - During parsing of a top (non-nested)
/// C++ class, its method declarations that contain parts that won't be
/// parsed until after the definition is completed (C++ [class.mem]p2),
/// the method declarations and possibly attached inline definitions
/// will be stored here with the tokens that will be parsed to create those
/// entities.
typedef SmallVector<LateParsedDeclaration*,2> LateParsedDeclarationsContainer;
/// \brief Representation of a class that has been parsed, including
/// any member function declarations or definitions that need to be
/// parsed after the corresponding top-level class is complete.
struct ParsingClass {
ParsingClass(Decl *TagOrTemplate, bool TopLevelClass, bool IsInterface)
: TopLevelClass(TopLevelClass), TemplateScope(false),
IsInterface(IsInterface), TagOrTemplate(TagOrTemplate) { }
/// \brief Whether this is a "top-level" class, meaning that it is
/// not nested within another class.
bool TopLevelClass : 1;
/// \brief Whether this class had an associated template
/// scope. When true, TagOrTemplate is a template declaration;
/// othewise, it is a tag declaration.
bool TemplateScope : 1;
/// \brief Whether this class is an __interface.
bool IsInterface : 1;
/// \brief The class or class template whose definition we are parsing.
Decl *TagOrTemplate;
/// LateParsedDeclarations - Method declarations, inline definitions and
/// nested classes that contain pieces whose parsing will be delayed until
/// the top-level class is fully defined.
LateParsedDeclarationsContainer LateParsedDeclarations;
/// \brief The stack of classes that is currently being
/// parsed. Nested and local classes will be pushed onto this stack
/// when they are parsed, and removed afterward.
std::stack<ParsingClass *> ClassStack;
ParsingClass &getCurrentClass() {
assert(!ClassStack.empty() && "No lexed method stacks!");
return *;
/// \brief RAII object used to manage the parsing of a class definition.
class ParsingClassDefinition {
Parser &P;
bool Popped;
Sema::ParsingClassState State;
ParsingClassDefinition(Parser &P, Decl *TagOrTemplate, bool TopLevelClass,
bool IsInterface)
: P(P), Popped(false),
State(P.PushParsingClass(TagOrTemplate, TopLevelClass, IsInterface)) {
/// \brief Pop this class of the stack.
void Pop() {
assert(!Popped && "Nested class has already been popped");
Popped = true;
~ParsingClassDefinition() {
if (!Popped)
/// \brief Contains information about any template-specific
/// information that has been parsed prior to parsing declaration
/// specifiers.
struct ParsedTemplateInfo {
: Kind(NonTemplate), TemplateParams(nullptr), TemplateLoc() { }
ParsedTemplateInfo(TemplateParameterLists *TemplateParams,
bool isSpecialization,
bool lastParameterListWasEmpty = false)
: Kind(isSpecialization? ExplicitSpecialization : Template),
LastParameterListWasEmpty(lastParameterListWasEmpty) { }
explicit ParsedTemplateInfo(SourceLocation ExternLoc,
SourceLocation TemplateLoc)
: Kind(ExplicitInstantiation), TemplateParams(nullptr),
ExternLoc(ExternLoc), TemplateLoc(TemplateLoc),
LastParameterListWasEmpty(false){ }
/// \brief The kind of template we are parsing.
enum {
/// \brief We are not parsing a template at all.
NonTemplate = 0,
/// \brief We are parsing a template declaration.
/// \brief We are parsing an explicit specialization.
/// \brief We are parsing an explicit instantiation.
} Kind;
/// \brief The template parameter lists, for template declarations
/// and explicit specializations.
TemplateParameterLists *TemplateParams;
/// \brief The location of the 'extern' keyword, if any, for an explicit
/// instantiation
SourceLocation ExternLoc;
/// \brief The location of the 'template' keyword, for an explicit
/// instantiation.
SourceLocation TemplateLoc;
/// \brief Whether the last template parameter list was empty.
bool LastParameterListWasEmpty;
SourceRange getSourceRange() const LLVM_READONLY;
void LexTemplateFunctionForLateParsing(CachedTokens &Toks);
void ParseLateTemplatedFuncDef(LateParsedTemplate &LPT);
static void LateTemplateParserCallback(void *P, LateParsedTemplate &LPT);
PushParsingClass(Decl *TagOrTemplate, bool TopLevelClass, bool IsInterface);
void DeallocateParsedClasses(ParsingClass *Class);
void PopParsingClass(Sema::ParsingClassState);
enum CachedInitKind {
NamedDecl *ParseCXXInlineMethodDef(AccessSpecifier AS,
AttributeList *AccessAttrs,
ParsingDeclarator &D,
const ParsedTemplateInfo &TemplateInfo,
const VirtSpecifiers& VS,
FunctionDefinitionKind DefinitionKind,
ExprResult& Init);
void ParseCXXNonStaticMemberInitializer(Decl *VarD);
void ParseLexedAttributes(ParsingClass &Class);
void ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
bool EnterScope, bool OnDefinition);
void ParseLexedAttribute(LateParsedAttribute &LA,
bool EnterScope, bool OnDefinition);
void ParseLexedMethodDeclarations(ParsingClass &Class);
void ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM);
void ParseLexedMethodDefs(ParsingClass &Class);
void ParseLexedMethodDef(LexedMethod &LM);
void ParseLexedMemberInitializers(ParsingClass &Class);
void ParseLexedMemberInitializer(LateParsedMemberInitializer &MI);
void ParseLexedObjCMethodDefs(LexedMethod &LM, bool parseMethod);
bool ConsumeAndStoreFunctionPrologue(CachedTokens &Toks);
bool ConsumeAndStoreInitializer(CachedTokens &Toks, CachedInitKind CIK);
bool ConsumeAndStoreConditional(CachedTokens &Toks);
bool ConsumeAndStoreUntil(tok::TokenKind T1,
CachedTokens &Toks,
bool StopAtSemi = true,
bool ConsumeFinalToken = true) {
return ConsumeAndStoreUntil(T1, T1, Toks, StopAtSemi, ConsumeFinalToken);
bool ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
CachedTokens &Toks,
bool StopAtSemi = true,
bool ConsumeFinalToken = true);
// C99 6.9: External Definitions.
struct ParsedAttributesWithRange : ParsedAttributes {
ParsedAttributesWithRange(AttributeFactory &factory)
: ParsedAttributes(factory) {}
SourceRange Range;
DeclGroupPtrTy ParseExternalDeclaration(ParsedAttributesWithRange &attrs,
ParsingDeclSpec *DS = nullptr);
bool isDeclarationAfterDeclarator();
bool isStartOfFunctionDefinition(const ParsingDeclarator &Declarator);
DeclGroupPtrTy ParseDeclarationOrFunctionDefinition(
ParsedAttributesWithRange &attrs,
ParsingDeclSpec *DS = nullptr,
AccessSpecifier AS = AS_none);
DeclGroupPtrTy ParseDeclOrFunctionDefInternal(ParsedAttributesWithRange &attrs,
ParsingDeclSpec &DS,
AccessSpecifier AS);
Decl *ParseFunctionDefinition(ParsingDeclarator &D,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
LateParsedAttrList *LateParsedAttrs = nullptr);
void ParseKNRParamDeclarations(Declarator &D);
// EndLoc, if non-NULL, is filled with the location of the last token of
// the simple-asm.
