blob: 51139f72ba22da2513bfb076747e00db8373b850 [file] [log] [blame]
//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <vector>
namespace llvm {
class PSetIterator;
/// MachineRegisterInfo - Keep track of information for virtual and physical
/// registers, including vreg register classes, use/def chains for registers,
/// etc.
class MachineRegisterInfo {
public:
class Delegate {
virtual void anchor();
public:
virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
virtual ~Delegate() {}
};
private:
const TargetMachine &TM;
Delegate *TheDelegate;
/// IsSSA - True when the machine function is in SSA form and virtual
/// registers have a single def.
bool IsSSA;
/// TracksLiveness - True while register liveness is being tracked accurately.
/// Basic block live-in lists, kill flags, and implicit defs may not be
/// accurate when after this flag is cleared.
bool TracksLiveness;
/// VRegInfo - Information we keep for each virtual register.
///
/// Each element in this list contains the register class of the vreg and the
/// start of the use/def list for the register.
IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
VirtReg2IndexFunctor> VRegInfo;
/// RegAllocHints - This vector records register allocation hints for virtual
/// registers. For each virtual register, it keeps a register and hint type
/// pair making up the allocation hint. Hint type is target specific except
/// for the value 0 which means the second value of the pair is the preferred
/// register for allocation. For example, if the hint is <0, 1024>, it means
/// the allocator should prefer the physical register allocated to the virtual
/// register of the hint.
IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
/// PhysRegUseDefLists - This is an array of the head of the use/def list for
/// physical registers.
MachineOperand **PhysRegUseDefLists;
/// getRegUseDefListHead - Return the head pointer for the register use/def
/// list for the specified virtual or physical register.
MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
if (TargetRegisterInfo::isVirtualRegister(RegNo))
return VRegInfo[RegNo].second;
return PhysRegUseDefLists[RegNo];
}
MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
if (TargetRegisterInfo::isVirtualRegister(RegNo))
return VRegInfo[RegNo].second;
return PhysRegUseDefLists[RegNo];
}
/// Get the next element in the use-def chain.
static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
assert(MO && MO->isReg() && "This is not a register operand!");
return MO->Contents.Reg.Next;
}
/// UsedRegUnits - This is a bit vector that is computed and set by the
/// register allocator, and must be kept up to date by passes that run after
/// register allocation (though most don't modify this). This is used
/// so that the code generator knows which callee save registers to save and
/// for other target specific uses.
/// This vector has bits set for register units that are modified in the
/// current function. It doesn't include registers clobbered by function
/// calls with register mask operands.
BitVector UsedRegUnits;
/// UsedPhysRegMask - Additional used physregs including aliases.
/// This bit vector represents all the registers clobbered by function calls.
/// It can model things that UsedRegUnits can't, such as function calls that
/// clobber ymm7 but preserve the low half in xmm7.
BitVector UsedPhysRegMask;
/// ReservedRegs - This is a bit vector of reserved registers. The target
/// may change its mind about which registers should be reserved. This
/// vector is the frozen set of reserved registers when register allocation
/// started.
BitVector ReservedRegs;
/// Keep track of the physical registers that are live in to the function.
/// Live in values are typically arguments in registers. LiveIn values are
/// allowed to have virtual registers associated with them, stored in the
/// second element.
std::vector<std::pair<unsigned, unsigned> > LiveIns;
MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
public:
explicit MachineRegisterInfo(const TargetMachine &TM);
~MachineRegisterInfo();
const TargetRegisterInfo *getTargetRegisterInfo() const {
return TM.getRegisterInfo();
}
void resetDelegate(Delegate *delegate) {
// Ensure another delegate does not take over unless the current
// delegate first unattaches itself. If we ever need to multicast
// notifications, we will need to change to using a list.
assert(TheDelegate == delegate &&
"Only the current delegate can perform reset!");
TheDelegate = nullptr;
}
void setDelegate(Delegate *delegate) {
assert(delegate && !TheDelegate &&
"Attempted to set delegate to null, or to change it without "
"first resetting it!");
TheDelegate = delegate;
}
//===--------------------------------------------------------------------===//
// Function State
//===--------------------------------------------------------------------===//
// isSSA - Returns true when the machine function is in SSA form. Early
// passes require the machine function to be in SSA form where every virtual
// register has a single defining instruction.
