blob: 308467f7aa17a076265a2eaaf1acda22c43fac8e [file] [log] [blame]
//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class. This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRUCTIONS_H
#define LLVM_IR_INSTRUCTIONS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include <iterator>
namespace llvm {
class APInt;
class ConstantInt;
class ConstantRange;
class DataLayout;
class LLVMContext;
enum AtomicOrdering {
NotAtomic = 0,
Unordered = 1,
Monotonic = 2,
// Consume = 3, // Not specified yet.
Acquire = 4,
Release = 5,
AcquireRelease = 6,
SequentiallyConsistent = 7
};
enum SynchronizationScope {
SingleThread = 0,
CrossThread = 1
};
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public UnaryInstruction {
protected:
AllocaInst *clone_impl() const override;
public:
explicit AllocaInst(Type *Ty, Value *ArraySize = nullptr,
const Twine &Name = "",
Instruction *InsertBefore = nullptr);
AllocaInst(Type *Ty, Value *ArraySize,
const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = nullptr);
AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name = "", Instruction *InsertBefore = nullptr);
AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name, BasicBlock *InsertAtEnd);
// Out of line virtual method, so the vtable, etc. has a home.
virtual ~AllocaInst();
/// isArrayAllocation - Return true if there is an allocation size parameter
/// to the allocation instruction that is not 1.
///
bool isArrayAllocation() const;
/// getArraySize - Get the number of elements allocated. For a simple
/// allocation of a single element, this will return a constant 1 value.
///
const Value *getArraySize() const { return getOperand(0); }
Value *getArraySize() { return getOperand(0); }
/// getType - Overload to return most specific pointer type
///
PointerType *getType() const {
return cast<PointerType>(Instruction::getType());
}
/// getAllocatedType - Return the type that is being allocated by the
/// instruction.
///
Type *getAllocatedType() const;
/// getAlignment - Return the alignment of the memory that is being allocated
/// by the instruction.
///
unsigned getAlignment() const {
return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
}
void setAlignment(unsigned Align);
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
bool isStaticAlloca() const;
/// \brief Return true if this alloca is used as an inalloca argument to a
/// call. Such allocas are never considered static even if they are in the
/// entry block.
bool isUsedWithInAlloca() const {
return getSubclassDataFromInstruction() & 32;
}
/// \brief Specify whether this alloca is used to represent a the arguments to
/// a call.
void setUsedWithInAlloca(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
(V ? 32 : 0));
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Alloca);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
//===----------------------------------------------------------------------===//
// LoadInst Class
//===----------------------------------------------------------------------===//
/// LoadInst - an instruction for reading from memory. This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction {
void AssertOK();
protected:
LoadInst *clone_impl() const override;
public:
LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
Instruction *InsertBefore = nullptr);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
unsigned Align, Instruction *InsertBefore = nullptr);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope = CrossThread,
Instruction *InsertBefore = nullptr);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
explicit LoadInst(Value *Ptr, const char *NameStr = nullptr,
bool isVolatile = false,
Instruction *InsertBefore = nullptr);
LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(V ? 1 : 0));
}
/// getAlignment - Return the alignment of the access that is being performed
///
unsigned getAlignment() const {
return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
}
void setAlignment(unsigned Align);
/// Returns the ordering effect of this fence.
AtomicOrdering getOrdering() const {
return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
}
/// Set the ordering constraint on this load. May not be Release or
/// AcquireRelease.
void setOrdering(AtomicOrdering Ordering) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
(Ordering << 7));
}
SynchronizationScope getSynchScope() const {
return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
}
/// Specify whether this load is ordered with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope xthread) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
(xthread << 6));
}
bool isAtomic() const { return getOrdering() != NotAtomic; }
void setAtomic(AtomicOrdering Ordering,
SynchronizationScope SynchScope = CrossThread) {
setOrdering(Ordering);
setSynchScope(SynchScope);
}
bool isSimple() const { return !isAtomic() && !isVolatile(); }
bool isUnordered() const {
return getOrdering() <= Unordered && !isVolatile();
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Load;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
//===----------------------------------------------------------------------===//
// StoreInst Class
//===----------------------------------------------------------------------===//
/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction {
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
void AssertOK();
protected:
StoreInst *clone_impl() const override;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
Instruction *InsertBefore = nullptr);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
unsigned Align, Instruction *InsertBefore = nullptr);
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope = CrossThread,
Instruction *InsertBefore = nullptr);
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a store to a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile store or not.
///
void setVolatile(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(V ? 1 : 0));
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getAlignment - Return the alignment of the access that is being performed
///
unsigned getAlignment() const {
return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
}
void setAlignment(unsigned Align);
/// Returns the ordering effect of this store.
