blob: 94435fd274eb7442486bec63ac52a240dd942180 [file] [log] [blame]
//===--- ASTMatchersInternal.h - Structural query framework -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements the base layer of the matcher framework.
//
// Matchers are methods that return a Matcher<T> which provides a method
// Matches(...) which is a predicate on an AST node. The Matches method's
// parameters define the context of the match, which allows matchers to recurse
// or store the current node as bound to a specific string, so that it can be
// retrieved later.
//
// In general, matchers have two parts:
// 1. A function Matcher<T> MatcherName(<arguments>) which returns a Matcher<T>
// based on the arguments and optionally on template type deduction based
// on the arguments. Matcher<T>s form an implicit reverse hierarchy
// to clang's AST class hierarchy, meaning that you can use a Matcher<Base>
// everywhere a Matcher<Derived> is required.
// 2. An implementation of a class derived from MatcherInterface<T>.
//
// The matcher functions are defined in ASTMatchers.h. To make it possible
// to implement both the matcher function and the implementation of the matcher
// interface in one place, ASTMatcherMacros.h defines macros that allow
// implementing a matcher in a single place.
//
// This file contains the base classes needed to construct the actual matchers.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_MATCHERS_AST_MATCHERS_INTERNAL_H
#define LLVM_CLANG_AST_MATCHERS_AST_MATCHERS_INTERNAL_H
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/VariadicFunction.h"
#include <map>
#include <string>
#include <vector>
namespace clang {
namespace ast_matchers {
class BoundNodes;
namespace internal {
/// \brief Internal version of BoundNodes. Holds all the bound nodes.
class BoundNodesMap {
public:
/// \brief Adds \c Node to the map with key \c ID.
///
/// The node's base type should be in NodeBaseType or it will be unaccessible.
template <typename T>
void addNode(StringRef ID, const T* Node) {
NodeMap[ID] = ast_type_traits::DynTypedNode::create(*Node);
}
/// \brief Returns the AST node bound to \c ID.
///
/// Returns NULL if there was no node bound to \c ID or if there is a node but
/// it cannot be converted to the specified type.
template <typename T>
const T *getNodeAs(StringRef ID) const {
IDToNodeMap::const_iterator It = NodeMap.find(ID);
if (It == NodeMap.end()) {
return nullptr;
}
return It->second.get<T>();
}
ast_type_traits::DynTypedNode getNode(StringRef ID) const {
IDToNodeMap::const_iterator It = NodeMap.find(ID);
if (It == NodeMap.end()) {
return ast_type_traits::DynTypedNode();
}
return It->second;
}
/// \brief Imposes an order on BoundNodesMaps.
bool operator<(const BoundNodesMap &Other) const {
return NodeMap < Other.NodeMap;
}
/// \brief A map from IDs to the bound nodes.
///
/// Note that we're using std::map here, as for memoization:
/// - we need a comparison operator
/// - we need an assignment operator
typedef std::map<std::string, ast_type_traits::DynTypedNode> IDToNodeMap;
const IDToNodeMap &getMap() const {
return NodeMap;
}
private:
IDToNodeMap NodeMap;
};
/// \brief Creates BoundNodesTree objects.
///
/// The tree builder is used during the matching process to insert the bound
/// nodes from the Id matcher.
class BoundNodesTreeBuilder {
public:
/// \brief A visitor interface to visit all BoundNodes results for a
/// BoundNodesTree.
class Visitor {
public:
virtual ~Visitor() {}
/// \brief Called multiple times during a single call to VisitMatches(...).
///
/// 'BoundNodesView' contains the bound nodes for a single match.
virtual void visitMatch(const BoundNodes& BoundNodesView) = 0;
};
/// \brief Add a binding from an id to a node.
template <typename T> void setBinding(const std::string &Id, const T *Node) {
if (Bindings.empty())
Bindings.push_back(BoundNodesMap());
for (unsigned i = 0, e = Bindings.size(); i != e; ++i)
Bindings[i].addNode(Id, Node);
}
/// \brief Adds a branch in the tree.
void addMatch(const BoundNodesTreeBuilder &Bindings);
/// \brief Visits all matches that this BoundNodesTree represents.
///
/// The ownership of 'ResultVisitor' remains at the caller.
void visitMatches(Visitor* ResultVisitor);
template <typename ExcludePredicate>
bool removeBindings(const ExcludePredicate &Predicate) {
Bindings.erase(std::remove_if(Bindings.begin(), Bindings.end(), Predicate),
Bindings.end());
return !Bindings.empty();
}
/// \brief Imposes an order on BoundNodesTreeBuilders.
bool operator<(const BoundNodesTreeBuilder &Other) const {
return Bindings < Other.Bindings;
}
private:
SmallVector<BoundNodesMap, 16> Bindings;
};
class ASTMatchFinder;
/// \brief Generic interface for matchers on an AST node of type T.
///
/// Implement this if your matcher may need to inspect the children or
/// descendants of the node or bind matched nodes to names. If you are
/// writing a simple matcher that only inspects properties of the
/// current node and doesn't care about its children or descendants,
/// implement SingleNodeMatcherInterface instead.
template <typename T>
class MatcherInterface : public RefCountedBaseVPTR {
public:
virtual ~MatcherInterface() {}
/// \brief Returns true if 'Node' can be matched.
///
/// May bind 'Node' to an ID via 'Builder', or recurse into
/// the AST via 'Finder'.
virtual bool matches(const T &Node,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const = 0;
};
/// \brief Interface for matchers that only evaluate properties on a single
/// node.
template <typename T>
class SingleNodeMatcherInterface : public MatcherInterface<T> {
public:
/// \brief Returns true if the matcher matches the provided node.
///
/// A subclass must implement this instead of Matches().
virtual bool matchesNode(const T &Node) const = 0;
private:
/// Implements MatcherInterface::Matches.
bool matches(const T &Node,
ASTMatchFinder * /* Finder */,
BoundNodesTreeBuilder * /* Builder */) const override {
return matchesNode(Node);
}
};
/// \brief Wrapper of a MatcherInterface<T> *that allows copying.
///
/// A Matcher<Base> can be used anywhere a Matcher<Derived> is
/// required. This establishes an is-a relationship which is reverse
/// to the AST hierarchy. In other words, Matcher<T> is contravariant
/// with respect to T. The relationship is built via a type conversion
/// operator rather than a type hierarchy to be able to templatize the
/// type hierarchy instead of spelling it out.
template <typename T>
class Matcher {
public:
/// \brief Takes ownership of the provided implementation pointer.
explicit Matcher(MatcherInterface<T> *Implementation)
: Implementation(Implementation) {}
/// \brief Implicitly converts \c Other to a Matcher<T>.
///
/// Requires \c T to be derived from \c From.
template <typename From>
Matcher(const Matcher<From> &Other,
typename std::enable_if<std::is_base_of<From, T>::value &&
!std::is_same<From, T>::value>::type * = 0)
: Implementation(new ImplicitCastMatcher<From>(Other)) {}
/// \brief Implicitly converts \c Matcher<Type> to \c Matcher<QualType>.