ExprResult ParseSimpleAsm(SourceLocation *EndLoc = nullptr);
ExprResult ParseAsmStringLiteral();
// Objective-C External Declarations
void MaybeSkipAttributes(tok::ObjCKeywordKind Kind);
DeclGroupPtrTy ParseObjCAtDirectives();
DeclGroupPtrTy ParseObjCAtClassDeclaration(SourceLocation atLoc);
Decl *ParseObjCAtInterfaceDeclaration(SourceLocation AtLoc,
ParsedAttributes &prefixAttrs);
void HelperActionsForIvarDeclarations(Decl *interfaceDecl, SourceLocation atLoc,
BalancedDelimiterTracker &T,
SmallVectorImpl<Decl *> &AllIvarDecls,
bool RBraceMissing);
void ParseObjCClassInstanceVariables(Decl *interfaceDecl,
tok::ObjCKeywordKind visibility,
SourceLocation atLoc);
bool ParseObjCProtocolReferences(SmallVectorImpl<Decl *> &P,
SmallVectorImpl<SourceLocation> &PLocs,
bool WarnOnDeclarations,
SourceLocation &LAngleLoc,
SourceLocation &EndProtoLoc);
bool ParseObjCProtocolQualifiers(DeclSpec &DS);
void ParseObjCInterfaceDeclList(tok::ObjCKeywordKind contextKey,
Decl *CDecl);
DeclGroupPtrTy ParseObjCAtProtocolDeclaration(SourceLocation atLoc,
ParsedAttributes &prefixAttrs);
struct ObjCImplParsingDataRAII {
Parser &P;
Decl *Dcl;
bool HasCFunction;
typedef SmallVector<LexedMethod*, 8> LateParsedObjCMethodContainer;
LateParsedObjCMethodContainer LateParsedObjCMethods;
ObjCImplParsingDataRAII(Parser &parser, Decl *D)
: P(parser), Dcl(D), HasCFunction(false) {
P.CurParsedObjCImpl = this;
Finished = false;
void finish(SourceRange AtEnd);
bool isFinished() const { return Finished; }
bool Finished;
ObjCImplParsingDataRAII *CurParsedObjCImpl;
void StashAwayMethodOrFunctionBodyTokens(Decl *MDecl);
DeclGroupPtrTy ParseObjCAtImplementationDeclaration(SourceLocation AtLoc);
DeclGroupPtrTy ParseObjCAtEndDeclaration(SourceRange atEnd);
Decl *ParseObjCAtAliasDeclaration(SourceLocation atLoc);
Decl *ParseObjCPropertySynthesize(SourceLocation atLoc);
Decl *ParseObjCPropertyDynamic(SourceLocation atLoc);
IdentifierInfo *ParseObjCSelectorPiece(SourceLocation &MethodLocation);
// Definitions for Objective-c context sensitive keywords recognition.
enum ObjCTypeQual {
objc_in=0, objc_out, objc_inout, objc_oneway, objc_bycopy, objc_byref,
IdentifierInfo *ObjCTypeQuals[objc_NumQuals];
bool isTokIdentifier_in() const;
ParsedType ParseObjCTypeName(ObjCDeclSpec &DS, Declarator::TheContext Ctx,
ParsedAttributes *ParamAttrs);
void ParseObjCMethodRequirement();
Decl *ParseObjCMethodPrototype(
tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword,
bool MethodDefinition = true);
Decl *ParseObjCMethodDecl(SourceLocation mLoc, tok::TokenKind mType,
tok::ObjCKeywordKind MethodImplKind = tok::objc_not_keyword,
bool MethodDefinition=true);
void ParseObjCPropertyAttribute(ObjCDeclSpec &DS);
Decl *ParseObjCMethodDefinition();
// C99 6.5: Expressions.
/// TypeCastState - State whether an expression is or may be a type cast.
enum TypeCastState {
NotTypeCast = 0,
ExprResult ParseExpression(TypeCastState isTypeCast = NotTypeCast);
ExprResult ParseConstantExpression(TypeCastState isTypeCast = NotTypeCast);
// Expr that doesn't include commas.
ExprResult ParseAssignmentExpression(TypeCastState isTypeCast = NotTypeCast);
ExprResult ParseMSAsmIdentifier(llvm::SmallVectorImpl<Token> &LineToks,
unsigned &NumLineToksConsumed,
void *Info,
bool IsUnevaluated);
ExprResult ParseExpressionWithLeadingAt(SourceLocation AtLoc);
ExprResult ParseExpressionWithLeadingExtension(SourceLocation ExtLoc);
ExprResult ParseRHSOfBinaryExpression(ExprResult LHS,
prec::Level MinPrec);
ExprResult ParseCastExpression(bool isUnaryExpression,
bool isAddressOfOperand,
bool &NotCastExpr,
TypeCastState isTypeCast);
ExprResult ParseCastExpression(bool isUnaryExpression,
bool isAddressOfOperand = false,
TypeCastState isTypeCast = NotTypeCast);
/// Returns true if the next token cannot start an expression.
bool isNotExpressionStart();
/// Returns true if the next token would start a postfix-expression
/// suffix.
bool isPostfixExpressionSuffixStart() {
tok::TokenKind K = Tok.getKind();
return (K == tok::l_square || K == tok::l_paren ||
K == tok::period || K == tok::arrow ||
K == tok::plusplus || K == tok::minusminus);
ExprResult ParsePostfixExpressionSuffix(ExprResult LHS);
ExprResult ParseUnaryExprOrTypeTraitExpression();
ExprResult ParseBuiltinPrimaryExpression();
ExprResult ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
bool &isCastExpr,
ParsedType &CastTy,
SourceRange &CastRange);
typedef SmallVector<Expr*, 20> ExprListTy;
typedef SmallVector<SourceLocation, 20> CommaLocsTy;
/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
SmallVectorImpl<SourceLocation> &CommaLocs,
void (Sema::*Completer)(Scope *S, Expr *Data,
ArrayRef<Expr *> Args) = nullptr,
Expr *Data = nullptr);
/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
/// used for misc language extensions.
bool ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
SmallVectorImpl<SourceLocation> &CommaLocs);
/// ParenParseOption - Control what ParseParenExpression will parse.