AtomicOrdering getOrdering() const {
return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
}
/// Set the ordering constraint on this store. May not be Acquire or
/// AcquireRelease.
void setOrdering(AtomicOrdering Ordering) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
(Ordering << 7));
}
SynchronizationScope getSynchScope() const {
return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
}
/// Specify whether this store instruction is ordered with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope xthread) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
(xthread << 6));
}
bool isAtomic() const { return getOrdering() != NotAtomic; }
void setAtomic(AtomicOrdering Ordering,
SynchronizationScope SynchScope = CrossThread) {
setOrdering(Ordering);
setSynchScope(SynchScope);
}
bool isSimple() const { return !isAtomic() && !isVolatile(); }
bool isUnordered() const {
return getOrdering() <= Unordered && !isVolatile();
}
Value *getValueOperand() { return getOperand(0); }
const Value *getValueOperand() const { return getOperand(0); }
Value *getPointerOperand() { return getOperand(1); }
const Value *getPointerOperand() const { return getOperand(1); }
static unsigned getPointerOperandIndex() { return 1U; }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Store;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
//===----------------------------------------------------------------------===//
// FenceInst Class
//===----------------------------------------------------------------------===//
/// FenceInst - an instruction for ordering other memory operations
///
class FenceInst : public Instruction {
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope);
protected:
FenceInst *clone_impl() const override;
public:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
// Ordering may only be Acquire, Release, AcquireRelease, or
// SequentiallyConsistent.
FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SynchronizationScope SynchScope = CrossThread,
Instruction *InsertBefore = nullptr);
FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd);
/// Returns the ordering effect of this fence.
AtomicOrdering getOrdering() const {
return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
}
/// Set the ordering constraint on this fence. May only be Acquire, Release,
/// AcquireRelease, or SequentiallyConsistent.
void setOrdering(AtomicOrdering Ordering) {
setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
(Ordering << 1));
}
SynchronizationScope getSynchScope() const {
return SynchronizationScope(getSubclassDataFromInstruction() & 1);
}
/// Specify whether this fence orders other operations with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope xthread) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
xthread);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Fence;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
//===----------------------------------------------------------------------===//
// AtomicCmpXchgInst Class
//===----------------------------------------------------------------------===//
/// AtomicCmpXchgInst - an instruction that atomically checks whether a
/// specified value is in a memory location, and, if it is, stores a new value
/// there. Returns the value that was loaded.
///
class AtomicCmpXchgInst : public Instruction {
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
void Init(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope);
protected:
AtomicCmpXchgInst *clone_impl() const override;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope,
Instruction *InsertBefore = nullptr);
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a cmpxchg from a volatile memory
/// location.
///
bool isVolatile() const {
return getSubclassDataFromInstruction() & 1;
}
/// setVolatile - Specify whether this is a volatile cmpxchg.
///
void setVolatile(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(unsigned)V);
}
/// Return true if this cmpxchg may spuriously fail.
bool isWeak() const {
return getSubclassDataFromInstruction() & 0x100;
}
void setWeak(bool IsWeak) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
(IsWeak << 8));
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Set the ordering constraint on this cmpxchg.
void setSuccessOrdering(AtomicOrdering Ordering) {
assert(Ordering != NotAtomic &&
"CmpXchg instructions can only be atomic.");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
(Ordering << 2));
}
void setFailureOrdering(AtomicOrdering Ordering) {
assert(Ordering != NotAtomic &&
"CmpXchg instructions can only be atomic.");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
(Ordering << 5));
}
/// Specify whether this cmpxchg is atomic and orders other operations with
/// respect to all concurrently executing threads, or only with respect to
/// signal handlers executing in the same thread.
void setSynchScope(SynchronizationScope SynchScope) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
(SynchScope << 1));
}
/// Returns the ordering constraint on this cmpxchg.
AtomicOrdering getSuccessOrdering() const {
return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
}
/// Returns the ordering constraint on this cmpxchg.
AtomicOrdering getFailureOrdering() const {
return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
}
/// Returns whether this cmpxchg is atomic between threads or only within a
/// single thread.
SynchronizationScope getSynchScope() const {
return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
Value *getCompareOperand() { return getOperand(1); }
const Value *getCompareOperand() const { return getOperand(1); }
Value *getNewValOperand() { return getOperand(2); }
const Value *getNewValOperand() const { return getOperand(2); }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
/// \brief Returns the strongest permitted ordering on failure, given the
/// desired ordering on success.
///
/// If the comparison in a cmpxchg operation fails, there is no atomic store
/// so release semantics cannot be provided. So this function drops explicit
/// Release requests from the AtomicOrdering. A SequentiallyConsistent
/// operation would remain SequentiallyConsistent.
static AtomicOrdering
getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
switch (SuccessOrdering) {
default: llvm_unreachable("invalid cmpxchg success ordering");
case Release:
case Monotonic:
return Monotonic;
case AcquireRelease:
case Acquire:
return Acquire;
case SequentiallyConsistent:
return SequentiallyConsistent;
}
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::AtomicCmpXchg;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<AtomicCmpXchgInst> :
public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
//===----------------------------------------------------------------------===//
// AtomicRMWInst Class
//===----------------------------------------------------------------------===//
/// AtomicRMWInst - an instruction that atomically reads a memory location,
/// combines it with another value, and then stores the result back. Returns
/// the old value.
///
class AtomicRMWInst : public Instruction {
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
protected:
AtomicRMWInst *clone_impl() const override;
public:
/// This enumeration lists the possible modifications atomicrmw can make. In
/// the descriptions, 'p' is the pointer to the instruction's memory location,
/// 'old' is the initial value of *p, and 'v' is the other value passed to the
/// instruction. These instructions always return 'old'.
enum BinOp {
/// *p = v
Xchg,
/// *p = old + v
Add,
/// *p = old - v
Sub,
/// *p = old & v
And,
/// *p = ~old & v
Nand,
/// *p = old | v
Or,
/// *p = old ^ v
Xor,
/// *p = old >signed v ? old : v
Max,
/// *p = old <signed v ? old : v
Min,
/// *p = old >unsigned v ? old : v
UMax,
/// *p = old <unsigned v ? old : v
UMin,
FIRST_BINOP = Xchg,
LAST_BINOP = UMin,
BAD_BINOP
};
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering, SynchronizationScope SynchScope,
Instruction *InsertBefore = nullptr);
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering, SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd);
BinOp getOperation() const {
return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
}
void setOperation(BinOp Operation) {
unsigned short SubclassData = getSubclassDataFromInstruction();
setInstructionSubclassData((SubclassData & 31) |
(Operation << 5));
}
/// isVolatile - Return true if this is a RMW on a volatile memory location.