///
/// The resulting matcher is not strict, i.e. ignores qualifiers.
template <typename TypeT>
Matcher(const Matcher<TypeT> &Other,
typename std::enable_if<
std::is_same<T, QualType>::value &&
std::is_same<TypeT, Type>::value>::type* = 0)
: Implementation(new TypeToQualType<TypeT>(Other)) {}
/// \brief Forwards the call to the underlying MatcherInterface<T> pointer.
bool matches(const T &Node,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
if (Implementation->matches(Node, Finder, Builder))
return true;
// Delete all bindings when a matcher does not match.
// This prevents unexpected exposure of bound nodes in unmatches
// branches of the match tree.
*Builder = BoundNodesTreeBuilder();
return false;
}
/// \brief Returns an ID that uniquely identifies the matcher.
uint64_t getID() const {
/// FIXME: Document the requirements this imposes on matcher
/// implementations (no new() implementation_ during a Matches()).
return reinterpret_cast<uint64_t>(Implementation.get());
}
/// \brief Allows the conversion of a \c Matcher<Type> to a \c
/// Matcher<QualType>.
///
/// Depending on the constructor argument, the matcher is either strict, i.e.
/// does only matches in the absence of qualifiers, or not, i.e. simply
/// ignores any qualifiers.
template <typename TypeT>
class TypeToQualType : public MatcherInterface<QualType> {
public:
TypeToQualType(const Matcher<TypeT> &InnerMatcher)
: InnerMatcher(InnerMatcher) {}
bool matches(const QualType &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
if (Node.isNull())
return false;
return InnerMatcher.matches(*Node, Finder, Builder);
}
private:
const Matcher<TypeT> InnerMatcher;
};
private:
/// \brief Allows conversion from Matcher<Base> to Matcher<T> if T
/// is derived from Base.
template <typename Base>
class ImplicitCastMatcher : public MatcherInterface<T> {
public:
explicit ImplicitCastMatcher(const Matcher<Base> &From)
: From(From) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return From.matches(Node, Finder, Builder);
}
private:
const Matcher<Base> From;
};
IntrusiveRefCntPtr< MatcherInterface<T> > Implementation;
}; // class Matcher
/// \brief A convenient helper for creating a Matcher<T> without specifying
/// the template type argument.
template <typename T>
inline Matcher<T> makeMatcher(MatcherInterface<T> *Implementation) {
return Matcher<T>(Implementation);
}
template <typename T> class BindableMatcher;
/// \brief Matcher that works on a \c DynTypedNode.
///
/// It is constructed from a \c Matcher<T> object and redirects most calls to
/// underlying matcher.
/// It checks whether the \c DynTypedNode is convertible into the type of the
/// underlying matcher and then do the actual match on the actual node, or
/// return false if it is not convertible.
class DynTypedMatcher {
public:
/// \brief Construct from a \c Matcher<T>. Copies the matcher.
template <typename T> inline DynTypedMatcher(const Matcher<T> &M);
/// \brief Construct from a bindable \c Matcher<T>. Copies the matcher.
///
/// This version enables \c tryBind() on the \c DynTypedMatcher.
template <typename T> inline DynTypedMatcher(const BindableMatcher<T> &M);
/// \brief Returns true if the matcher matches the given \c DynNode.
bool matches(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder) const {
return Storage->matches(DynNode, Finder, Builder);
}
/// \brief Bind the specified \p ID to the matcher.
/// \return A new matcher with the \p ID bound to it if this matcher supports
/// binding. Otherwise, returns an empty \c Optional<>.
llvm::Optional<DynTypedMatcher> tryBind(StringRef ID) const {
return Storage->tryBind(ID);
}
/// \brief Returns a unique \p ID for the matcher.
uint64_t getID() const { return Storage->getID(); }
/// \brief Returns the type this matcher works on.
///
/// \c matches() will always return false unless the node passed is of this
/// or a derived type.
ast_type_traits::ASTNodeKind getSupportedKind() const {
return Storage->getSupportedKind();
}
/// \brief Returns \c true if the passed \c DynTypedMatcher can be converted
/// to a \c Matcher<T>.
///
/// This method verifies that the underlying matcher in \c Other can process
/// nodes of types T.
template <typename T> bool canConvertTo() const {
return getSupportedKind().isBaseOf(
ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
}
/// \brief Construct a \c Matcher<T> interface around the dynamic matcher.
///
/// This method asserts that \c canConvertTo() is \c true. Callers
/// should call \c canConvertTo() first to make sure that \c this is
/// compatible with T.
template <typename T> Matcher<T> convertTo() const {
assert(canConvertTo<T>());
return unconditionalConvertTo<T>();
}
/// \brief Same as \c convertTo(), but does not check that the underlying
/// matcher can handle a value of T.
///
/// If it is not compatible, then this matcher will never match anything.
template <typename T> Matcher<T> unconditionalConvertTo() const;
private:
class MatcherStorage : public RefCountedBaseVPTR {
public:
MatcherStorage(ast_type_traits::ASTNodeKind SupportedKind, uint64_t ID)
: SupportedKind(SupportedKind), ID(ID) {}
virtual ~MatcherStorage();
virtual bool matches(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const = 0;
virtual llvm::Optional<DynTypedMatcher> tryBind(StringRef ID) const = 0;
ast_type_traits::ASTNodeKind getSupportedKind() const {
return SupportedKind;
}
uint64_t getID() const { return ID; }
private:
const ast_type_traits::ASTNodeKind SupportedKind;
const uint64_t ID;
};
/// \brief Typed implementation of \c MatcherStorage.
template <typename T> class TypedMatcherStorage;
IntrusiveRefCntPtr<const MatcherStorage> Storage;
};
template <typename T>
class DynTypedMatcher::TypedMatcherStorage : public MatcherStorage {
public:
TypedMatcherStorage(const Matcher<T> &Other, bool AllowBind)
: MatcherStorage(ast_type_traits::ASTNodeKind::getFromNodeKind<T>(),
Other.getID()),
InnerMatcher(Other), AllowBind(AllowBind) {}
bool matches(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
if (const T *Node = DynNode.get<T>()) {
return InnerMatcher.matches(*Node, Finder, Builder);
}
return false;
}
llvm::Optional<DynTypedMatcher> tryBind(StringRef ID) const override {
if (!AllowBind)
return llvm::Optional<DynTypedMatcher>();
return DynTypedMatcher(BindableMatcher<T>(InnerMatcher).bind(ID));
}
private:
const Matcher<T> InnerMatcher;
const bool AllowBind;
};
template <typename T>
inline DynTypedMatcher::DynTypedMatcher(const Matcher<T> &M)
: Storage(new TypedMatcherStorage<T>(M, false)) {}
template <typename T>
inline DynTypedMatcher::DynTypedMatcher(const BindableMatcher<T> &M)
: Storage(new TypedMatcherStorage<T>(M, true)) {}
/// \brief Specialization of the conversion functions for QualType.