enum ParenParseOption {
SimpleExpr, // Only parse '(' expression ')'
CompoundStmt, // Also allow '(' compound-statement ')'
CompoundLiteral, // Also allow '(' type-name ')' '{' ... '}'
CastExpr // Also allow '(' type-name ')' <anything>
ExprResult ParseParenExpression(ParenParseOption &ExprType,
bool stopIfCastExpr,
bool isTypeCast,
ParsedType &CastTy,
SourceLocation &RParenLoc);
ExprResult ParseCXXAmbiguousParenExpression(
ParenParseOption &ExprType, ParsedType &CastTy,
BalancedDelimiterTracker &Tracker, ColonProtectionRAIIObject &ColonProt);
ExprResult ParseCompoundLiteralExpression(ParsedType Ty,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
ExprResult ParseStringLiteralExpression(bool AllowUserDefinedLiteral = false);
ExprResult ParseGenericSelectionExpression();
ExprResult ParseObjCBoolLiteral();
// C++ Expressions
ExprResult ParseCXXIdExpression(bool isAddressOfOperand = false);
bool areTokensAdjacent(const Token &A, const Token &B);
void CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectTypePtr,
bool EnteringContext, IdentifierInfo &II,
CXXScopeSpec &SS);
bool ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
ParsedType ObjectType,
bool EnteringContext,
bool *MayBePseudoDestructor = nullptr,
bool IsTypename = false,
IdentifierInfo **LastII = nullptr);
void CheckForLParenAfterColonColon();
// C++0x 5.1.2: Lambda expressions
// [...] () -> type {...}
ExprResult ParseLambdaExpression();
ExprResult TryParseLambdaExpression();
Optional<unsigned> ParseLambdaIntroducer(LambdaIntroducer &Intro,
bool *SkippedInits = nullptr);
bool TryParseLambdaIntroducer(LambdaIntroducer &Intro);
ExprResult ParseLambdaExpressionAfterIntroducer(
LambdaIntroducer &Intro);
// C++ 5.2p1: C++ Casts
ExprResult ParseCXXCasts();
// C++ 5.2p1: C++ Type Identification
ExprResult ParseCXXTypeid();
// C++ : Microsoft __uuidof Expression
ExprResult ParseCXXUuidof();
// C++ 5.2.4: C++ Pseudo-Destructor Expressions
ExprResult ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
ParsedType ObjectType);
// C++ 9.3.2: C++ 'this' pointer
ExprResult ParseCXXThis();
// C++ 15: C++ Throw Expression
ExprResult ParseThrowExpression();
ExceptionSpecificationType tryParseExceptionSpecification(
SourceRange &SpecificationRange,
SmallVectorImpl<ParsedType> &DynamicExceptions,
SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
ExprResult &NoexceptExpr);
// EndLoc is filled with the location of the last token of the specification.
ExceptionSpecificationType ParseDynamicExceptionSpecification(
SourceRange &SpecificationRange,
SmallVectorImpl<ParsedType> &Exceptions,
SmallVectorImpl<SourceRange> &Ranges);
// C++0x 8: Function declaration trailing-return-type
TypeResult ParseTrailingReturnType(SourceRange &Range);
// C++ 2.13.5: C++ Boolean Literals
ExprResult ParseCXXBoolLiteral();
// C++ 5.2.3: Explicit type conversion (functional notation)
ExprResult ParseCXXTypeConstructExpression(const DeclSpec &DS);
/// ParseCXXSimpleTypeSpecifier - [C++] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
void ParseCXXSimpleTypeSpecifier(DeclSpec &DS);
bool ParseCXXTypeSpecifierSeq(DeclSpec &DS);
// C++ 5.3.4 and 5.3.5: C++ new and delete
bool ParseExpressionListOrTypeId(SmallVectorImpl<Expr*> &Exprs,
Declarator &D);
void ParseDirectNewDeclarator(Declarator &D);
ExprResult ParseCXXNewExpression(bool UseGlobal, SourceLocation Start);
ExprResult ParseCXXDeleteExpression(bool UseGlobal,
SourceLocation Start);
// C++ if/switch/while condition expression.
bool ParseCXXCondition(ExprResult &ExprResult, Decl *&DeclResult,
SourceLocation Loc, bool ConvertToBoolean);
// C++ types
// C99 6.7.8: Initialization.
/// ParseInitializer
/// initializer: [C99 6.7.8]
/// assignment-expression
/// '{' ...
ExprResult ParseInitializer() {
if (Tok.isNot(tok::l_brace))
return ParseAssignmentExpression();
return ParseBraceInitializer();
bool MayBeDesignationStart();
ExprResult ParseBraceInitializer();
ExprResult ParseInitializerWithPotentialDesignator();
// clang Expressions
ExprResult ParseBlockLiteralExpression(); // ^{...}
// Objective-C Expressions
ExprResult ParseObjCAtExpression(SourceLocation AtLocation);
ExprResult ParseObjCStringLiteral(SourceLocation AtLoc);
ExprResult ParseObjCCharacterLiteral(SourceLocation AtLoc);
ExprResult ParseObjCNumericLiteral(SourceLocation AtLoc);
ExprResult ParseObjCBooleanLiteral(SourceLocation AtLoc, bool ArgValue);
ExprResult ParseObjCArrayLiteral(SourceLocation AtLoc);
ExprResult ParseObjCDictionaryLiteral(SourceLocation AtLoc);
ExprResult ParseObjCBoxedExpr(SourceLocation AtLoc);
ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc);
ExprResult ParseObjCSelectorExpression(SourceLocation AtLoc);
ExprResult ParseObjCProtocolExpression(SourceLocation AtLoc);
bool isSimpleObjCMessageExpression();
ExprResult ParseObjCMessageExpression();
ExprResult ParseObjCMessageExpressionBody(SourceLocation LBracloc,
SourceLocation SuperLoc,
ParsedType ReceiverType,
ExprArg ReceiverExpr);
ExprResult ParseAssignmentExprWithObjCMessageExprStart(
SourceLocation LBracloc, SourceLocation SuperLoc,
ParsedType ReceiverType, ExprArg ReceiverExpr);
bool ParseObjCXXMessageReceiver(bool &IsExpr, void *&TypeOrExpr);
// C99 6.8: Statements and Blocks.