//
// The TwoAddressInstructionPass and PHIElimination passes take the machine
// function out of SSA form when they introduce multiple defs per virtual
// register.
bool isSSA() const { return IsSSA; }
// leaveSSA - Indicates that the machine function is no longer in SSA form.
void leaveSSA() { IsSSA = false; }
/// tracksLiveness - Returns true when tracking register liveness accurately.
///
/// While this flag is true, register liveness information in basic block
/// live-in lists and machine instruction operands is accurate. This means it
/// can be used to change the code in ways that affect the values in
/// registers, for example by the register scavenger.
///
/// When this flag is false, liveness is no longer reliable.
bool tracksLiveness() const { return TracksLiveness; }
/// invalidateLiveness - Indicates that register liveness is no longer being
/// tracked accurately.
///
/// This should be called by late passes that invalidate the liveness
/// information.
void invalidateLiveness() { TracksLiveness = false; }
//===--------------------------------------------------------------------===//
// Register Info
//===--------------------------------------------------------------------===//
// Strictly for use by MachineInstr.cpp.
void addRegOperandToUseList(MachineOperand *MO);
// Strictly for use by MachineInstr.cpp.
void removeRegOperandFromUseList(MachineOperand *MO);
// Strictly for use by MachineInstr.cpp.
void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
/// Verify the sanity of the use list for Reg.
void verifyUseList(unsigned Reg) const;
/// Verify the use list of all registers.
void verifyUseLists() const;
/// reg_begin/reg_end - Provide iteration support to walk over all definitions
/// and uses of a register within the MachineFunction that corresponds to this
/// MachineRegisterInfo object.
template<bool Uses, bool Defs, bool SkipDebug,
bool ByOperand, bool ByInstr, bool ByBundle>
class defusechain_iterator;
template<bool Uses, bool Defs, bool SkipDebug,
bool ByOperand, bool ByInstr, bool ByBundle>
class defusechain_instr_iterator;
// Make it a friend so it can access getNextOperandForReg().
template<bool, bool, bool, bool, bool, bool>
friend class defusechain_iterator;
template<bool, bool, bool, bool, bool, bool>
friend class defusechain_instr_iterator;
/// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
/// register.
typedef defusechain_iterator<true,true,false,true,false,false>
reg_iterator;
reg_iterator reg_begin(unsigned RegNo) const {
return reg_iterator(getRegUseDefListHead(RegNo));
}
static reg_iterator reg_end() { return reg_iterator(nullptr); }
inline iterator_range<reg_iterator> reg_operands(unsigned Reg) const {
return iterator_range<reg_iterator>(reg_begin(Reg), reg_end());
}
/// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
/// of the specified register, stepping by MachineInstr.
typedef defusechain_instr_iterator<true,true,false,false,true,false>
reg_instr_iterator;
reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
return reg_instr_iterator(getRegUseDefListHead(RegNo));
}
static reg_instr_iterator reg_instr_end() {
return reg_instr_iterator(nullptr);
}
inline iterator_range<reg_instr_iterator>
reg_instructions(unsigned Reg) const {
return iterator_range<reg_instr_iterator>(reg_instr_begin(Reg),
reg_instr_end());
}
/// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
/// of the specified register, stepping by bundle.
typedef defusechain_instr_iterator<true,true,false,false,false,true>
reg_bundle_iterator;
reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
return reg_bundle_iterator(getRegUseDefListHead(RegNo));
}
static reg_bundle_iterator reg_bundle_end() {
return reg_bundle_iterator(nullptr);
}
inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
return iterator_range<reg_bundle_iterator>(reg_bundle_begin(Reg),
reg_bundle_end());
}
/// reg_empty - Return true if there are no instructions using or defining the
/// specified register (it may be live-in).
bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
/// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
/// of the specified register, skipping those marked as Debug.