///
/// These specializations provide the Matcher<Type>->Matcher<QualType>
/// conversion that the static API does.
template <> inline bool DynTypedMatcher::canConvertTo<QualType>() const {
const ast_type_traits::ASTNodeKind SourceKind = getSupportedKind();
return SourceKind.isSame(
ast_type_traits::ASTNodeKind::getFromNodeKind<Type>()) ||
SourceKind.isSame(
ast_type_traits::ASTNodeKind::getFromNodeKind<QualType>());
}
template <>
inline Matcher<QualType> DynTypedMatcher::convertTo<QualType>() const {
assert(canConvertTo<QualType>());
const ast_type_traits::ASTNodeKind SourceKind = getSupportedKind();
if (SourceKind.isSame(
ast_type_traits::ASTNodeKind::getFromNodeKind<Type>())) {
// We support implicit conversion from Matcher<Type> to Matcher<QualType>
return unconditionalConvertTo<Type>();
}
return unconditionalConvertTo<QualType>();
}
/// \brief Finds the first node in a range that matches the given matcher.
template <typename MatcherT, typename IteratorT>
bool matchesFirstInRange(const MatcherT &Matcher, IteratorT Start,
IteratorT End, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) {
for (IteratorT I = Start; I != End; ++I) {
BoundNodesTreeBuilder Result(*Builder);
if (Matcher.matches(*I, Finder, &Result)) {
*Builder = Result;
return true;
}
}
return false;
}
/// \brief Finds the first node in a pointer range that matches the given
/// matcher.
template <typename MatcherT, typename IteratorT>
bool matchesFirstInPointerRange(const MatcherT &Matcher, IteratorT Start,
IteratorT End, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) {
for (IteratorT I = Start; I != End; ++I) {
BoundNodesTreeBuilder Result(*Builder);
if (Matcher.matches(**I, Finder, &Result)) {
*Builder = Result;
return true;
}
}
return false;
}
/// \brief Metafunction to determine if type T has a member called getDecl.
template <typename T> struct has_getDecl {
struct Default { int getDecl; };
struct Derived : T, Default { };
template<typename C, C> struct CheckT;
// If T::getDecl exists, an ambiguity arises and CheckT will
// not be instantiable. This makes f(...) the only available
// overload.
template<typename C>
static char (&f(CheckT<int Default::*, &C::getDecl>*))[1];
template<typename C> static char (&f(...))[2];
static bool const value = sizeof(f<Derived>(nullptr)) == 2;
};
/// \brief Matches overloaded operators with a specific name.
///
/// The type argument ArgT is not used by this matcher but is used by
/// PolymorphicMatcherWithParam1 and should be StringRef.
template <typename T, typename ArgT>
class HasOverloadedOperatorNameMatcher : public SingleNodeMatcherInterface<T> {
static_assert(std::is_same<T, CXXOperatorCallExpr>::value ||
std::is_base_of<FunctionDecl, T>::value,
"unsupported class for matcher");
static_assert(std::is_same<ArgT, StringRef>::value,
"argument type must be StringRef");
public:
explicit HasOverloadedOperatorNameMatcher(const StringRef Name)
: SingleNodeMatcherInterface<T>(), Name(Name) {}
bool matchesNode(const T &Node) const override {
return matchesSpecialized(Node);
}
private:
/// \brief CXXOperatorCallExpr exist only for calls to overloaded operators
/// so this function returns true if the call is to an operator of the given
/// name.
bool matchesSpecialized(const CXXOperatorCallExpr &Node) const {
return getOperatorSpelling(Node.getOperator()) == Name;
}
/// \brief Returns true only if CXXMethodDecl represents an overloaded
/// operator and has the given operator name.
bool matchesSpecialized(const FunctionDecl &Node) const {
return Node.isOverloadedOperator() &&
getOperatorSpelling(Node.getOverloadedOperator()) == Name;
}
std::string Name;
};
/// \brief Matches declarations for QualType and CallExpr.
///
/// Type argument DeclMatcherT is required by PolymorphicMatcherWithParam1 but
/// not actually used.
template <typename T, typename DeclMatcherT>
class HasDeclarationMatcher : public MatcherInterface<T> {
static_assert(std::is_same<DeclMatcherT, Matcher<Decl>>::value,
"instantiated with wrong types");
public:
explicit HasDeclarationMatcher(const Matcher<Decl> &InnerMatcher)
: InnerMatcher(InnerMatcher) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return matchesSpecialized(Node, Finder, Builder);
}
private:
/// \brief If getDecl exists as a member of U, returns whether the inner
/// matcher matches Node.getDecl().
template <typename U>
bool matchesSpecialized(
const U &Node, ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder,
typename std::enable_if<has_getDecl<U>::value, int>::type = 0) const {
return matchesDecl(Node.getDecl(), Finder, Builder);
}
/// \brief Extracts the CXXRecordDecl or EnumDecl of a QualType and returns
/// whether the inner matcher matches on it.
bool matchesSpecialized(const QualType &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
/// FIXME: Add other ways to convert...
if (Node.isNull())
return false;
if (const EnumType *AsEnum = dyn_cast<EnumType>(Node.getTypePtr()))
return matchesDecl(AsEnum->getDecl(), Finder, Builder);
return matchesDecl(Node->getAsCXXRecordDecl(), Finder, Builder);
}
/// \brief Gets the TemplateDecl from a TemplateSpecializationType
/// and returns whether the inner matches on it.
bool matchesSpecialized(const TemplateSpecializationType &Node,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
return matchesDecl(Node.getTemplateName().getAsTemplateDecl(),
Finder, Builder);
}
/// \brief Extracts the Decl of the callee of a CallExpr and returns whether
/// the inner matcher matches on it.
bool matchesSpecialized(const CallExpr &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
return matchesDecl(Node.getCalleeDecl(), Finder, Builder);
}
/// \brief Extracts the Decl of the constructor call and returns whether the
/// inner matcher matches on it.
bool matchesSpecialized(const CXXConstructExpr &Node,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
return matchesDecl(Node.getConstructor(), Finder, Builder);
}
/// \brief Extracts the \c ValueDecl a \c MemberExpr refers to and returns
/// whether the inner matcher matches on it.
bool matchesSpecialized(const MemberExpr &Node,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
return matchesDecl(Node.getMemberDecl(), Finder, Builder);
}
/// \brief Returns whether the inner matcher \c Node. Returns false if \c Node
/// is \c NULL.
bool matchesDecl(const Decl *Node,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
return Node != nullptr && InnerMatcher.matches(*Node, Finder, Builder);
}
const Matcher<Decl> InnerMatcher;
};
/// \brief IsBaseType<T>::value is true if T is a "base" type in the AST
/// node class hierarchies.
template <typename T>
struct IsBaseType {
static const bool value =
std::is_same<T, Decl>::value ||
std::is_same<T, Stmt>::value ||
std::is_same<T, QualType>::value ||
std::is_same<T, Type>::value ||
std::is_same<T, TypeLoc>::value ||
std::is_same<T, NestedNameSpecifier>::value ||
std::is_same<T, NestedNameSpecifierLoc>::value ||
std::is_same<T, CXXCtorInitializer>::value;
};
template <typename T>
const bool IsBaseType<T>::value;
/// \brief Interface that allows matchers to traverse the AST.