/// A SmallVector of statements, with stack size 32 (as that is the only one
/// used.)
typedef SmallVector<Stmt*, 32> StmtVector;
/// A SmallVector of expressions, with stack size 12 (the maximum used.)
typedef SmallVector<Expr*, 12> ExprVector;
/// A SmallVector of types.
typedef SmallVector<ParsedType, 12> TypeVector;
StmtResult ParseStatement(SourceLocation *TrailingElseLoc = nullptr);
ParseStatementOrDeclaration(StmtVector &Stmts, bool OnlyStatement,
SourceLocation *TrailingElseLoc = nullptr);
StmtResult ParseStatementOrDeclarationAfterAttributes(
StmtVector &Stmts,
bool OnlyStatement,
SourceLocation *TrailingElseLoc,
ParsedAttributesWithRange &Attrs);
StmtResult ParseExprStatement();
StmtResult ParseLabeledStatement(ParsedAttributesWithRange &attrs);
StmtResult ParseCaseStatement(bool MissingCase = false,
ExprResult Expr = ExprResult());
StmtResult ParseDefaultStatement();
StmtResult ParseCompoundStatement(bool isStmtExpr = false);
StmtResult ParseCompoundStatement(bool isStmtExpr,
unsigned ScopeFlags);
void ParseCompoundStatementLeadingPragmas();
StmtResult ParseCompoundStatementBody(bool isStmtExpr = false);
bool ParseParenExprOrCondition(ExprResult &ExprResult,
Decl *&DeclResult,
SourceLocation Loc,
bool ConvertToBoolean);
StmtResult ParseIfStatement(SourceLocation *TrailingElseLoc);
StmtResult ParseSwitchStatement(SourceLocation *TrailingElseLoc);
StmtResult ParseWhileStatement(SourceLocation *TrailingElseLoc);
StmtResult ParseDoStatement();
StmtResult ParseForStatement(SourceLocation *TrailingElseLoc);
StmtResult ParseGotoStatement();
StmtResult ParseContinueStatement();
StmtResult ParseBreakStatement();
StmtResult ParseReturnStatement();
StmtResult ParseAsmStatement(bool &msAsm);
StmtResult ParseMicrosoftAsmStatement(SourceLocation AsmLoc);
StmtResult ParsePragmaLoopHint(StmtVector &Stmts, bool OnlyStatement,
SourceLocation *TrailingElseLoc,
ParsedAttributesWithRange &Attrs);
/// \brief Describes the behavior that should be taken for an __if_exists
/// block.
enum IfExistsBehavior {
/// \brief Parse the block; this code is always used.
/// \brief Skip the block entirely; this code is never used.
/// \brief Parse the block as a dependent block, which may be used in
/// some template instantiations but not others.
/// \brief Describes the condition of a Microsoft __if_exists or
/// __if_not_exists block.
struct IfExistsCondition {
/// \brief The location of the initial keyword.
SourceLocation KeywordLoc;
/// \brief Whether this is an __if_exists block (rather than an
/// __if_not_exists block).
bool IsIfExists;
/// \brief Nested-name-specifier preceding the name.
CXXScopeSpec SS;
/// \brief The name we're looking for.
UnqualifiedId Name;
/// \brief The behavior of this __if_exists or __if_not_exists block
/// should.
IfExistsBehavior Behavior;
bool ParseMicrosoftIfExistsCondition(IfExistsCondition& Result);
void ParseMicrosoftIfExistsStatement(StmtVector &Stmts);
void ParseMicrosoftIfExistsExternalDeclaration();
void ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
AccessSpecifier& CurAS);
bool ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs,
bool &InitExprsOk);
bool ParseAsmOperandsOpt(SmallVectorImpl<IdentifierInfo *> &Names,
SmallVectorImpl<Expr *> &Constraints,
SmallVectorImpl<Expr *> &Exprs);
// C++ 6: Statements and Blocks
StmtResult ParseCXXTryBlock();
StmtResult ParseCXXTryBlockCommon(SourceLocation TryLoc, bool FnTry = false);
StmtResult ParseCXXCatchBlock(bool FnCatch = false);
// MS: SEH Statements and Blocks
StmtResult ParseSEHTryBlock();
StmtResult ParseSEHTryBlockCommon(SourceLocation Loc);
StmtResult ParseSEHExceptBlock(SourceLocation Loc);
StmtResult ParseSEHFinallyBlock(SourceLocation Loc);
StmtResult ParseSEHLeaveStatement();
// Objective-C Statements
StmtResult ParseObjCAtStatement(SourceLocation atLoc);
StmtResult ParseObjCTryStmt(SourceLocation atLoc);
StmtResult ParseObjCThrowStmt(SourceLocation atLoc);
StmtResult ParseObjCSynchronizedStmt(SourceLocation atLoc);
StmtResult ParseObjCAutoreleasePoolStmt(SourceLocation atLoc);
// C99 6.7: Declarations.
/// A context for parsing declaration specifiers. TODO: flesh this
/// out, there are other significant restrictions on specifiers than
/// would be best implemented in the parser.
enum DeclSpecContext {
DSC_normal, // normal context
DSC_class, // class context, enables 'friend'
DSC_type_specifier, // C++ type-specifier-seq or C specifier-qualifier-list
DSC_trailing, // C++11 trailing-type-specifier in a trailing return type
DSC_alias_declaration, // C++11 type-specifier-seq in an alias-declaration
DSC_top_level, // top-level/namespace declaration context
DSC_template_type_arg // template type argument context
/// Is this a context in which we are parsing just a type-specifier (or
/// trailing-type-specifier)?
static bool isTypeSpecifier(DeclSpecContext DSC) {
switch (DSC) {
case DSC_normal:
case DSC_class:
case DSC_top_level:
return false;
case DSC_template_type_arg:
case DSC_type_specifier:
case DSC_trailing:
case DSC_alias_declaration:
return true;
llvm_unreachable("Missing DeclSpecContext case");
/// Information on a C++0x for-range-initializer found while parsing a
/// declaration which turns out to be a for-range-declaration.
struct ForRangeInit {
SourceLocation ColonLoc;
ExprResult RangeExpr;
bool ParsedForRangeDecl() { return !ColonLoc.isInvalid(); }
DeclGroupPtrTy ParseDeclaration(StmtVector &Stmts,
unsigned Context, SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs);
DeclGroupPtrTy ParseSimpleDeclaration(StmtVector &Stmts,
unsigned Context,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs,
bool RequireSemi,
ForRangeInit *FRI = nullptr);
bool MightBeDeclarator(unsigned Context);
DeclGroupPtrTy ParseDeclGroup(ParsingDeclSpec &DS, unsigned Context,
bool AllowFunctionDefinitions,
SourceLocation *DeclEnd = nullptr,
ForRangeInit *FRI = nullptr);
Decl *ParseDeclarationAfterDeclarator(Declarator &D,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo());
bool ParseAsmAttributesAfterDeclarator(Declarator &D);
Decl *ParseDeclarationAfterDeclaratorAndAttributes(
Declarator &D,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
ForRangeInit *FRI = nullptr);
Decl *ParseFunctionStatementBody(Decl *Decl, ParseScope &BodyScope);
Decl *ParseFunctionTryBlock(Decl *Decl, ParseScope &BodyScope);
/// \brief When in code-completion, skip parsing of the function/method body
/// unless the body contains the code-completion point.