typedef defusechain_iterator<true,true,true,true,false,false>
reg_nodbg_iterator;
reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static reg_nodbg_iterator reg_nodbg_end() {
return reg_nodbg_iterator(nullptr);
}
inline iterator_range<reg_nodbg_iterator>
reg_nodbg_operands(unsigned Reg) const {
return iterator_range<reg_nodbg_iterator>(reg_nodbg_begin(Reg),
reg_nodbg_end());
}
/// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
/// all defs and uses of the specified register, stepping by MachineInstr,
/// skipping those marked as Debug.
typedef defusechain_instr_iterator<true,true,true,false,true,false>
reg_instr_nodbg_iterator;
reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
return reg_instr_nodbg_iterator(nullptr);
}
inline iterator_range<reg_instr_nodbg_iterator>
reg_nodbg_instructions(unsigned Reg) const {
return iterator_range<reg_instr_nodbg_iterator>(reg_instr_nodbg_begin(Reg),
reg_instr_nodbg_end());
}
/// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
/// all defs and uses of the specified register, stepping by bundle,
/// skipping those marked as Debug.
typedef defusechain_instr_iterator<true,true,true,false,false,true>
reg_bundle_nodbg_iterator;
reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
return reg_bundle_nodbg_iterator(nullptr);
}
inline iterator_range<reg_bundle_nodbg_iterator>
reg_nodbg_bundles(unsigned Reg) const {
return iterator_range<reg_bundle_nodbg_iterator>(reg_bundle_nodbg_begin(Reg),
reg_bundle_nodbg_end());
}
/// reg_nodbg_empty - Return true if the only instructions using or defining
/// Reg are Debug instructions.
bool reg_nodbg_empty(unsigned RegNo) const {
return reg_nodbg_begin(RegNo) == reg_nodbg_end();
}
/// def_iterator/def_begin/def_end - Walk all defs of the specified register.
typedef defusechain_iterator<false,true,false,true,false,false>
def_iterator;
def_iterator def_begin(unsigned RegNo) const {
return def_iterator(getRegUseDefListHead(RegNo));
}
static def_iterator def_end() { return def_iterator(nullptr); }
inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
return iterator_range<def_iterator>(def_begin(Reg), def_end());
}
/// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
/// specified register, stepping by MachineInst.
typedef defusechain_instr_iterator<false,true,false,false,true,false>
def_instr_iterator;
def_instr_iterator def_instr_begin(unsigned RegNo) const {
return def_instr_iterator(getRegUseDefListHead(RegNo));
}
static def_instr_iterator def_instr_end() {
return def_instr_iterator(nullptr);
}
inline iterator_range<def_instr_iterator>
def_instructions(unsigned Reg) const {
return iterator_range<def_instr_iterator>(def_instr_begin(Reg),
def_instr_end());
}
/// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
/// specified register, stepping by bundle.
typedef defusechain_instr_iterator<false,true,false,false,false,true>
def_bundle_iterator;
def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
return def_bundle_iterator(getRegUseDefListHead(RegNo));
}
static def_bundle_iterator def_bundle_end() {
return def_bundle_iterator(nullptr);
}
inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
return iterator_range<def_bundle_iterator>(def_bundle_begin(Reg),
def_bundle_end());
}
/// def_empty - Return true if there are no instructions defining the
/// specified register (it may be live-in).
bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
/// hasOneDef - Return true if there is exactly one instruction defining the
/// specified register.
bool hasOneDef(unsigned RegNo) const {
def_iterator DI = def_begin(RegNo);
if (DI == def_end())
return false;
return ++DI == def_end();
}
/// use_iterator/use_begin/use_end - Walk all uses of the specified register.
typedef defusechain_iterator<true,false,false,true,false,false>
use_iterator;
use_iterator use_begin(unsigned RegNo) const {
return use_iterator(getRegUseDefListHead(RegNo));
}
static use_iterator use_end() { return use_iterator(nullptr); }
inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
return iterator_range<use_iterator>(use_begin(Reg), use_end());
}
/// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
/// specified register, stepping by MachineInstr.