/// FIXME: Find a better name.
///
/// This provides three entry methods for each base node type in the AST:
/// - \c matchesChildOf:
/// Matches a matcher on every child node of the given node. Returns true
/// if at least one child node could be matched.
/// - \c matchesDescendantOf:
/// Matches a matcher on all descendant nodes of the given node. Returns true
/// if at least one descendant matched.
/// - \c matchesAncestorOf:
/// Matches a matcher on all ancestors of the given node. Returns true if
/// at least one ancestor matched.
///
/// FIXME: Currently we only allow Stmt and Decl nodes to start a traversal.
/// In the future, we wan to implement this for all nodes for which it makes
/// sense. In the case of matchesAncestorOf, we'll want to implement it for
/// all nodes, as all nodes have ancestors.
class ASTMatchFinder {
public:
/// \brief Defines how we descend a level in the AST when we pass
/// through expressions.
enum TraversalKind {
/// Will traverse any child nodes.
TK_AsIs,
/// Will not traverse implicit casts and parentheses.
TK_IgnoreImplicitCastsAndParentheses
};
/// \brief Defines how bindings are processed on recursive matches.
enum BindKind {
/// Stop at the first match and only bind the first match.
BK_First,
/// Create results for all combinations of bindings that match.
BK_All
};
/// \brief Defines which ancestors are considered for a match.
enum AncestorMatchMode {
/// All ancestors.
AMM_All,
/// Direct parent only.
AMM_ParentOnly
};
virtual ~ASTMatchFinder() {}
/// \brief Returns true if the given class is directly or indirectly derived
/// from a base type matching \c base.
///
/// A class is considered to be also derived from itself.
virtual bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
const Matcher<NamedDecl> &Base,
BoundNodesTreeBuilder *Builder) = 0;
template <typename T>
bool matchesChildOf(const T &Node,
const DynTypedMatcher &Matcher,
BoundNodesTreeBuilder *Builder,
TraversalKind Traverse,
BindKind Bind) {
static_assert(std::is_base_of<Decl, T>::value ||
std::is_base_of<Stmt, T>::value ||
std::is_base_of<NestedNameSpecifier, T>::value ||
std::is_base_of<NestedNameSpecifierLoc, T>::value ||
std::is_base_of<TypeLoc, T>::value ||
std::is_base_of<QualType, T>::value,
"unsupported type for recursive matching");
return matchesChildOf(ast_type_traits::DynTypedNode::create(Node),
Matcher, Builder, Traverse, Bind);
}
template <typename T>
bool matchesDescendantOf(const T &Node,
const DynTypedMatcher &Matcher,
BoundNodesTreeBuilder *Builder,
BindKind Bind) {
static_assert(std::is_base_of<Decl, T>::value ||
std::is_base_of<Stmt, T>::value ||
std::is_base_of<NestedNameSpecifier, T>::value ||
std::is_base_of<NestedNameSpecifierLoc, T>::value ||
std::is_base_of<TypeLoc, T>::value ||
std::is_base_of<QualType, T>::value,
"unsupported type for recursive matching");
return matchesDescendantOf(ast_type_traits::DynTypedNode::create(Node),
Matcher, Builder, Bind);
}
// FIXME: Implement support for BindKind.
template <typename T>
bool matchesAncestorOf(const T &Node,
const DynTypedMatcher &Matcher,
BoundNodesTreeBuilder *Builder,
AncestorMatchMode MatchMode) {
static_assert(std::is_base_of<Decl, T>::value ||
std::is_base_of<Stmt, T>::value,
"only Decl or Stmt allowed for recursive matching");
return matchesAncestorOf(ast_type_traits::DynTypedNode::create(Node),
Matcher, Builder, MatchMode);
}
virtual ASTContext &getASTContext() const = 0;
protected:
virtual bool matchesChildOf(const ast_type_traits::DynTypedNode &Node,
const DynTypedMatcher &Matcher,
BoundNodesTreeBuilder *Builder,
TraversalKind Traverse,
BindKind Bind) = 0;
virtual bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node,
const DynTypedMatcher &Matcher,
BoundNodesTreeBuilder *Builder,
BindKind Bind) = 0;
virtual bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node,
const DynTypedMatcher &Matcher,
BoundNodesTreeBuilder *Builder,
AncestorMatchMode MatchMode) = 0;
};
/// \brief A type-list implementation.
///
/// A list is declared as a tree of type list nodes, where the leafs are the
/// types.
/// However, it is used as a "linked list" of types, by using the ::head and
/// ::tail typedefs.
/// Each node supports up to 4 children (instead of just 2) to reduce the
/// nesting required by large lists.
template <typename T1 = void, typename T2 = void, typename T3 = void,
typename T4 = void>
struct TypeList {
/// \brief Implementation detail. Combined with the specializations below,
/// this typedef allows for flattening of nested structures.
typedef TypeList<T1, T2, T3, T4> self;
/// \brief The first type on the list.
typedef T1 head;
/// \brief A sublist with the tail. ie everything but the head.
///
/// This type is used to do recursion. TypeList<>/EmptyTypeList indicates the
/// end of the list.
typedef typename TypeList<T2, T3, T4>::self tail;
};
/// \brief Template specialization to allow nested lists.
///
/// First element is a typelist. Pop its first element.
template <typename Sub1, typename Sub2, typename Sub3, typename Sub4,
typename T2, typename T3, typename T4>
struct TypeList<TypeList<Sub1, Sub2, Sub3, Sub4>, T2, T3,
T4> : public TypeList<Sub1,
typename TypeList<Sub2, Sub3, Sub4>::self,
typename TypeList<T2, T3, T4>::self> {};
/// \brief Template specialization to allow nested lists.
///
/// First element is an empty typelist. Skip it.
template <typename T2, typename T3, typename T4>
struct TypeList<TypeList<>, T2, T3, T4> : public TypeList<T2, T3, T4> {
};
/// \brief The empty type list.
typedef TypeList<> EmptyTypeList;
/// \brief Helper meta-function to determine if some type \c T is present or
/// a parent type in the list.
template <typename AnyTypeList, typename T>
struct TypeListContainsSuperOf {
static const bool value =
std::is_base_of<typename AnyTypeList::head, T>::value ||
TypeListContainsSuperOf<typename AnyTypeList::tail, T>::value;
};
template <typename T>
struct TypeListContainsSuperOf<EmptyTypeList, T> {
static const bool value = false;
};
/// \brief A "type list" that contains all types.
///
/// Useful for matchers like \c anything and \c unless.
typedef TypeList<
TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc>,
TypeList<QualType, Type, TypeLoc, CXXCtorInitializer> > AllNodeBaseTypes;
/// \brief Helper meta-function to extract the argument out of a function of
/// type void(Arg).