/// \returns true if the function body was skipped.
bool trySkippingFunctionBody();
bool ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC,
ParsedAttributesWithRange &Attrs);
DeclSpecContext getDeclSpecContextFromDeclaratorContext(unsigned Context);
void ParseDeclarationSpecifiers(DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
AccessSpecifier AS = AS_none,
DeclSpecContext DSC = DSC_normal,
LateParsedAttrList *LateAttrs = nullptr);
bool DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
DeclSpecContext DSContext,
LateParsedAttrList *LateAttrs = nullptr);
void ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS = AS_none,
DeclSpecContext DSC = DSC_normal);
void ParseObjCTypeQualifierList(ObjCDeclSpec &DS,
Declarator::TheContext Context);
void ParseEnumSpecifier(SourceLocation TagLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC);
void ParseEnumBody(SourceLocation StartLoc, Decl *TagDecl);
void ParseStructUnionBody(SourceLocation StartLoc, unsigned TagType,
Decl *TagDecl);
struct FieldCallback {
virtual void invoke(ParsingFieldDeclarator &Field) = 0;
virtual ~FieldCallback() {}
virtual void _anchor();
struct ObjCPropertyCallback;
void ParseStructDeclaration(ParsingDeclSpec &DS, FieldCallback &Callback);
bool isDeclarationSpecifier(bool DisambiguatingWithExpression = false);
bool isTypeSpecifierQualifier();
bool isTypeQualifier() const;
/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
/// is definitely a type-specifier. Return false if it isn't part of a type
/// specifier or if we're not sure.
bool isKnownToBeTypeSpecifier(const Token &Tok) const;
/// \brief Return true if we know that we are definitely looking at a
/// decl-specifier, and isn't part of an expression such as a function-style
/// cast. Return false if it's no a decl-specifier, or we're not sure.
bool isKnownToBeDeclarationSpecifier() {
if (getLangOpts().CPlusPlus)
return isCXXDeclarationSpecifier() == TPResult::True;
return isDeclarationSpecifier(true);
/// isDeclarationStatement - Disambiguates between a declaration or an
/// expression statement, when parsing function bodies.
/// Returns true for declaration, false for expression.
bool isDeclarationStatement() {
if (getLangOpts().CPlusPlus)
return isCXXDeclarationStatement();
return isDeclarationSpecifier(true);
/// isForInitDeclaration - Disambiguates between a declaration or an
/// expression in the context of the C 'clause-1' or the C++
// 'for-init-statement' part of a 'for' statement.
/// Returns true for declaration, false for expression.
bool isForInitDeclaration() {
if (getLangOpts().CPlusPlus)
return isCXXSimpleDeclaration(/*AllowForRangeDecl=*/true);
return isDeclarationSpecifier(true);
/// \brief Determine whether this is a C++1z for-range-identifier.
bool isForRangeIdentifier();
/// \brief Determine whether we are currently at the start of an Objective-C
/// class message that appears to be missing the open bracket '['.
bool isStartOfObjCClassMessageMissingOpenBracket();
/// \brief Starting with a scope specifier, identifier, or
/// template-id that refers to the current class, determine whether
/// this is a constructor declarator.
bool isConstructorDeclarator(bool Unqualified);
/// \brief Specifies the context in which type-id/expression
/// disambiguation will occur.
enum TentativeCXXTypeIdContext {
/// isTypeIdInParens - Assumes that a '(' was parsed and now we want to know
/// whether the parens contain an expression or a type-id.
/// Returns true for a type-id and false for an expression.
bool isTypeIdInParens(bool &isAmbiguous) {
if (getLangOpts().CPlusPlus)
return isCXXTypeId(TypeIdInParens, isAmbiguous);
isAmbiguous = false;
return isTypeSpecifierQualifier();
bool isTypeIdInParens() {
bool isAmbiguous;
return isTypeIdInParens(isAmbiguous);
/// \brief Checks if the current tokens form type-id or expression.
/// It is similar to isTypeIdInParens but does not suppose that type-id
/// is in parenthesis.
bool isTypeIdUnambiguously() {
bool IsAmbiguous;
if (getLangOpts().CPlusPlus)
return isCXXTypeId(TypeIdUnambiguous, IsAmbiguous);
return isTypeSpecifierQualifier();
/// isCXXDeclarationStatement - C++-specialized function that disambiguates
/// between a declaration or an expression statement, when parsing function
/// bodies. Returns true for declaration, false for expression.
bool isCXXDeclarationStatement();
/// isCXXSimpleDeclaration - C++-specialized function that disambiguates
/// between a simple-declaration or an expression-statement.
/// If during the disambiguation process a parsing error is encountered,
/// the function returns true to let the declaration parsing code handle it.
/// Returns false if the statement is disambiguated as expression.
bool isCXXSimpleDeclaration(bool AllowForRangeDecl);
/// isCXXFunctionDeclarator - Disambiguates between a function declarator or
/// a constructor-style initializer, when parsing declaration statements.
/// Returns true for function declarator and false for constructor-style
/// initializer. Sets 'IsAmbiguous' to true to indicate that this declaration
/// might be a constructor-style initializer.
/// If during the disambiguation process a parsing error is encountered,
/// the function returns true to let the declaration parsing code handle it.
bool isCXXFunctionDeclarator(bool *IsAmbiguous = nullptr);
/// isCXXConditionDeclaration - Disambiguates between a declaration or an
/// expression for a condition of a if/switch/while/for statement.
/// If during the disambiguation process a parsing error is encountered,
/// the function returns true to let the declaration parsing code handle it.
bool isCXXConditionDeclaration();
bool isCXXTypeId(TentativeCXXTypeIdContext Context, bool &isAmbiguous);
bool isCXXTypeId(TentativeCXXTypeIdContext Context) {
bool isAmbiguous;
return isCXXTypeId(Context, isAmbiguous);
/// TPResult - Used as the result value for functions whose purpose is to
/// disambiguate C++ constructs by "tentatively parsing" them.
enum class TPResult {
True, False, Ambiguous, Error
/// \brief Based only on the given token kind, determine whether we know that
/// we're at the start of an expression or a type-specifier-seq (which may
/// be an expression, in C++).
/// This routine does not attempt to resolve any of the trick cases, e.g.,
/// those involving lookup of identifiers.
/// \returns \c TPR_true if this token starts an expression, \c TPR_false if
/// this token starts a type-specifier-seq, or \c TPR_ambiguous if it cannot
/// tell.