typedef defusechain_instr_iterator<true,false,false,false,true,false>
use_instr_iterator;
use_instr_iterator use_instr_begin(unsigned RegNo) const {
return use_instr_iterator(getRegUseDefListHead(RegNo));
}
static use_instr_iterator use_instr_end() {
return use_instr_iterator(nullptr);
}
inline iterator_range<use_instr_iterator>
use_instructions(unsigned Reg) const {
return iterator_range<use_instr_iterator>(use_instr_begin(Reg),
use_instr_end());
}
/// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
/// specified register, stepping by bundle.
typedef defusechain_instr_iterator<true,false,false,false,false,true>
use_bundle_iterator;
use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
return use_bundle_iterator(getRegUseDefListHead(RegNo));
}
static use_bundle_iterator use_bundle_end() {
return use_bundle_iterator(nullptr);
}
inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
return iterator_range<use_bundle_iterator>(use_bundle_begin(Reg),
use_bundle_end());
}
/// use_empty - Return true if there are no instructions using the specified
/// register.
bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
/// hasOneUse - Return true if there is exactly one instruction using the
/// specified register.
bool hasOneUse(unsigned RegNo) const {
use_iterator UI = use_begin(RegNo);
if (UI == use_end())
return false;
return ++UI == use_end();
}
/// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
/// specified register, skipping those marked as Debug.
typedef defusechain_iterator<true,false,true,true,false,false>
use_nodbg_iterator;
use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
return use_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static use_nodbg_iterator use_nodbg_end() {
return use_nodbg_iterator(nullptr);
}
inline iterator_range<use_nodbg_iterator>
use_nodbg_operands(unsigned Reg) const {
return iterator_range<use_nodbg_iterator>(use_nodbg_begin(Reg),
use_nodbg_end());
}
/// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
/// all uses of the specified register, stepping by MachineInstr, skipping
/// those marked as Debug.
typedef defusechain_instr_iterator<true,false,true,false,true,false>
use_instr_nodbg_iterator;
use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static use_instr_nodbg_iterator use_instr_nodbg_end() {
return use_instr_nodbg_iterator(nullptr);
}
inline iterator_range<use_instr_nodbg_iterator>
use_nodbg_instructions(unsigned Reg) const {
return iterator_range<use_instr_nodbg_iterator>(use_instr_nodbg_begin(Reg),
use_instr_nodbg_end());
}
/// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
/// all uses of the specified register, stepping by bundle, skipping
/// those marked as Debug.
typedef defusechain_instr_iterator<true,false,true,false,false,true>
use_bundle_nodbg_iterator;
use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
}
static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
return use_bundle_nodbg_iterator(nullptr);
}
inline iterator_range<use_bundle_nodbg_iterator>
use_nodbg_bundles(unsigned Reg) const {
return iterator_range<use_bundle_nodbg_iterator>(use_bundle_nodbg_begin(Reg),
use_bundle_nodbg_end());
}
/// use_nodbg_empty - Return true if there are no non-Debug instructions
/// using the specified register.
bool use_nodbg_empty(unsigned RegNo) const {
return use_nodbg_begin(RegNo) == use_nodbg_end();
}
/// hasOneNonDBGUse - Return true if there is exactly one non-Debug
/// instruction using the specified register.
bool hasOneNonDBGUse(unsigned RegNo) const;
/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
///
/// Note that it is usually necessary to first constrain ToReg's register
/// class to match the FromReg constraints using:
///
/// constrainRegClass(ToReg, getRegClass(FromReg))
///
/// That function will return NULL if the virtual registers have incompatible
/// constraints.
void replaceRegWith(unsigned FromReg, unsigned ToReg);
/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found. This assumes that the code is in SSA
/// form, so there should only be one definition.
MachineInstr *getVRegDef(unsigned Reg) const;
/// getUniqueVRegDef - Return the unique machine instr that defines the
/// specified virtual register or null if none is found. If there are
/// multiple definitions or no definition, return null.