///
bool isVolatile() const {
return getSubclassDataFromInstruction() & 1;
}
/// setVolatile - Specify whether this is a volatile RMW or not.
///
void setVolatile(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(unsigned)V);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Set the ordering constraint on this RMW.
void setOrdering(AtomicOrdering Ordering) {
assert(Ordering != NotAtomic &&
"atomicrmw instructions can only be atomic.");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
(Ordering << 2));
}
/// Specify whether this RMW orders other operations with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope SynchScope) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
(SynchScope << 1));
}
/// Returns the ordering constraint on this RMW.
AtomicOrdering getOrdering() const {
return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
}
/// Returns whether this RMW is atomic between threads or only within a
/// single thread.
SynchronizationScope getSynchScope() const {
return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
Value *getValOperand() { return getOperand(1); }
const Value *getValOperand() const { return getOperand(1); }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::AtomicRMW;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
void Init(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering, SynchronizationScope SynchScope);
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<AtomicRMWInst>
: public FixedNumOperandTraits<AtomicRMWInst,2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
//===----------------------------------------------------------------------===//
// GetElementPtrInst Class
//===----------------------------------------------------------------------===//
// checkGEPType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
inline Type *checkGEPType(Type *Ty) {
assert(Ty && "Invalid GetElementPtrInst indices for type!");
return Ty;
}
/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
GetElementPtrInst(const GetElementPtrInst &GEPI);
void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
/// Constructors - Create a getelementptr instruction with a base pointer an
/// list of indices. The first ctor can optionally insert before an existing
/// instruction, the second appends the new instruction to the specified
/// BasicBlock.
inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
unsigned Values, const Twine &NameStr,
Instruction *InsertBefore);
inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
unsigned Values, const Twine &NameStr,
BasicBlock *InsertAtEnd);
protected:
GetElementPtrInst *clone_impl() const override;
public:
static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
unsigned Values = 1 + unsigned(IdxList.size());
return new(Values)
GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertBefore);
}
static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
unsigned Values = 1 + unsigned(IdxList.size());
return new(Values)
GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertAtEnd);
}
/// Create an "inbounds" getelementptr. See the documentation for the
/// "inbounds" flag in LangRef.html for details.
static GetElementPtrInst *CreateInBounds(Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr){
GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertBefore);
GEP->setIsInBounds(true);
return GEP;
}
static GetElementPtrInst *CreateInBounds(Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertAtEnd);
GEP->setIsInBounds(true);
return GEP;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// getType - Overload to return most specific sequential type.
SequentialType *getType() const {
return cast<SequentialType>(Instruction::getType());
}
/// \brief Returns the address space of this instruction's pointer type.
unsigned getAddressSpace() const {
// Note that this is always the same as the pointer operand's address space
// and that is cheaper to compute, so cheat here.
return getPointerAddressSpace();
}
/// getIndexedType - Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
static Type *getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList);
static Type *getIndexedType(Type *Ptr, ArrayRef<Constant *> IdxList);
static Type *getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList);
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand.
}
/// getPointerOperandType - Method to return the pointer operand as a
/// PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperandType()->getPointerAddressSpace();
}
/// GetGEPReturnType - Returns the pointer type returned by the GEP
/// instruction, which may be a vector of pointers.
static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
Type *PtrTy = PointerType::get(checkGEPType(
getIndexedType(Ptr->getType(), IdxList)),
Ptr->getType()->getPointerAddressSpace());
// Vector GEP
if (Ptr->getType()->isVectorTy()) {
unsigned NumElem = cast<VectorType>(Ptr->getType())->getNumElements();
return VectorType::get(PtrTy, NumElem);
}
// Scalar GEP
return PtrTy;
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const;
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const;
/// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
/// See LangRef.html for the meaning of inbounds on a getelementptr.
void setIsInBounds(bool b = true);
/// isInBounds - Determine whether the GEP has the inbounds flag.
bool isInBounds() const;
/// \brief Accumulate the constant address offset of this GEP if possible.
///
/// This routine accepts an APInt into which it will accumulate the constant
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
/// all-constant, it returns false and the value of the offset APInt is
/// undefined (it is *not* preserved!). The APInt passed into this routine
/// must be at least as wide as the IntPtr type for the address space of
/// the base GEP pointer.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::GetElementPtr);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<GetElementPtrInst> :
public VariadicOperandTraits<GetElementPtrInst, 1> {
};
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
ArrayRef<Value *> IdxList,
unsigned Values,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(getGEPReturnType(Ptr, IdxList),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
Values, InsertBefore) {
init(Ptr, IdxList, NameStr);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
ArrayRef<Value *> IdxList,
unsigned Values,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(getGEPReturnType(Ptr, IdxList),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
Values, InsertAtEnd) {
init(Ptr, IdxList, NameStr);
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
//===----------------------------------------------------------------------===//
// ICmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on integers or pointers. The operands
/// must be identical types.