///
/// See AST_POLYMORPHIC_SUPPORTED_TYPES_* for details.
template <class T> struct ExtractFunctionArgMeta;
template <class T> struct ExtractFunctionArgMeta<void(T)> {
typedef T type;
};
/// \brief Default type lists for ArgumentAdaptingMatcher matchers.
typedef AllNodeBaseTypes AdaptativeDefaultFromTypes;
typedef TypeList<TypeList<Decl, Stmt, NestedNameSpecifier>,
TypeList<NestedNameSpecifierLoc, TypeLoc, QualType> >
AdaptativeDefaultToTypes;
/// \brief All types that are supported by HasDeclarationMatcher above.
typedef TypeList<TypeList<CallExpr, CXXConstructExpr, DeclRefExpr, EnumType>,
TypeList<InjectedClassNameType, LabelStmt, MemberExpr>,
TypeList<QualType, RecordType, TagType>,
TypeList<TemplateSpecializationType, TemplateTypeParmType,
TypedefType, UnresolvedUsingType> >
HasDeclarationSupportedTypes;
/// \brief Converts a \c Matcher<T> to a matcher of desired type \c To by
/// "adapting" a \c To into a \c T.
///
/// The \c ArgumentAdapterT argument specifies how the adaptation is done.
///
/// For example:
/// \c ArgumentAdaptingMatcher<HasMatcher, T>(InnerMatcher);
/// Given that \c InnerMatcher is of type \c Matcher<T>, this returns a matcher
/// that is convertible into any matcher of type \c To by constructing
/// \c HasMatcher<To, T>(InnerMatcher).
///
/// If a matcher does not need knowledge about the inner type, prefer to use
/// PolymorphicMatcherWithParam1.
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
typename FromTypes = AdaptativeDefaultFromTypes,
typename ToTypes = AdaptativeDefaultToTypes>
struct ArgumentAdaptingMatcherFunc {
template <typename T> class Adaptor {
public:
explicit Adaptor(const Matcher<T> &InnerMatcher)
: InnerMatcher(InnerMatcher) {}
typedef ToTypes ReturnTypes;
template <typename To> operator Matcher<To>() const {
return Matcher<To>(new ArgumentAdapterT<To, T>(InnerMatcher));
}
private:
const Matcher<T> InnerMatcher;
};
template <typename T>
static Adaptor<T> create(const Matcher<T> &InnerMatcher) {
return Adaptor<T>(InnerMatcher);
}
template <typename T>
Adaptor<T> operator()(const Matcher<T> &InnerMatcher) const {
return create(InnerMatcher);
}
};
/// \brief A PolymorphicMatcherWithParamN<MatcherT, P1, ..., PN> object can be
/// created from N parameters p1, ..., pN (of type P1, ..., PN) and
/// used as a Matcher<T> where a MatcherT<T, P1, ..., PN>(p1, ..., pN)
/// can be constructed.
///
/// For example:
/// - PolymorphicMatcherWithParam0<IsDefinitionMatcher>()
/// creates an object that can be used as a Matcher<T> for any type T
/// where an IsDefinitionMatcher<T>() can be constructed.
/// - PolymorphicMatcherWithParam1<ValueEqualsMatcher, int>(42)
/// creates an object that can be used as a Matcher<T> for any type T
/// where a ValueEqualsMatcher<T, int>(42) can be constructed.
template <template <typename T> class MatcherT,
typename ReturnTypesF = void(AllNodeBaseTypes)>
class PolymorphicMatcherWithParam0 {
public:
typedef typename ExtractFunctionArgMeta<ReturnTypesF>::type ReturnTypes;
template <typename T>
operator Matcher<T>() const {
static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
"right polymorphic conversion");
return Matcher<T>(new MatcherT<T>());
}
};
template <template <typename T, typename P1> class MatcherT,
typename P1,
typename ReturnTypesF = void(AllNodeBaseTypes)>
class PolymorphicMatcherWithParam1 {
public:
explicit PolymorphicMatcherWithParam1(const P1 &Param1)
: Param1(Param1) {}
typedef typename ExtractFunctionArgMeta<ReturnTypesF>::type ReturnTypes;
template <typename T>
operator Matcher<T>() const {
static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
"right polymorphic conversion");
return Matcher<T>(new MatcherT<T, P1>(Param1));
}
private:
const P1 Param1;
};
template <template <typename T, typename P1, typename P2> class MatcherT,
typename P1, typename P2,
typename ReturnTypesF = void(AllNodeBaseTypes)>
class PolymorphicMatcherWithParam2 {
public:
PolymorphicMatcherWithParam2(const P1 &Param1, const P2 &Param2)
: Param1(Param1), Param2(Param2) {}
typedef typename ExtractFunctionArgMeta<ReturnTypesF>::type ReturnTypes;
template <typename T>
operator Matcher<T>() const {
static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
"right polymorphic conversion");
return Matcher<T>(new MatcherT<T, P1, P2>(Param1, Param2));
}
private:
const P1 Param1;
const P2 Param2;
};
/// \brief Matches any instance of the given NodeType.
///
/// This is useful when a matcher syntactically requires a child matcher,
/// but the context doesn't care. See for example: anything().
///
/// FIXME: Alternatively we could also create a IsAMatcher or something
/// that checks that a dyn_cast is possible. This is purely needed for the
/// difference between calling for example:
/// record()
/// and
/// record(SomeMatcher)
/// In the second case we need the correct type we were dyn_cast'ed to in order
/// to get the right type for the inner matcher. In the first case we don't need
/// that, but we use the type conversion anyway and insert a TrueMatcher.
template <typename T>
class TrueMatcher : public SingleNodeMatcherInterface<T> {
public:
bool matchesNode(const T &Node) const override {
return true;
}
};
/// \brief Matcher<T> that wraps an inner Matcher<T> and binds the matched node
/// to an ID if the inner matcher matches on the node.
template <typename T>
class IdMatcher : public MatcherInterface<T> {
public:
/// \brief Creates an IdMatcher that binds to 'ID' if 'InnerMatcher' matches
/// the node.
IdMatcher(StringRef ID, const Matcher<T> &InnerMatcher)
: ID(ID), InnerMatcher(InnerMatcher) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
bool Result = InnerMatcher.matches(Node, Finder, Builder);
if (Result) {
Builder->setBinding(ID, &Node);
}
return Result;
}
private:
const std::string ID;
const Matcher<T> InnerMatcher;
};
/// \brief A Matcher that allows binding the node it matches to an id.
///
/// BindableMatcher provides a \a bind() method that allows binding the
/// matched node to an id if the match was successful.
template <typename T>
class BindableMatcher : public Matcher<T> {
public:
explicit BindableMatcher(const Matcher<T> &M) : Matcher<T>(M) {}
explicit BindableMatcher(MatcherInterface<T> *Implementation)
: Matcher<T>(Implementation) {}
/// \brief Returns a matcher that will bind the matched node on a match.
///
/// The returned matcher is equivalent to this matcher, but will
/// bind the matched node on a match.
Matcher<T> bind(StringRef ID) const {
return Matcher<T>(new IdMatcher<T>(ID, *this));
}
};
/// \brief Matches nodes of type T that have child nodes of type ChildT for
/// which a specified child matcher matches.