MachineInstr *getUniqueVRegDef(unsigned Reg) const;
/// clearKillFlags - Iterate over all the uses of the given register and
/// clear the kill flag from the MachineOperand. This function is used by
/// optimization passes which extend register lifetimes and need only
/// preserve conservative kill flag information.
void clearKillFlags(unsigned Reg) const;
#ifndef NDEBUG
void dumpUses(unsigned RegNo) const;
#endif
/// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
/// throughout the function. It is safe to move instructions that read such
/// a physreg.
bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
/// Get an iterator over the pressure sets affected by the given physical or
/// virtual register. If RegUnit is physical, it must be a register unit (from
/// MCRegUnitIterator).
PSetIterator getPressureSets(unsigned RegUnit) const;
//===--------------------------------------------------------------------===//
// Virtual Register Info
//===--------------------------------------------------------------------===//
/// getRegClass - Return the register class of the specified virtual register.
///
const TargetRegisterClass *getRegClass(unsigned Reg) const {
return VRegInfo[Reg].first;
}
/// setRegClass - Set the register class of the specified virtual register.
///
void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
/// constrainRegClass - Constrain the register class of the specified virtual
/// register to be a common subclass of RC and the current register class,
/// but only if the new class has at least MinNumRegs registers. Return the
/// new register class, or NULL if no such class exists.
/// This should only be used when the constraint is known to be trivial, like
/// GR32 -> GR32_NOSP. Beware of increasing register pressure.
///
const TargetRegisterClass *constrainRegClass(unsigned Reg,
const TargetRegisterClass *RC,
unsigned MinNumRegs = 0);
/// recomputeRegClass - Try to find a legal super-class of Reg's register
/// class that still satisfies the constraints from the instructions using
/// Reg. Returns true if Reg was upgraded.
///
/// This method can be used after constraints have been removed from a
/// virtual register, for example after removing instructions or splitting
/// the live range.
///
bool recomputeRegClass(unsigned Reg, const TargetMachine&);
/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
/// getNumVirtRegs - Return the number of virtual registers created.
///
unsigned getNumVirtRegs() const { return VRegInfo.size(); }
/// clearVirtRegs - Remove all virtual registers (after physreg assignment).
void clearVirtRegs();
/// setRegAllocationHint - Specify a register allocation hint for the
/// specified virtual register.
void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
RegAllocHints[Reg].first = Type;
RegAllocHints[Reg].second = PrefReg;
}
/// getRegAllocationHint - Return the register allocation hint for the
/// specified virtual register.
std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg) const {
return RegAllocHints[Reg];
}
/// getSimpleHint - Return the preferred register allocation hint, or 0 if a
/// standard simple hint (Type == 0) is not set.
unsigned getSimpleHint(unsigned Reg) const {
std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
return Hint.first ? 0 : Hint.second;
}
/// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
/// specified register as undefined which causes the DBG_VALUE to be
/// deleted during LiveDebugVariables analysis.
void markUsesInDebugValueAsUndef(unsigned Reg) const;
//===--------------------------------------------------------------------===//
// Physical Register Use Info
//===--------------------------------------------------------------------===//
/// isPhysRegUsed - Return true if the specified register is used in this
/// function. Also check for clobbered aliases and registers clobbered by
/// function calls with register mask operands.
///
/// This only works after register allocation. It is primarily used by
/// PrologEpilogInserter to determine which callee-saved registers need
/// spilling.
bool isPhysRegUsed(unsigned Reg) const {
if (UsedPhysRegMask.test(Reg))
return true;
for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
Units.isValid(); ++Units)
if (UsedRegUnits.test(*Units))
return true;
return false;
}
/// Mark the specified register unit as used in this function.
/// This should only be called during and after register allocation.
void setRegUnitUsed(unsigned RegUnit) {
UsedRegUnits.set(RegUnit);
}
/// setPhysRegUsed - Mark the specified register used in this function.
/// This should only be called during and after register allocation.
void setPhysRegUsed(unsigned Reg) {
for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
Units.isValid(); ++Units)
UsedRegUnits.set(*Units);
}
/// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
/// This corresponds to the bit mask attached to register mask operands.
void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
UsedPhysRegMask.setBitsNotInMask(RegMask);
}
/// setPhysRegUnused - Mark the specified register unused in this function.