/// \brief Represent an integer comparison operator.
class ICmpInst: public CmpInst {
void AssertOK() {
assert(getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
getPredicate() <= CmpInst::LAST_ICMP_PREDICATE &&
"Invalid ICmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction");
}
protected:
/// \brief Clone an identical ICmpInst
ICmpInst *clone_impl() const override;
public:
/// \brief Constructor with insert-before-instruction semantics.
ICmpInst(
Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
InsertBefore) {
#ifndef NDEBUG
AssertOK();
#endif
}
/// \brief Constructor with insert-at-end semantics.
ICmpInst(
BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
#ifndef NDEBUG
AssertOK();
#endif
}
/// \brief Constructor with no-insertion semantics
ICmpInst(
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr) {
#ifndef NDEBUG
AssertOK();
#endif
}
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as signed.
/// \brief Return the signed version of the predicate
Predicate getSignedPredicate() const {
return getSignedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction.
/// \brief Return the signed version of the predicate.
static Predicate getSignedPredicate(Predicate pred);
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as unsigned.
/// \brief Return the unsigned version of the predicate
Predicate getUnsignedPredicate() const {
return getUnsignedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction.
/// \brief Return the unsigned version of the predicate.
static Predicate getUnsignedPredicate(Predicate pred);
/// isEquality - Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
static bool isEquality(Predicate P) {
return P == ICMP_EQ || P == ICMP_NE;
}
/// isEquality - Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
bool isEquality() const {
return isEquality(getPredicate());
}
/// @returns true if the predicate of this ICmpInst is commutative
/// \brief Determine if this relation is commutative.
bool isCommutative() const { return isEquality(); }
/// isRelational - Return true if the predicate is relational (not EQ or NE).
///
bool isRelational() const {
return !isEquality();
}
/// isRelational - Return true if the predicate is relational (not EQ or NE).
///
static bool isRelational(Predicate P) {
return !isEquality(P);
}
/// Initialize a set of values that all satisfy the predicate with C.
/// \brief Make a ConstantRange for a relation with a constant value.
static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// \brief Swap operands and adjust predicate.
void swapOperands() {
setPredicate(getSwappedPredicate());
Op<0>().swap(Op<1>());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ICmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FCmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on floating point values or packed
/// vectors of floating point values. The operands must be identical types.
/// \brief Represents a floating point comparison operator.
class FCmpInst: public CmpInst {
protected:
/// \brief Clone an identical FCmpInst
FCmpInst *clone_impl() const override;
public:
/// \brief Constructor with insert-before-instruction semantics.
FCmpInst(
Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
InsertBefore) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
"Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
/// \brief Constructor with insert-at-end semantics.
FCmpInst(
BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
"Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
/// \brief Constructor with no-insertion semantics
FCmpInst(
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
"Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
/// @returns true if the predicate of this instruction is EQ or NE.
/// \brief Determine if this is an equality predicate.
bool isEquality() const {
return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
}
/// @returns true if the predicate of this instruction is commutative.
/// \brief Determine if this is a commutative predicate.
bool isCommutative() const {
return isEquality() ||
getPredicate() == FCMP_FALSE ||
getPredicate() == FCMP_TRUE ||
getPredicate() == FCMP_ORD ||
getPredicate() == FCMP_UNO;
}
/// @returns true if the predicate is relational (not EQ or NE).
/// \brief Determine if this a relational predicate.
bool isRelational() const { return !isEquality(); }
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// \brief Swap operands and adjust predicate.
void swapOperands() {
setPredicate(getSwappedPredicate());
Op<0>().swap(Op<1>());
}
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::FCmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention. This class uses low bit of the SubClassData
/// field to indicate whether or not this is a tail call. The rest of the bits
/// hold the calling convention of the call.
///
class CallInst : public Instruction {
AttributeSet AttributeList; ///< parameter attributes for call
CallInst(const CallInst &CI);
void init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr);
void init(Value *Func, const Twine &NameStr);
/// Construct a CallInst given a range of arguments.
/// \brief Construct a CallInst from a range of arguments
inline CallInst(Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr, Instruction *InsertBefore);
/// Construct a CallInst given a range of arguments.
/// \brief Construct a CallInst from a range of arguments
inline CallInst(Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd);
explicit CallInst(Value *F, const Twine &NameStr,
Instruction *InsertBefore);
CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
CallInst *clone_impl() const override;
public:
static CallInst *Create(Value *Func,
ArrayRef<Value *> Args,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(unsigned(Args.size() + 1))
CallInst(Func, Args, NameStr, InsertBefore);
}
static CallInst *Create(Value *Func,
ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return new(unsigned(Args.size() + 1))
CallInst(Func, Args, NameStr, InsertAtEnd);
}
static CallInst *Create(Value *F, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(1) CallInst(F, NameStr, InsertBefore);
}
static CallInst *Create(Value *F, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(1) CallInst(F, NameStr, InsertAtEnd);
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
static Instruction *CreateMalloc(Instruction *InsertBefore,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize = nullptr,
Function* MallocF = nullptr,
const Twine &Name = "");
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize = nullptr,
Function* MallocF = nullptr,
const Twine &Name = "");
/// CreateFree - Generate the IR for a call to the builtin free function.
static Instruction* CreateFree(Value* Source, Instruction *InsertBefore);
static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
~CallInst();
// Note that 'musttail' implies 'tail'.
enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2 };
TailCallKind getTailCallKind() const {
return TailCallKind(getSubclassDataFromInstruction() & 3);
}
bool isTailCall() const {
return (getSubclassDataFromInstruction() & 3) != TCK_None;
}
bool isMustTailCall() const {
return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
}
void setTailCall(bool isTC = true) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
unsigned(isTC ? TCK_Tail : TCK_None));
}
void setTailCallKind(TailCallKind TCK) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
unsigned(TCK));
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getNumArgOperands - Return the number of call arguments.
