blob: 1cef3933b5d6b2112f5c86f099d07de952bf18a0 [file] [log] [blame]
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/Support/Compiler.h"
#include <cstddef> // for std::size_t
#include <cstdlib> // for qsort
#include <functional>
#include <iterator>
#include <memory>
#include <utility> // for std::pair
namespace llvm {
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template<class Ty>
struct identity : public std::unary_function<Ty, Ty> {
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *left < *right;
}
};
template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *right < *left;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
#if LLVM_HAS_VARIADIC_TEMPLATES
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(intptr_t callable, Params ...params);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
};
#else
template<typename Ret>
class function_ref<Ret()> {
Ret (*callback)(intptr_t callable);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable) {
return (*reinterpret_cast<Callable*>(callable))();
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()() const { return callback(callable); }
};
template<typename Ret, typename Param1>
class function_ref<Ret(Param1)> {
Ret (*callback)(intptr_t callable, Param1 param1);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Param1 param1) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Param1 param1) {
return callback(callable, std::forward<Param1>(param1));
}
};
template<typename Ret, typename Param1, typename Param2>
class function_ref<Ret(Param1, Param2)> {
Ret (*callback)(intptr_t callable, Param1 param1, Param2 param2);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Param1 param1, Param2 param2) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1),
std::forward<Param2>(param2));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Param1 param1, Param2 param2) {
return callback(callable,
std::forward<Param1>(param1),
std::forward<Param2>(param2));
}
};
template<typename Ret, typename Param1, typename Param2, typename Param3>
class function_ref<Ret(Param1, Param2, Param3)> {
Ret (*callback)(intptr_t callable, Param1 param1, Param2 param2, Param3 param3);
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Param1 param1, Param2 param2,
Param3 param3) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1),
std::forward<Param2>(param2),
std::forward<Param3>(param3));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Param1 param1, Param2 param2, Param3 param3) {
return callback(callable,
std::forward<Param1>(param1),
std::forward<Param2>(param2),
std::forward<Param3>(param3));
}
};
#endif
// deleter - Very very very simple method that is used to invoke operator
// delete on something. It is used like this:
//
// for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
inline void deleter(T *Ptr) {
delete Ptr;
}
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
RootIt current;
UnaryFunc Fn;
public:
typedef typename std::iterator_traits<RootIt>::iterator_category
iterator_category;
typedef typename std::iterator_traits<RootIt>::difference_type
difference_type;
typedef typename UnaryFunc::result_type value_type;
typedef void pointer;
//typedef typename UnaryFunc::result_type *pointer;
typedef void reference; // Can't modify value returned by fn
typedef RootIt iterator_type;
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
inline const RootIt &getCurrent() const { return current; }
inline const UnaryFunc &getFunc() const { return Fn; }
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
: current(I), Fn(F) {}
inline value_type operator*() const { // All this work to do this
return Fn(*current); // little change
}
_Self& operator++() { ++current; return *this; }
_Self& operator--() { --current; return *this; }
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
_Self operator+ (difference_type n) const {
return _Self(current + n, Fn);
}
_Self& operator+= (difference_type n) { current += n; return *this; }
_Self operator- (difference_type n) const {
return _Self(current - n, Fn);
}
_Self& operator-= (difference_type n) { current -= n; return *this; }
reference operator[](difference_type n) const { return *(*this + n); }
inline bool operator!=(const _Self &X) const { return !operator==(X); }
inline bool operator==(const _Self &X) const { return current == X.current; }
inline bool operator< (const _Self &X) const { return current < X.current; }
inline difference_type operator-(const _Self &X) const {
return current - X.current;
}
};
template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func>
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
const mapped_iterator<_Iterator, Func>& X) {
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
}
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(I, F);
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// \brief Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.first < rhs.first;
}
};
/// \brief Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.second < rhs.second;
}
};
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
/// Find the length of an array.
template <class T, std::size_t N>
LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End-Start, sizeof(*Start),
get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End - Start, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete *I;
C.clear();
}
/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete I->second;
C.clear();
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
#if LLVM_HAS_VARIADIC_TEMPLATES
// Implement make_unique according to N3656.
/// \brief Constructs a `new T()` with the given args and returns a
/// `unique_ptr<T>` which owns the object.
///
/// Example:
///
/// auto p = make_unique<int>();
/// auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
/// \brief Constructs a `new T[n]` with the given args and returns a
/// `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) LLVM_DELETED_FUNCTION;
#else
template <class T>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique() {
return std::unique_ptr<T>(new T());
}
template <class T, class Arg1>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1) {
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1)));
}
template <class T, class Arg1, class Arg2>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2)));
}
template <class T, class Arg1, class Arg2, class Arg3>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3) {
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1),
std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8, class Arg9>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
std::forward<Arg9>(arg9)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9, Arg10 &&arg10) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
std::forward<Arg9>(arg9), std::forward<Arg10>(arg10)));
}
template <class T>
typename std::enable_if<std::is_array<T>::value &&std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
#endif
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
} // End llvm namespace
#endif