TPResult isExpressionOrTypeSpecifierSimple(tok::TokenKind Kind);
/// isCXXDeclarationSpecifier - Returns TPResult::True if it is a
/// declaration specifier, TPResult::False if it is not,
/// TPResult::Ambiguous if it could be either a decl-specifier or a
/// function-style cast, and TPResult::Error if a parsing error was
/// encountered. If it could be a braced C++11 function-style cast, returns
/// BracedCastResult.
/// Doesn't consume tokens.
isCXXDeclarationSpecifier(TPResult BracedCastResult = TPResult::False,
bool *HasMissingTypename = nullptr);
/// Given that isCXXDeclarationSpecifier returns \c TPResult::True or
/// \c TPResult::Ambiguous, determine whether the decl-specifier would be
/// a type-specifier other than a cv-qualifier.
bool isCXXDeclarationSpecifierAType();
/// \brief Determine whether an identifier has been tentatively declared as a
/// non-type. Such tentative declarations should not be found to name a type
/// during a tentative parse, but also should not be annotated as a non-type.
bool isTentativelyDeclared(IdentifierInfo *II);
// "Tentative parsing" functions, used for disambiguation. If a parsing error
// is encountered they will return TPResult::Error.
// Returning TPResult::True/False indicates that the ambiguity was
// resolved and tentative parsing may stop. TPResult::Ambiguous indicates
// that more tentative parsing is necessary for disambiguation.
// They all consume tokens, so backtracking should be used after calling them.
TPResult TryParseSimpleDeclaration(bool AllowForRangeDecl);
TPResult TryParseTypeofSpecifier();
TPResult TryParseProtocolQualifiers();
TPResult TryParsePtrOperatorSeq();
TPResult TryParseOperatorId();
TPResult TryParseInitDeclaratorList();
TPResult TryParseDeclarator(bool mayBeAbstract, bool mayHaveIdentifier=true);
TryParseParameterDeclarationClause(bool *InvalidAsDeclaration = nullptr,
bool VersusTemplateArg = false);
TPResult TryParseFunctionDeclarator();
TPResult TryParseBracketDeclarator();
TPResult TryConsumeDeclarationSpecifier();
TypeResult ParseTypeName(SourceRange *Range = nullptr,
Declarator::TheContext Context
= Declarator::TypeNameContext,
AccessSpecifier AS = AS_none,
Decl **OwnedType = nullptr,
ParsedAttributes *Attrs = nullptr);
void ParseBlockId(SourceLocation CaretLoc);
// Check for the start of a C++11 attribute-specifier-seq in a context where
// an attribute is not allowed.
bool CheckProhibitedCXX11Attribute() {
if (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))
return false;
return DiagnoseProhibitedCXX11Attribute();
bool DiagnoseProhibitedCXX11Attribute();
void CheckMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
SourceLocation CorrectLocation) {
if (!getLangOpts().CPlusPlus11)
if ((Tok.isNot(tok::l_square) || NextToken().isNot(tok::l_square)) &&
DiagnoseMisplacedCXX11Attribute(Attrs, CorrectLocation);
void DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
SourceLocation CorrectLocation);
void ProhibitAttributes(ParsedAttributesWithRange &attrs) {
if (!attrs.Range.isValid()) return;
void DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs);
// Forbid C++11 attributes that appear on certain syntactic
// locations which standard permits but we don't supported yet,
// for example, attributes appertain to decl specifiers.
void ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs);
/// \brief Skip C++11 attributes and return the end location of the last one.
/// \returns SourceLocation() if there are no attributes.
SourceLocation SkipCXX11Attributes();
/// \brief Diagnose and skip C++11 attributes that appear in syntactic
/// locations where attributes are not allowed.
void DiagnoseAndSkipCXX11Attributes();
/// \brief Parses syntax-generic attribute arguments for attributes which are
/// known to the implementation, and adds them to the given ParsedAttributes
/// list with the given attribute syntax. Returns the number of arguments
/// parsed for the attribute.
ParseAttributeArgsCommon(IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc,
IdentifierInfo *ScopeName, SourceLocation ScopeLoc,
AttributeList::Syntax Syntax);
void MaybeParseGNUAttributes(Declarator &D,
LateParsedAttrList *LateAttrs = nullptr) {
if ( {
ParsedAttributes attrs(AttrFactory);
SourceLocation endLoc;
ParseGNUAttributes(attrs, &endLoc, LateAttrs, &D);
D.takeAttributes(attrs, endLoc);
void MaybeParseGNUAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc = nullptr,
LateParsedAttrList *LateAttrs = nullptr) {
if (
ParseGNUAttributes(attrs, endLoc, LateAttrs);
void ParseGNUAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc = nullptr,
LateParsedAttrList *LateAttrs = nullptr,
Declarator *D = nullptr);
void ParseGNUAttributeArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
AttributeList::Syntax Syntax,
Declarator *D);
IdentifierLoc *ParseIdentifierLoc();
void MaybeParseCXX11Attributes(Declarator &D) {
if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
ParsedAttributesWithRange attrs(AttrFactory);
SourceLocation endLoc;
ParseCXX11Attributes(attrs, &endLoc);
D.takeAttributes(attrs, endLoc);
void MaybeParseCXX11Attributes(ParsedAttributes &attrs,
SourceLocation *endLoc = nullptr) {
if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
ParsedAttributesWithRange attrsWithRange(AttrFactory);
ParseCXX11Attributes(attrsWithRange, endLoc);
void MaybeParseCXX11Attributes(ParsedAttributesWithRange &attrs,
SourceLocation *endLoc = nullptr,
bool OuterMightBeMessageSend = false) {
if (getLangOpts().CPlusPlus11 &&
isCXX11AttributeSpecifier(false, OuterMightBeMessageSend))
ParseCXX11Attributes(attrs, endLoc);
void ParseCXX11AttributeSpecifier(ParsedAttributes &attrs,
SourceLocation *EndLoc = nullptr);
void ParseCXX11Attributes(ParsedAttributesWithRange &attrs,
SourceLocation *EndLoc = nullptr);
/// \brief Parses a C++-style attribute argument list. Returns true if this
/// results in adding an attribute to the ParsedAttributes list.