///
unsigned getNumArgOperands() const { return getNumOperands() - 1; }
/// getArgOperand/setArgOperand - Return/set the i-th call argument.
///
Value *getArgOperand(unsigned i) const { return getOperand(i); }
void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
/// arg_operands - iteration adapter for range-for loops.
iterator_range<op_iterator> arg_operands() {
// The last operand in the op list is the callee - it's not one of the args
// so we don't want to iterate over it.
return iterator_range<op_iterator>(op_begin(), op_end() - 1);
}
/// arg_operands - iteration adapter for range-for loops.
iterator_range<const_op_iterator> arg_operands() const {
return iterator_range<const_op_iterator>(op_begin(), op_end() - 1);
}
/// \brief Wrappers for getting the \c Use of a call argument.
const Use &getArgOperandUse(unsigned i) const { return getOperandUse(i); }
Use &getArgOperandUse(unsigned i) { return getOperandUse(i); }
/// getCallingConv/setCallingConv - Get or set the calling convention of this
/// function call.
CallingConv::ID getCallingConv() const {
return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
}
void setCallingConv(CallingConv::ID CC) {
setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
(static_cast<unsigned>(CC) << 2));
}
/// getAttributes - Return the parameter attributes for this call.
///
const AttributeSet &getAttributes() const { return AttributeList; }
/// setAttributes - Set the parameter attributes for this call.
///
void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
/// addAttribute - adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attribute::AttrKind attr);
/// removeAttribute - removes the attribute from the list of attributes.
void removeAttribute(unsigned i, Attribute attr);
/// \brief Determine whether this call has the given attribute.
bool hasFnAttr(Attribute::AttrKind A) const {
assert(A != Attribute::NoBuiltin &&
"Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
return hasFnAttrImpl(A);
}
/// \brief Determine whether the call or the callee has the given attributes.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
/// \brief Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned i) const {
return AttributeList.getParamAlignment(i);
}
/// \brief Extract the number of dereferenceable bytes for a call or
/// parameter (0=unknown).
uint64_t getDereferenceableBytes(unsigned i) const {
return AttributeList.getDereferenceableBytes(i);
}
/// \brief Return true if the call should not be treated as a call to a
/// builtin.
bool isNoBuiltin() const {
return hasFnAttrImpl(Attribute::NoBuiltin) &&
!hasFnAttrImpl(Attribute::Builtin);
}
/// \brief Return true if the call should not be inlined.
bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
void setIsNoInline() {
addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
}
/// \brief Return true if the call can return twice
bool canReturnTwice() const {
return hasFnAttr(Attribute::ReturnsTwice);
}
void setCanReturnTwice() {
addAttribute(AttributeSet::FunctionIndex, Attribute::ReturnsTwice);
}
/// \brief Determine if the call does not access memory.
bool doesNotAccessMemory() const {
return hasFnAttr(Attribute::ReadNone);
}
void setDoesNotAccessMemory() {
addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
}
/// \brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const {
return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
}
void setOnlyReadsMemory() {
addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
}
/// \brief Determine if the call cannot return.
bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
void setDoesNotReturn() {
addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
}
/// \brief Determine if the call cannot unwind.
bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
void setDoesNotThrow() {
addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
}
/// \brief Determine if the call cannot be duplicated.
bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
void setCannotDuplicate() {
addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate);
}
/// \brief Determine if the call returns a structure through first
/// pointer argument.
bool hasStructRetAttr() const {
// Be friendly and also check the callee.
return paramHasAttr(1, Attribute::StructRet);
}
/// \brief Determine if any call argument is an aggregate passed by value.
bool hasByValArgument() const {
return AttributeList.hasAttrSomewhere(Attribute::ByVal);
}
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation.
///
Function *getCalledFunction() const {
return dyn_cast<Function>(Op<-1>());
}
/// getCalledValue - Get a pointer to the function that is invoked by this
/// instruction.
const Value *getCalledValue() const { return Op<-1>(); }
Value *getCalledValue() { return Op<-1>(); }
/// setCalledFunction - Set the function called.
void setCalledFunction(Value* Fn) {
Op<-1>() = Fn;
}
/// isInlineAsm - Check if this call is an inline asm statement.
bool isInlineAsm() const {
return isa<InlineAsm>(Op<-1>());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Call;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
bool hasFnAttrImpl(Attribute::AttrKind A) const;
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> {
};
CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
unsigned(Args.size() + 1), InsertAtEnd) {
init(Func, Args, NameStr);
}
CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
unsigned(Args.size() + 1), InsertBefore) {
init(Func, Args, NameStr);
}
// Note: if you get compile errors about private methods then
// please update your code to use the high-level operand
// interfaces. See line 943 above.