///
/// ChildT must be an AST base type.
template <typename T, typename ChildT>
class HasMatcher : public MatcherInterface<T> {
static_assert(IsBaseType<ChildT>::value,
"has only accepts base type matcher");
public:
explicit HasMatcher(const Matcher<ChildT> &ChildMatcher)
: ChildMatcher(ChildMatcher) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return Finder->matchesChildOf(
Node, ChildMatcher, Builder,
ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses,
ASTMatchFinder::BK_First);
}
private:
const Matcher<ChildT> ChildMatcher;
};
/// \brief Matches nodes of type T that have child nodes of type ChildT for
/// which a specified child matcher matches. ChildT must be an AST base
/// type.
/// As opposed to the HasMatcher, the ForEachMatcher will produce a match
/// for each child that matches.
template <typename T, typename ChildT>
class ForEachMatcher : public MatcherInterface<T> {
static_assert(IsBaseType<ChildT>::value,
"for each only accepts base type matcher");
public:
explicit ForEachMatcher(const Matcher<ChildT> &ChildMatcher)
: ChildMatcher(ChildMatcher) {}
bool matches(const T& Node, ASTMatchFinder* Finder,
BoundNodesTreeBuilder* Builder) const override {
return Finder->matchesChildOf(
Node, ChildMatcher, Builder,
ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses,
ASTMatchFinder::BK_All);
}
private:
const Matcher<ChildT> ChildMatcher;
};
/// \brief VariadicOperatorMatcher related types.
/// @{
/// \brief Function signature for any variadic operator. It takes the inner
/// matchers as an array of DynTypedMatcher.
typedef bool (*VariadicOperatorFunction)(
const ast_type_traits::DynTypedNode DynNode, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers);
/// \brief \c MatcherInterface<T> implementation for an variadic operator.
template <typename T>
class VariadicOperatorMatcherInterface : public MatcherInterface<T> {
public:
VariadicOperatorMatcherInterface(VariadicOperatorFunction Func,
std::vector<DynTypedMatcher> InnerMatchers)
: Func(Func), InnerMatchers(std::move(InnerMatchers)) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return Func(ast_type_traits::DynTypedNode::create(Node), Finder, Builder,
InnerMatchers);
}
private:
const VariadicOperatorFunction Func;
const std::vector<DynTypedMatcher> InnerMatchers;
};
/// \brief "No argument" placeholder to use as template paratemers.
struct VariadicOperatorNoArg {};
/// \brief Polymorphic matcher object that uses a \c VariadicOperatorFunction
/// operator.
///
/// Input matchers can have any type (including other polymorphic matcher
/// types), and the actual Matcher<T> is generated on demand with an implicit
/// coversion operator.
template <typename P1, typename P2 = VariadicOperatorNoArg,
typename P3 = VariadicOperatorNoArg,
typename P4 = VariadicOperatorNoArg,
typename P5 = VariadicOperatorNoArg,
typename P6 = VariadicOperatorNoArg,
typename P7 = VariadicOperatorNoArg,
typename P8 = VariadicOperatorNoArg,
typename P9 = VariadicOperatorNoArg>
class VariadicOperatorMatcher {
public:
VariadicOperatorMatcher(VariadicOperatorFunction Func, const P1 &Param1,
const P2 &Param2 = VariadicOperatorNoArg(),
const P3 &Param3 = VariadicOperatorNoArg(),
const P4 &Param4 = VariadicOperatorNoArg(),
const P5 &Param5 = VariadicOperatorNoArg(),
const P6 &Param6 = VariadicOperatorNoArg(),
const P7 &Param7 = VariadicOperatorNoArg(),
const P8 &Param8 = VariadicOperatorNoArg(),
const P9 &Param9 = VariadicOperatorNoArg())
: Func(Func), Param1(Param1), Param2(Param2), Param3(Param3),
Param4(Param4), Param5(Param5), Param6(Param6), Param7(Param7),
Param8(Param8), Param9(Param9) {}
template <typename T> operator Matcher<T>() const {
std::vector<DynTypedMatcher> Matchers;
addMatcher<T>(Param1, Matchers);
addMatcher<T>(Param2, Matchers);
addMatcher<T>(Param3, Matchers);
addMatcher<T>(Param4, Matchers);
addMatcher<T>(Param5, Matchers);
addMatcher<T>(Param6, Matchers);
addMatcher<T>(Param7, Matchers);
addMatcher<T>(Param8, Matchers);
addMatcher<T>(Param9, Matchers);
return Matcher<T>(
new VariadicOperatorMatcherInterface<T>(Func, std::move(Matchers)));
}
private:
template <typename T>
static void addMatcher(const Matcher<T> &M,
std::vector<DynTypedMatcher> &Matchers) {
Matchers.push_back(M);
}
/// \brief Overload to ignore \c VariadicOperatorNoArg arguments.
template <typename T>
static void addMatcher(VariadicOperatorNoArg,
std::vector<DynTypedMatcher> &Matchers) {}
const VariadicOperatorFunction Func;
const P1 Param1;
const P2 Param2;
const P3 Param3;
const P4 Param4;
const P5 Param5;
const P6 Param6;
const P7 Param7;
const P8 Param8;
const P9 Param9;
};
/// \brief Overloaded function object to generate VariadicOperatorMatcher
/// objects from arbitrary matchers.
///
/// It supports 1-9 argument overloaded operator(). More can be added if needed.
template <unsigned MinCount, unsigned MaxCount>
struct VariadicOperatorMatcherFunc {
VariadicOperatorFunction Func;
template <unsigned Count, typename T>
struct EnableIfValidArity
: public std::enable_if<MinCount <= Count && Count <= MaxCount, T> {};
template <typename M1>
typename EnableIfValidArity<1, VariadicOperatorMatcher<M1> >::type
operator()(const M1 &P1) const {
return VariadicOperatorMatcher<M1>(Func, P1);
}
template <typename M1, typename M2>
typename EnableIfValidArity<2, VariadicOperatorMatcher<M1, M2> >::type
operator()(const M1 &P1, const M2 &P2) const {
return VariadicOperatorMatcher<M1, M2>(Func, P1, P2);
}
template <typename M1, typename M2, typename M3>
typename EnableIfValidArity<3, VariadicOperatorMatcher<M1, M2, M3> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3) const {
return VariadicOperatorMatcher<M1, M2, M3>(Func, P1, P2, P3);
}
template <typename M1, typename M2, typename M3, typename M4>
typename EnableIfValidArity<4, VariadicOperatorMatcher<M1, M2, M3, M4> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3, const M4 &P4) const {
return VariadicOperatorMatcher<M1, M2, M3, M4>(Func, P1, P2, P3, P4);
}
template <typename M1, typename M2, typename M3, typename M4, typename M5>
typename EnableIfValidArity<
5, VariadicOperatorMatcher<M1, M2, M3, M4, M5> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3, const M4 &P4,
const M5 &P5) const {
return VariadicOperatorMatcher<M1, M2, M3, M4, M5>(Func, P1, P2, P3, P4,
P5);
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6>
typename EnableIfValidArity<
6, VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3, const M4 &P4,
const M5 &P5, const M6 &P6) const {
return VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6>(
Func, P1, P2, P3, P4, P5, P6);
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7>
typename EnableIfValidArity<
7, VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6, M7> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3, const M4 &P4,
const M5 &P5, const M6 &P6, const M7 &P7) const {
return VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6, M7>(
Func, P1, P2, P3, P4, P5, P6, P7);
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8>
typename EnableIfValidArity<
8, VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6, M7, M8> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3, const M4 &P4,
const M5 &P5, const M6 &P6, const M7 &P7, const M8 &P8) const {
return VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6, M7, M8>(
Func, P1, P2, P3, P4, P5, P6, P7, P8);
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9>
typename EnableIfValidArity<
9, VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6, M7, M8, M9> >::type
operator()(const M1 &P1, const M2 &P2, const M3 &P3, const M4 &P4,
const M5 &P5, const M6 &P6, const M7 &P7, const M8 &P8,
const M9 &P9) const {
return VariadicOperatorMatcher<M1, M2, M3, M4, M5, M6, M7, M8, M9>(
Func, P1, P2, P3, P4, P5, P6, P7, P8, P9);
}
};
/// @}
/// \brief Matches nodes that do not match the provided matcher.