bool ParseCXX11AttributeArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc);
IdentifierInfo *TryParseCXX11AttributeIdentifier(SourceLocation &Loc);
void MaybeParseMicrosoftAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc = nullptr) {
if (getLangOpts().MicrosoftExt &&
ParseMicrosoftAttributes(attrs, endLoc);
void ParseMicrosoftAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc = nullptr);
void ParseMicrosoftDeclSpec(ParsedAttributes &Attrs);
bool ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs);
void ParseMicrosoftTypeAttributes(ParsedAttributes &attrs);
void ParseMicrosoftInheritanceClassAttributes(ParsedAttributes &attrs);
void ParseBorlandTypeAttributes(ParsedAttributes &attrs);
void ParseOpenCLAttributes(ParsedAttributes &attrs);
void ParseOpenCLQualifiers(ParsedAttributes &Attrs);
VersionTuple ParseVersionTuple(SourceRange &Range);
void ParseAvailabilityAttribute(IdentifierInfo &Availability,
SourceLocation AvailabilityLoc,
ParsedAttributes &attrs,
SourceLocation *endLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
AttributeList::Syntax Syntax);
void ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
SourceLocation ObjCBridgeRelatedLoc,
ParsedAttributes &attrs,
SourceLocation *endLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
AttributeList::Syntax Syntax);
void ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
AttributeList::Syntax Syntax);
void ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
AttributeList::Syntax Syntax);
void ParseTypeofSpecifier(DeclSpec &DS);
SourceLocation ParseDecltypeSpecifier(DeclSpec &DS);
void AnnotateExistingDecltypeSpecifier(const DeclSpec &DS,
SourceLocation StartLoc,
SourceLocation EndLoc);
void ParseUnderlyingTypeSpecifier(DeclSpec &DS);
void ParseAtomicSpecifier(DeclSpec &DS);
ExprResult ParseAlignArgument(SourceLocation Start,
SourceLocation &EllipsisLoc);
void ParseAlignmentSpecifier(ParsedAttributes &Attrs,
SourceLocation *endLoc = nullptr);
VirtSpecifiers::Specifier isCXX11VirtSpecifier(const Token &Tok) const;
VirtSpecifiers::Specifier isCXX11VirtSpecifier() const {
return isCXX11VirtSpecifier(Tok);
void ParseOptionalCXX11VirtSpecifierSeq(VirtSpecifiers &VS, bool IsInterface);
bool isCXX11FinalKeyword() const;
/// DeclaratorScopeObj - RAII object used in Parser::ParseDirectDeclarator to
/// enter a new C++ declarator scope and exit it when the function is
/// finished.
class DeclaratorScopeObj {
Parser &P;
CXXScopeSpec &SS;
bool EnteredScope;
bool CreatedScope;
DeclaratorScopeObj(Parser &p, CXXScopeSpec &ss)
: P(p), SS(ss), EnteredScope(false), CreatedScope(false) {}
void EnterDeclaratorScope() {
assert(!EnteredScope && "Already entered the scope!");
assert(SS.isSet() && "C++ scope was not set!");
CreatedScope = true;
P.EnterScope(0); // Not a decl scope.
if (!P.Actions.ActOnCXXEnterDeclaratorScope(P.getCurScope(), SS))
EnteredScope = true;
~DeclaratorScopeObj() {
if (EnteredScope) {
assert(SS.isSet() && "C++ scope was cleared ?");
P.Actions.ActOnCXXExitDeclaratorScope(P.getCurScope(), SS);
if (CreatedScope)
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
void ParseDeclarator(Declarator &D);
/// A function that parses a variant of direct-declarator.
typedef void (Parser::*DirectDeclParseFunction)(Declarator&);
void ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser);
void ParseTypeQualifierListOpt(DeclSpec &DS, bool GNUAttributesAllowed = true,
bool CXX11AttributesAllowed = true,
bool AtomicAllowed = true,
bool IdentifierRequired = false);
void ParseDirectDeclarator(Declarator &D);
void ParseParenDeclarator(Declarator &D);
void ParseFunctionDeclarator(Declarator &D,
ParsedAttributes &attrs,
BalancedDelimiterTracker &Tracker,
bool IsAmbiguous,
bool RequiresArg = false);
bool isFunctionDeclaratorIdentifierList();
void ParseFunctionDeclaratorIdentifierList(
Declarator &D,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo);
void ParseParameterDeclarationClause(
Declarator &D,
ParsedAttributes &attrs,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
SourceLocation &EllipsisLoc);
void ParseBracketDeclarator(Declarator &D);
void ParseMisplacedBracketDeclarator(Declarator &D);
// C++ 7: Declarations [dcl.dcl]
/// The kind of attribute specifier we have found.
enum CXX11AttributeKind {
/// This is not an attribute specifier.
/// This should be treated as an attribute-specifier.
/// The next tokens are '[[', but this is not an attribute-specifier. This
/// is ill-formed by C++11 [dcl.attr.grammar]p6.
isCXX11AttributeSpecifier(bool Disambiguate = false,
bool OuterMightBeMessageSend = false);
void DiagnoseUnexpectedNamespace(NamedDecl *Context);
Decl *ParseNamespace(unsigned Context, SourceLocation &DeclEnd,
SourceLocation InlineLoc = SourceLocation());
void ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc,
std::vector<IdentifierInfo*>& Ident,
std::vector<SourceLocation>& NamespaceLoc,
unsigned int index, SourceLocation& InlineLoc,
ParsedAttributes& attrs,
BalancedDelimiterTracker &Tracker);
Decl *ParseLinkage(ParsingDeclSpec &DS, unsigned Context);
Decl *ParseUsingDirectiveOrDeclaration(unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs,
Decl **OwnedType = nullptr);
Decl *ParseUsingDirective(unsigned Context,
SourceLocation UsingLoc,
SourceLocation &DeclEnd,
ParsedAttributes &attrs);
Decl *ParseUsingDeclaration(unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
SourceLocation UsingLoc,
SourceLocation &DeclEnd,
AccessSpecifier AS = AS_none,
Decl **OwnedType = nullptr);
Decl *ParseStaticAssertDeclaration(SourceLocation &DeclEnd);
Decl *ParseNamespaceAlias(SourceLocation NamespaceLoc,
SourceLocation AliasLoc, IdentifierInfo *Alias,
SourceLocation &DeclEnd);
// C++ 9: classes [class] and C structs/unions.
bool isValidAfterTypeSpecifier(bool CouldBeBitfield);
void ParseClassSpecifier(tok::TokenKind TagTokKind, SourceLocation TagLoc,
DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, bool EnteringContext,
DeclSpecContext DSC,
ParsedAttributesWithRange &Attributes);
void ParseCXXMemberSpecification(SourceLocation StartLoc,
SourceLocation AttrFixitLoc,
ParsedAttributesWithRange &Attrs,
unsigned TagType,
Decl *TagDecl);
ExprResult ParseCXXMemberInitializer(Decl *D, bool IsFunction,
SourceLocation &EqualLoc);
void ParseCXXMemberDeclaratorBeforeInitializer(Declarator &DeclaratorInfo,
VirtSpecifiers &VS,
ExprResult &BitfieldSize,
LateParsedAttrList &LateAttrs);
void ParseCXXClassMemberDeclaration(AccessSpecifier AS, AttributeList *Attr,
const ParsedTemplateInfo &TemplateInfo = ParsedTemplateInfo(),
ParsingDeclRAIIObject *DiagsFromTParams = nullptr);
void ParseConstructorInitializer(Decl *ConstructorDecl);
MemInitResult ParseMemInitializer(Decl *ConstructorDecl);
void HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo,
Decl *ThisDecl);
// C++ 10: Derived classes [class.derived]
TypeResult ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
SourceLocation &EndLocation);
void ParseBaseClause(Decl *ClassDecl);
BaseResult ParseBaseSpecifier(Decl *ClassDecl);
AccessSpecifier getAccessSpecifierIfPresent() const;
bool ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool EnteringContext,
ParsedType ObjectType,
UnqualifiedId &Id,
bool AssumeTemplateId);
bool ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
ParsedType ObjectType,
UnqualifiedId &Result);
// OpenMP: Directives and clauses.