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
void init(Value *C, Value *S1, Value *S2) {
assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
Op<0>() = C;
Op<1>() = S1;
Op<2>() = S2;
}
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(S1->getType(), Instruction::Select,
&Op<0>(), 3, InsertBefore) {
init(C, S1, S2);
setName(NameStr);
}
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(S1->getType(), Instruction::Select,
&Op<0>(), 3, InsertAtEnd) {
init(C, S1, S2);
setName(NameStr);
}
protected:
SelectInst *clone_impl() const override;
public:
static SelectInst *Create(Value *C, Value *S1, Value *S2,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
}
static SelectInst *Create(Value *C, Value *S1, Value *S2,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
}
const Value *getCondition() const { return Op<0>(); }
const Value *getTrueValue() const { return Op<1>(); }
const Value *getFalseValue() const { return Op<2>(); }
Value *getCondition() { return Op<0>(); }
Value *getTrueValue() { return Op<1>(); }
Value *getFalseValue() { return Op<2>(); }
/// areInvalidOperands - Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Select;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
//===----------------------------------------------------------------------===//
// VAArgInst Class
//===----------------------------------------------------------------------===//
/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list and increments that list
///
class VAArgInst : public UnaryInstruction {
protected:
VAArgInst *clone_impl() const override;
public:
VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr)
: UnaryInstruction(Ty, VAArg, List, InsertBefore) {
setName(NameStr);
}
VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
setName(NameStr);
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == VAArg;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ExtractElementInst Class
//===----------------------------------------------------------------------===//
/// ExtractElementInst - This instruction extracts a single (scalar)
/// element from a VectorType value
///
class ExtractElementInst : public Instruction {
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
BasicBlock *InsertAtEnd);
protected:
ExtractElementInst *clone_impl() const override;
public:
static ExtractElementInst *Create(Value *Vec, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
}
static ExtractElementInst *Create(Value *Vec, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
}
/// isValidOperands - Return true if an extractelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *Idx);
Value *getVectorOperand() { return Op<0>(); }
Value *getIndexOperand() { return Op<1>(); }
const Value *getVectorOperand() const { return Op<0>(); }
const Value *getIndexOperand() const { return Op<1>(); }
VectorType *getVectorOperandType() const {
return cast<VectorType>(getVectorOperand()->getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ExtractElement;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<ExtractElementInst> :
public FixedNumOperandTraits<ExtractElementInst, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
//===----------------------------------------------------------------------===//
// InsertElementInst Class
//===----------------------------------------------------------------------===//
/// InsertElementInst - This instruction inserts a single (scalar)
/// element into a VectorType value
///
class InsertElementInst : public Instruction {
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
InsertElementInst *clone_impl() const override;
public:
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
}
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
}
/// isValidOperands - Return true if an insertelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *NewElt,
const Value *Idx);
/// getType - Overload to return most specific vector type.
///
VectorType *getType() const {
return cast<VectorType>(Instruction::getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::InsertElement;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<InsertElementInst> :
public FixedNumOperandTraits<InsertElementInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Class
//===----------------------------------------------------------------------===//
/// ShuffleVectorInst - This instruction constructs a fixed permutation of two
/// input vectors.
///
class ShuffleVectorInst : public Instruction {
protected:
ShuffleVectorInst *clone_impl() const override;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &NameStr = "",
Instruction *InsertBefor = nullptr);
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// isValidOperands - Return true if a shufflevector instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *V1, const Value *V2,
const Value *Mask);
/// getType - Overload to return most specific vector type.
///
VectorType *getType() const {
return cast<VectorType>(Instruction::getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Constant *getMask() const {
return cast<Constant>(getOperand(2));
}
/// getMaskValue - Return the index from the shuffle mask for the specified
/// output result. This is either -1 if the element is undef or a number less
/// than 2*numelements.
static int getMaskValue(Constant *Mask, unsigned i);
int getMaskValue(unsigned i) const {
return getMaskValue(getMask(), i);
}
/// getShuffleMask - Return the full mask for this instruction, where each
/// element is the element number and undef's are returned as -1.
static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result);
void getShuffleMask(SmallVectorImpl<int> &Result) const {
return getShuffleMask(getMask(), Result);
}
SmallVector<int, 16> getShuffleMask() const {
SmallVector<int, 16> Mask;
getShuffleMask(Mask);
return Mask;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ShuffleVector;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<ShuffleVectorInst> :
public FixedNumOperandTraits<ShuffleVectorInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
/// ExtractValueInst - This instruction extracts a struct member or array
/// element value from an aggregate value.
///
class ExtractValueInst : public UnaryInstruction {
SmallVector<unsigned, 4> Indices;
ExtractValueInst(const ExtractValueInst &EVI);
void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
/// Constructors - Create a extractvalue instruction with a base aggregate
/// value and a list of indices. The first ctor can optionally insert before
/// an existing instruction, the second appends the new instruction to the
/// specified BasicBlock.
inline ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore);
inline ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr, BasicBlock *InsertAtEnd);
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
protected:
ExtractValueInst *clone_impl() const override;
public:
static ExtractValueInst *Create(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new
ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
}
static ExtractValueInst *Create(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
}
/// getIndexedType - Returns the type of the element that would be extracted
/// with an extractvalue instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified type.
static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
typedef const unsigned* idx_iterator;
inline idx_iterator idx_begin() const { return Indices.begin(); }
inline idx_iterator idx_end() const { return Indices.end(); }
Value *getAggregateOperand() {
return getOperand(0);
}
const Value *getAggregateOperand() const {
return getOperand(0);
}
static unsigned getAggregateOperandIndex() {
return 0U; // get index for modifying correct operand
}
ArrayRef<unsigned> getIndices() const {
return Indices;
}
unsigned getNumIndices() const {
return (unsigned)Indices.size();
}
bool hasIndices() const {
return true;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ExtractValue;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
ExtractValueInst::ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore)
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
ExtractValue, Agg, InsertBefore) {
init(Idxs, NameStr);
}
ExtractValueInst::ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
ExtractValue, Agg, InsertAtEnd) {
init(Idxs, NameStr);
}
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
/// InsertValueInst - This instruction inserts a struct field of array element
/// value into an aggregate value.