///
/// Uses the variadic matcher interface, but fails if InnerMatchers.size()!=1.
bool NotUnaryOperator(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
/// \brief Matches nodes for which all provided matchers match.
bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
/// \brief Matches nodes for which at least one of the provided matchers
/// matches, but doesn't stop at the first match.
bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
/// \brief Matches nodes for which at least one of the provided matchers
/// matches.
bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
template <typename T>
inline Matcher<T> DynTypedMatcher::unconditionalConvertTo() const {
return Matcher<T>(new VariadicOperatorMatcherInterface<T>(
AllOfVariadicOperator, llvm::makeArrayRef(*this)));
}
/// \brief Creates a Matcher<T> that matches if all inner matchers match.
template<typename T>
BindableMatcher<T> makeAllOfComposite(
ArrayRef<const Matcher<T> *> InnerMatchers) {
std::vector<DynTypedMatcher> DynMatchers;
for (size_t i = 0, e = InnerMatchers.size(); i != e; ++i) {
DynMatchers.push_back(*InnerMatchers[i]);
}
return BindableMatcher<T>(new VariadicOperatorMatcherInterface<T>(
AllOfVariadicOperator, std::move(DynMatchers)));
}
/// \brief Creates a Matcher<T> that matches if
/// T is dyn_cast'able into InnerT and all inner matchers match.
///
/// Returns BindableMatcher, as matchers that use dyn_cast have
/// the same object both to match on and to run submatchers on,
/// so there is no ambiguity with what gets bound.
template<typename T, typename InnerT>
BindableMatcher<T> makeDynCastAllOfComposite(
ArrayRef<const Matcher<InnerT> *> InnerMatchers) {
return BindableMatcher<T>(DynTypedMatcher(makeAllOfComposite(InnerMatchers))
.unconditionalConvertTo<T>());
}
/// \brief Matches nodes of type T that have at least one descendant node of
/// type DescendantT for which the given inner matcher matches.
///
/// DescendantT must be an AST base type.
template <typename T, typename DescendantT>
class HasDescendantMatcher : public MatcherInterface<T> {
static_assert(IsBaseType<DescendantT>::value,
"has descendant only accepts base type matcher");
public:
explicit HasDescendantMatcher(const Matcher<DescendantT> &DescendantMatcher)
: DescendantMatcher(DescendantMatcher) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return Finder->matchesDescendantOf(
Node, DescendantMatcher, Builder, ASTMatchFinder::BK_First);
}
private:
const Matcher<DescendantT> DescendantMatcher;
};
/// \brief Matches nodes of type \c T that have a parent node of type \c ParentT
/// for which the given inner matcher matches.
///
/// \c ParentT must be an AST base type.
template <typename T, typename ParentT>
class HasParentMatcher : public MatcherInterface<T> {
static_assert(IsBaseType<ParentT>::value,
"has parent only accepts base type matcher");
public:
explicit HasParentMatcher(const Matcher<ParentT> &ParentMatcher)
: ParentMatcher(ParentMatcher) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return Finder->matchesAncestorOf(
Node, ParentMatcher, Builder, ASTMatchFinder::AMM_ParentOnly);
}
private:
const Matcher<ParentT> ParentMatcher;
};
/// \brief Matches nodes of type \c T that have at least one ancestor node of
/// type \c AncestorT for which the given inner matcher matches.
///
/// \c AncestorT must be an AST base type.
template <typename T, typename AncestorT>
class HasAncestorMatcher : public MatcherInterface<T> {
static_assert(IsBaseType<AncestorT>::value,
"has ancestor only accepts base type matcher");
public:
explicit HasAncestorMatcher(const Matcher<AncestorT> &AncestorMatcher)
: AncestorMatcher(AncestorMatcher) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return Finder->matchesAncestorOf(
Node, AncestorMatcher, Builder, ASTMatchFinder::AMM_All);
}
private:
const Matcher<AncestorT> AncestorMatcher;
};
/// \brief Matches nodes of type T that have at least one descendant node of
/// type DescendantT for which the given inner matcher matches.
///
/// DescendantT must be an AST base type.
/// As opposed to HasDescendantMatcher, ForEachDescendantMatcher will match
/// for each descendant node that matches instead of only for the first.
template <typename T, typename DescendantT>
class ForEachDescendantMatcher : public MatcherInterface<T> {
static_assert(IsBaseType<DescendantT>::value,
"for each descendant only accepts base type matcher");
public:
explicit ForEachDescendantMatcher(
const Matcher<DescendantT>& DescendantMatcher)
: DescendantMatcher(DescendantMatcher) {}
bool matches(const T& Node, ASTMatchFinder* Finder,
BoundNodesTreeBuilder* Builder) const override {
return Finder->matchesDescendantOf(Node, DescendantMatcher, Builder,
ASTMatchFinder::BK_All);
}
private:
const Matcher<DescendantT> DescendantMatcher;
};
/// \brief Matches on nodes that have a getValue() method if getValue() equals
/// the value the ValueEqualsMatcher was constructed with.
template <typename T, typename ValueT>
class ValueEqualsMatcher : public SingleNodeMatcherInterface<T> {
static_assert(std::is_base_of<CharacterLiteral, T>::value ||
std::is_base_of<CXXBoolLiteralExpr, T>::value ||
std::is_base_of<FloatingLiteral, T>::value ||
std::is_base_of<IntegerLiteral, T>::value,
"the node must have a getValue method");
public:
explicit ValueEqualsMatcher(const ValueT &ExpectedValue)
: ExpectedValue(ExpectedValue) {}
bool matchesNode(const T &Node) const override {
return Node.getValue() == ExpectedValue;
}
private:
const ValueT ExpectedValue;
};
/// \brief A VariadicDynCastAllOfMatcher<SourceT, TargetT> object is a
/// variadic functor that takes a number of Matcher<TargetT> and returns a
/// Matcher<SourceT> that matches TargetT nodes that are matched by all of the
/// given matchers, if SourceT can be dynamically casted into TargetT.