/// \brief Parses declarative OpenMP directives.
DeclGroupPtrTy ParseOpenMPDeclarativeDirective();
/// \brief Parses simple list of variables.
/// \param Kind Kind of the directive.
/// \param [out] VarList List of referenced variables.
/// \param AllowScopeSpecifier true, if the variables can have fully
/// qualified names.
bool ParseOpenMPSimpleVarList(OpenMPDirectiveKind Kind,
SmallVectorImpl<Expr *> &VarList,
bool AllowScopeSpecifier);
/// \brief Parses declarative or executable directive.
/// \param StandAloneAllowed true if allowed stand-alone directives,
/// false - otherwise
ParseOpenMPDeclarativeOrExecutableDirective(bool StandAloneAllowed);
/// \brief Parses clause of kind \a CKind for directive of a kind \a Kind.
/// \param DKind Kind of current directive.
/// \param CKind Kind of current clause.
/// \param FirstClause true, if this is the first clause of a kind \a CKind
/// in current directive.
OMPClause *ParseOpenMPClause(OpenMPDirectiveKind DKind,
OpenMPClauseKind CKind, bool FirstClause);
/// \brief Parses clause with a single expression of a kind \a Kind.
/// \param Kind Kind of current clause.
OMPClause *ParseOpenMPSingleExprClause(OpenMPClauseKind Kind);
/// \brief Parses simple clause of a kind \a Kind.
/// \param Kind Kind of current clause.
OMPClause *ParseOpenMPSimpleClause(OpenMPClauseKind Kind);
/// \brief Parses clause with a single expression and an additional argument
/// of a kind \a Kind.
/// \param Kind Kind of current clause.
OMPClause *ParseOpenMPSingleExprWithArgClause(OpenMPClauseKind Kind);
/// \brief Parses clause without any additional arguments.
/// \param Kind Kind of current clause.
OMPClause *ParseOpenMPClause(OpenMPClauseKind Kind);
/// \brief Parses clause with the list of variables of a kind \a Kind.
/// \param Kind Kind of current clause.
OMPClause *ParseOpenMPVarListClause(OpenMPClauseKind Kind);
bool ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
bool AllowDestructorName,
bool AllowConstructorName,
ParsedType ObjectType,
SourceLocation& TemplateKWLoc,
UnqualifiedId &Result);
// C++ 14: Templates [temp]
// C++ 14.1: Template Parameters [temp.param]
Decl *ParseDeclarationStartingWithTemplate(unsigned Context,
SourceLocation &DeclEnd,
AccessSpecifier AS = AS_none,
AttributeList *AccessAttrs = nullptr);
Decl *ParseTemplateDeclarationOrSpecialization(unsigned Context,
SourceLocation &DeclEnd,
AccessSpecifier AS,
AttributeList *AccessAttrs);
Decl *ParseSingleDeclarationAfterTemplate(
unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
ParsingDeclRAIIObject &DiagsFromParams,
SourceLocation &DeclEnd,
AccessSpecifier AS=AS_none,
AttributeList *AccessAttrs = nullptr);
bool ParseTemplateParameters(unsigned Depth,
SmallVectorImpl<Decl*> &TemplateParams,
SourceLocation &LAngleLoc,
SourceLocation &RAngleLoc);
bool ParseTemplateParameterList(unsigned Depth,
SmallVectorImpl<Decl*> &TemplateParams);
bool isStartOfTemplateTypeParameter();
Decl *ParseTemplateParameter(unsigned Depth, unsigned Position);
Decl *ParseTypeParameter(unsigned Depth, unsigned Position);
Decl *ParseTemplateTemplateParameter(unsigned Depth, unsigned Position);
Decl *ParseNonTypeTemplateParameter(unsigned Depth, unsigned Position);
void DiagnoseMisplacedEllipsis(SourceLocation EllipsisLoc,
SourceLocation CorrectLoc,
bool AlreadyHasEllipsis,
bool IdentifierHasName);
void DiagnoseMisplacedEllipsisInDeclarator(SourceLocation EllipsisLoc,
Declarator &D);
// C++ 14.3: Template arguments [temp.arg]
typedef SmallVector<ParsedTemplateArgument, 16> TemplateArgList;
bool ParseGreaterThanInTemplateList(SourceLocation &RAngleLoc,
bool ConsumeLastToken);
bool ParseTemplateIdAfterTemplateName(TemplateTy Template,
SourceLocation TemplateNameLoc,
const CXXScopeSpec &SS,
bool ConsumeLastToken,
SourceLocation &LAngleLoc,
TemplateArgList &TemplateArgs,
SourceLocation &RAngleLoc);
bool AnnotateTemplateIdToken(TemplateTy Template, TemplateNameKind TNK,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &TemplateName,
bool AllowTypeAnnotation = true);
void AnnotateTemplateIdTokenAsType();
bool IsTemplateArgumentList(unsigned Skip = 0);
bool ParseTemplateArgumentList(TemplateArgList &TemplateArgs);
ParsedTemplateArgument ParseTemplateTemplateArgument();
ParsedTemplateArgument ParseTemplateArgument();
Decl *ParseExplicitInstantiation(unsigned Context,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
SourceLocation &DeclEnd,
AccessSpecifier AS = AS_none);
// Modules
DeclGroupPtrTy ParseModuleImport(SourceLocation AtLoc);
// C++11/G++: Type Traits [Type-Traits.html in the GCC manual]
ExprResult ParseTypeTrait();
// Embarcadero: Arary and Expression Traits
ExprResult ParseArrayTypeTrait();
ExprResult ParseExpressionTrait();
// Preprocessor code-completion pass-through
void CodeCompleteDirective(bool InConditional) override;
void CodeCompleteInConditionalExclusion() override;
void CodeCompleteMacroName(bool IsDefinition) override;
void CodeCompletePreprocessorExpression() override;
void CodeCompleteMacroArgument(IdentifierInfo *Macro, MacroInfo *MacroInfo,
unsigned ArgumentIndex) override;
void CodeCompleteNaturalLanguage() override;
} // end namespace clang