///
class InsertValueInst : public Instruction {
SmallVector<unsigned, 4> Indices;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
InsertValueInst(const InsertValueInst &IVI);
void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
const Twine &NameStr);
/// Constructors - Create a insertvalue instruction with a base aggregate
/// value, a value to insert, and a list of indices. The first ctor can
/// optionally insert before an existing instruction, the second appends
/// the new instruction to the specified BasicBlock.
inline InsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore);
inline InsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because one
/// and two index insertvalue instructions are so common.
InsertValueInst(Value *Agg, Value *Val,
unsigned Idx, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
InsertValueInst *clone_impl() const override;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
static InsertValueInst *Create(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
}
static InsertValueInst *Create(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
typedef const unsigned* idx_iterator;
inline idx_iterator idx_begin() const { return Indices.begin(); }
inline idx_iterator idx_end() const { return Indices.end(); }
Value *getAggregateOperand() {
return getOperand(0);
}
const Value *getAggregateOperand() const {
return getOperand(0);
}
static unsigned getAggregateOperandIndex() {
return 0U; // get index for modifying correct operand
}
Value *getInsertedValueOperand() {
return getOperand(1);
}
const Value *getInsertedValueOperand() const {
return getOperand(1);
}
static unsigned getInsertedValueOperandIndex() {
return 1U; // get index for modifying correct operand
}
ArrayRef<unsigned> getIndices() const {
return Indices;
}
unsigned getNumIndices() const {
return (unsigned)Indices.size();
}
bool hasIndices() const {
return true;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::InsertValue;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<InsertValueInst> :
public FixedNumOperandTraits<InsertValueInst, 2> {
};
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertBefore) {
init(Agg, Val, Idxs, NameStr);
}
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertAtEnd) {
init(Agg, Val, Idxs, NameStr);
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
/// ReservedSpace - The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
PHINode(const PHINode &PN);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
explicit PHINode(Type *Ty, unsigned NumReservedValues,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr)
: Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
ReservedSpace(NumReservedValues) {
setName(NameStr);
OperandList = allocHungoffUses(ReservedSpace);
}
PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
ReservedSpace(NumReservedValues) {
setName(NameStr);
OperandList = allocHungoffUses(ReservedSpace);
}
protected:
// allocHungoffUses - this is more complicated than the generic
// User::allocHungoffUses, because we have to allocate Uses for the incoming
// values and pointers to the incoming blocks, all in one allocation.
Use *allocHungoffUses(unsigned) const;
PHINode *clone_impl() const override;
public:
/// Constructors - NumReservedValues is a hint for the number of incoming
/// edges that this phi node will have (use 0 if you really have no idea).
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
}
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
}
~PHINode();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Block iterator interface. This provides access to the list of incoming
// basic blocks, which parallels the list of incoming values.
typedef BasicBlock **block_iterator;
typedef BasicBlock * const *const_block_iterator;
block_iterator block_begin() {
Use::UserRef *ref =
reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
return reinterpret_cast<block_iterator>(ref + 1);
}
const_block_iterator block_begin() const {
const Use::UserRef *ref =
reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
return reinterpret_cast<const_block_iterator>(ref + 1);
}
block_iterator block_end() {
return block_begin() + getNumOperands();
}
const_block_iterator block_end() const {
return block_begin() + getNumOperands();
}
/// getNumIncomingValues - Return the number of incoming edges
///
unsigned getNumIncomingValues() const { return getNumOperands(); }
/// getIncomingValue - Return incoming value number x
///
Value *getIncomingValue(unsigned i) const {
return getOperand(i);
}
void setIncomingValue(unsigned i, Value *V) {
setOperand(i, V);
}
static unsigned getOperandNumForIncomingValue(unsigned i) {
return i;
}
static unsigned getIncomingValueNumForOperand(unsigned i) {
return i;
}
/// getIncomingBlock - Return incoming basic block number @p i.
///
BasicBlock *getIncomingBlock(unsigned i) const {
return block_begin()[i];
}
/// getIncomingBlock - Return incoming basic block corresponding
/// to an operand of the PHI.
///
BasicBlock *getIncomingBlock(const Use &U) const {
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
return getIncomingBlock(unsigned(&U - op_begin()));
}
/// getIncomingBlock - Return incoming basic block corresponding
/// to value use iterator.
///
BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
return getIncomingBlock(I.getUse());
}
void setIncomingBlock(unsigned i, BasicBlock *BB) {
block_begin()[i] = BB;
}
/// addIncoming - Add an incoming value to the end of the PHI list
///
void addIncoming(Value *V, BasicBlock *BB) {
assert(V && "PHI node got a null value!");
assert(BB && "PHI node got a null basic block!");
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
if (NumOperands == ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
++NumOperands;
setIncomingValue(NumOperands - 1, V);
setIncomingBlock(NumOperands - 1, BB);
}
/// removeIncomingValue - Remove an incoming value. This is useful if a
/// predecessor basic block is deleted. The value removed is returned.