///
/// For example:
/// const VariadicDynCastAllOfMatcher<
/// Decl, CXXRecordDecl> record;
/// Creates a functor record(...) that creates a Matcher<Decl> given
/// a variable number of arguments of type Matcher<CXXRecordDecl>.
/// The returned matcher matches if the given Decl can by dynamically
/// casted to CXXRecordDecl and all given matchers match.
template <typename SourceT, typename TargetT>
class VariadicDynCastAllOfMatcher
: public llvm::VariadicFunction<
BindableMatcher<SourceT>, Matcher<TargetT>,
makeDynCastAllOfComposite<SourceT, TargetT> > {
public:
VariadicDynCastAllOfMatcher() {}
};
/// \brief A \c VariadicAllOfMatcher<T> object is a variadic functor that takes
/// a number of \c Matcher<T> and returns a \c Matcher<T> that matches \c T
/// nodes that are matched by all of the given matchers.
///
/// For example:
/// const VariadicAllOfMatcher<NestedNameSpecifier> nestedNameSpecifier;
/// Creates a functor nestedNameSpecifier(...) that creates a
/// \c Matcher<NestedNameSpecifier> given a variable number of arguments of type
/// \c Matcher<NestedNameSpecifier>.
/// The returned matcher matches if all given matchers match.
template <typename T>
class VariadicAllOfMatcher : public llvm::VariadicFunction<
BindableMatcher<T>, Matcher<T>,
makeAllOfComposite<T> > {
public:
VariadicAllOfMatcher() {}
};
/// \brief Matches nodes of type \c TLoc for which the inner
/// \c Matcher<T> matches.
template <typename TLoc, typename T>
class LocMatcher : public MatcherInterface<TLoc> {
public:
explicit LocMatcher(const Matcher<T> &InnerMatcher)
: InnerMatcher(InnerMatcher) {}
bool matches(const TLoc &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
if (!Node)
return false;
return InnerMatcher.matches(*extract(Node), Finder, Builder);
}
private:
const NestedNameSpecifier *extract(const NestedNameSpecifierLoc &Loc) const {
return Loc.getNestedNameSpecifier();
}
const Matcher<T> InnerMatcher;
};
/// \brief Matches \c TypeLocs based on an inner matcher matching a certain
/// \c QualType.
///
/// Used to implement the \c loc() matcher.
class TypeLocTypeMatcher : public MatcherInterface<TypeLoc> {
public:
explicit TypeLocTypeMatcher(const Matcher<QualType> &InnerMatcher)
: InnerMatcher(InnerMatcher) {}
bool matches(const TypeLoc &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
if (!Node)
return false;
return InnerMatcher.matches(Node.getType(), Finder, Builder);
}
private:
const Matcher<QualType> InnerMatcher;
};
/// \brief Matches nodes of type \c T for which the inner matcher matches on a
/// another node of type \c T that can be reached using a given traverse
/// function.
template <typename T>
class TypeTraverseMatcher : public MatcherInterface<T> {
public:
explicit TypeTraverseMatcher(const Matcher<QualType> &InnerMatcher,
QualType (T::*TraverseFunction)() const)
: InnerMatcher(InnerMatcher), TraverseFunction(TraverseFunction) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
QualType NextNode = (Node.*TraverseFunction)();
if (NextNode.isNull())
return false;
return InnerMatcher.matches(NextNode, Finder, Builder);
}
private:
const Matcher<QualType> InnerMatcher;
QualType (T::*TraverseFunction)() const;
};
/// \brief Matches nodes of type \c T in a ..Loc hierarchy, for which the inner
/// matcher matches on a another node of type \c T that can be reached using a
/// given traverse function.
template <typename T>
class TypeLocTraverseMatcher : public MatcherInterface<T> {
public:
explicit TypeLocTraverseMatcher(const Matcher<TypeLoc> &InnerMatcher,
TypeLoc (T::*TraverseFunction)() const)
: InnerMatcher(InnerMatcher), TraverseFunction(TraverseFunction) {}
bool matches(const T &Node, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
TypeLoc NextNode = (Node.*TraverseFunction)();
if (!NextNode)
return false;
return InnerMatcher.matches(NextNode, Finder, Builder);
}
private:
const Matcher<TypeLoc> InnerMatcher;
TypeLoc (T::*TraverseFunction)() const;
};
/// \brief Converts a \c Matcher<InnerT> to a \c Matcher<OuterT>, where
/// \c OuterT is any type that is supported by \c Getter.
///
/// \code Getter<OuterT>::value() \endcode returns a
/// \code InnerTBase (OuterT::*)() \endcode, which is used to adapt a \c OuterT
/// object into a \c InnerT
template <typename InnerTBase,
template <typename OuterT> class Getter,
template <typename OuterT> class MatcherImpl,
typename ReturnTypesF>
class TypeTraversePolymorphicMatcher {
private:
typedef TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl,
ReturnTypesF> Self;
static Self create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers);
public:
typedef typename ExtractFunctionArgMeta<ReturnTypesF>::type ReturnTypes;
explicit TypeTraversePolymorphicMatcher(
ArrayRef<const Matcher<InnerTBase> *> InnerMatchers)
: InnerMatcher(makeAllOfComposite(InnerMatchers)) {}
template <typename OuterT> operator Matcher<OuterT>() const {
return Matcher<OuterT>(
new MatcherImpl<OuterT>(InnerMatcher, Getter<OuterT>::value()));
}
struct Func : public llvm::VariadicFunction<Self, Matcher<InnerTBase>,
&Self::create> {
Func() {}
};
private:
const Matcher<InnerTBase> InnerMatcher;
};
// Define the create() method out of line to silence a GCC warning about
// the struct "Func" having greater visibility than its base, which comes from
// using the flag -fvisibility-inlines-hidden.
template <typename InnerTBase, template <typename OuterT> class Getter,
template <typename OuterT> class MatcherImpl, typename ReturnTypesF>
TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl, ReturnTypesF>
TypeTraversePolymorphicMatcher<
InnerTBase, Getter, MatcherImpl,
ReturnTypesF>::create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers) {
return Self(InnerMatchers);
}
// FIXME: unify ClassTemplateSpecializationDecl and TemplateSpecializationType's
// APIs for accessing the template argument list.
inline ArrayRef<TemplateArgument>
getTemplateSpecializationArgs(const ClassTemplateSpecializationDecl &D) {
return D.getTemplateArgs().asArray();
}
inline ArrayRef<TemplateArgument>
getTemplateSpecializationArgs(const TemplateSpecializationType &T) {
return ArrayRef<TemplateArgument>(T.getArgs(), T.getNumArgs());
}
struct NotEqualsBoundNodePredicate {
bool operator()(const internal::BoundNodesMap &Nodes) const {
return Nodes.getNode(ID) != Node;
}
std::string ID;
ast_type_traits::DynTypedNode Node;
};
} // end namespace internal
} // end namespace ast_matchers
} // end namespace clang
#endif // LLVM_CLANG_AST_MATCHERS_AST_MATCHERS_INTERNAL_H