///
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
/// is true), the PHI node is destroyed and any uses of it are replaced with
/// dummy values. The only time there should be zero incoming values to a PHI
/// node is when the block is dead, so this strategy is sound.
///
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument to remove!");
return removeIncomingValue(Idx, DeletePHIIfEmpty);
}
/// getBasicBlockIndex - Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
///
int getBasicBlockIndex(const BasicBlock *BB) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (block_begin()[i] == BB)
return i;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument!");
return getIncomingValue(Idx);
}
/// hasConstantValue - If the specified PHI node always merges together the
/// same value, return the value, otherwise return null.
Value *hasConstantValue() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::PHI;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
void growOperands();
};
template <>
struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
//===----------------------------------------------------------------------===//
// LandingPadInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// LandingPadInst - The landingpad instruction holds all of the information
/// necessary to generate correct exception handling. The landingpad instruction
/// cannot be moved from the top of a landing pad block, which itself is
/// accessible only from the 'unwind' edge of an invoke. This uses the
/// SubclassData field in Value to store whether or not the landingpad is a
/// cleanup.
///
class LandingPadInst : public Instruction {
/// ReservedSpace - The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
LandingPadInst(const LandingPadInst &LP);
public:
enum ClauseType { Catch, Filter };
private:
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
// Allocate space for exactly zero operands.
void *operator new(size_t s) {
return User::operator new(s, 0);
}
void growOperands(unsigned Size);
void init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr);
explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedValues, const Twine &NameStr,
Instruction *InsertBefore);
explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedValues, const Twine &NameStr,
BasicBlock *InsertAtEnd);
protected:
LandingPadInst *clone_impl() const override;
public:
/// Constructors - NumReservedClauses is a hint for the number of incoming
/// clauses that this landingpad will have (use 0 if you really have no idea).
static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedClauses,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedClauses,
const Twine &NameStr, BasicBlock *InsertAtEnd);
~LandingPadInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getPersonalityFn - Get the personality function associated with this
/// landing pad.
Value *getPersonalityFn() const { return getOperand(0); }
/// isCleanup - Return 'true' if this landingpad instruction is a
/// cleanup. I.e., it should be run when unwinding even if its landing pad
/// doesn't catch the exception.
bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
/// setCleanup - Indicate that this landingpad instruction is a cleanup.
void setCleanup(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(V ? 1 : 0));
}
/// Add a catch or filter clause to the landing pad.
void addClause(Constant *ClauseVal);
/// Get the value of the clause at index Idx. Use isCatch/isFilter to
/// determine what type of clause this is.
Constant *getClause(unsigned Idx) const {
return cast<Constant>(OperandList[Idx + 1]);
}
/// isCatch - Return 'true' if the clause and index Idx is a catch clause.
bool isCatch(unsigned Idx) const {
return !isa<ArrayType>(OperandList[Idx + 1]->getType());
}
/// isFilter - Return 'true' if the clause and index Idx is a filter clause.
bool isFilter(unsigned Idx) const {
return isa<ArrayType>(OperandList[Idx + 1]->getType());
}
/// getNumClauses - Get the number of clauses for this landing pad.
unsigned getNumClauses() const { return getNumOperands() - 1; }
/// reserveClauses - Grow the size of the operand list to accommodate the new
/// number of clauses.
void reserveClauses(unsigned Size) { growOperands(Size); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::LandingPad;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
//===----------------------------------------------------------------------===//
// ReturnInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function. Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
ReturnInst(const ReturnInst &RI);
private:
// ReturnInst constructors:
// ReturnInst() - 'ret void' instruction
// ReturnInst( null) - 'ret void' instruction
// ReturnInst(Value* X) - 'ret X' instruction
// ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
//
// NOTE: If the Value* passed is of type void then the constructor behaves as
// if it was passed NULL.
explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
Instruction *InsertBefore = nullptr);
ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
protected:
ReturnInst *clone_impl() const override;
public:
static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
Instruction *InsertBefore = nullptr) {
return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
}
static ReturnInst* Create(LLVMContext &C, Value *retVal,
BasicBlock *InsertAtEnd) {
return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
}
static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
return new(0) ReturnInst(C, InsertAtEnd);
}
virtual ~ReturnInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor. Returns null if there is no return value.
Value *getReturnValue() const {
return getNumOperands() != 0 ? getOperand(0) : nullptr;
}
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Ret);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
BasicBlock *getSuccessorV(unsigned idx) const override;
unsigned getNumSuccessorsV() const override;
void setSuccessorV(unsigned idx, BasicBlock *B) override;
};
template <>
struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
//===----------------------------------------------------------------------===//
// BranchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
/// Ops list - Branches are strange. The operands are ordered:
/// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
/// they don't have to check for cond/uncond branchness. These are mostly
/// accessed relative from op_end().
BranchInst(const BranchInst &BI);
void AssertOK();
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
// BranchInst(BB *B) - 'br B'
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
// BranchInst(BB* B, BB *I) - 'br B' insert at end
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore = nullptr);
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd);
protected:
BranchInst *clone_impl() const override;
public:
static BranchInst *Create(BasicBlock *IfTrue,
Instruction *InsertBefore = nullptr) {
return