/// This should only be called during and after register allocation.
void setPhysRegUnused(unsigned Reg) {
UsedPhysRegMask.reset(Reg);
for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
Units.isValid(); ++Units)
UsedRegUnits.reset(*Units);
}
//===--------------------------------------------------------------------===//
// Reserved Register Info
//===--------------------------------------------------------------------===//
//
// The set of reserved registers must be invariant during register
// allocation. For example, the target cannot suddenly decide it needs a
// frame pointer when the register allocator has already used the frame
// pointer register for something else.
//
// These methods can be used by target hooks like hasFP() to avoid changing
// the reserved register set during register allocation.
/// freezeReservedRegs - Called by the register allocator to freeze the set
/// of reserved registers before allocation begins.
void freezeReservedRegs(const MachineFunction&);
/// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
/// to ensure the set of reserved registers stays constant.
bool reservedRegsFrozen() const {
return !ReservedRegs.empty();
}
/// canReserveReg - Returns true if PhysReg can be used as a reserved
/// register. Any register can be reserved before freezeReservedRegs() is
/// called.
bool canReserveReg(unsigned PhysReg) const {
return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
}
/// getReservedRegs - Returns a reference to the frozen set of reserved
/// registers. This method should always be preferred to calling
/// TRI::getReservedRegs() when possible.
const BitVector &getReservedRegs() const {
assert(reservedRegsFrozen() &&
"Reserved registers haven't been frozen yet. "
"Use TRI::getReservedRegs().");
return ReservedRegs;
}
/// isReserved - Returns true when PhysReg is a reserved register.
///
/// Reserved registers may belong to an allocatable register class, but the
/// target has explicitly requested that they are not used.
///
bool isReserved(unsigned PhysReg) const {
return getReservedRegs().test(PhysReg);
}
/// isAllocatable - Returns true when PhysReg belongs to an allocatable
/// register class and it hasn't been reserved.
///
/// Allocatable registers may show up in the allocation order of some virtual
/// register, so a register allocator needs to track its liveness and
/// availability.
bool isAllocatable(unsigned PhysReg) const {
return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
!isReserved(PhysReg);
}
//===--------------------------------------------------------------------===//
// LiveIn Management
//===--------------------------------------------------------------------===//
/// addLiveIn - Add the specified register as a live-in. Note that it
/// is an error to add the same register to the same set more than once.
void addLiveIn(unsigned Reg, unsigned vreg = 0) {
LiveIns.push_back(std::make_pair(Reg, vreg));
}
// Iteration support for the live-ins set. It's kept in sorted order
// by register number.
typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
livein_iterator;
livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_iterator livein_end() const { return LiveIns.end(); }
bool livein_empty() const { return LiveIns.empty(); }
bool isLiveIn(unsigned Reg) const;
/// getLiveInPhysReg - If VReg is a live-in virtual register, return the
/// corresponding live-in physical register.
unsigned getLiveInPhysReg(unsigned VReg) const;
/// getLiveInVirtReg - If PReg is a live-in physical register, return the
/// corresponding live-in physical register.
unsigned getLiveInVirtReg(unsigned PReg) const;
/// EmitLiveInCopies - Emit copies to initialize livein virtual registers
/// into the given entry block.
void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
const TargetRegisterInfo &TRI,
const TargetInstrInfo &TII);
/// defusechain_iterator - This class provides iterator support for machine
/// operands in the function that use or define a specific register. If
/// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
/// returns defs. If neither are true then you are silly and it always
/// returns end(). If SkipDebug is true it skips uses marked Debug
/// when incrementing.
template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
bool ByOperand, bool ByInstr, bool ByBundle>
class defusechain_iterator
: public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
MachineOperand *Op;
explicit defusechain_iterator(MachineOperand *op) : Op(op) {
// If the first node isn't one we're interested in, advance to one that
// we are interested in.
if (op) {
if ((!ReturnUses && op->isUse()) ||
(!ReturnDefs && op->isDef()) ||
(SkipDebug && op->isDebug()))
advance();
}
}
friend class MachineRegisterInfo;
void advance() {
assert(Op && "Cannot increment end iterator!");
Op = getNextOperandForReg(Op);
// All defs come before the uses, so stop def_iterator early.
if (!ReturnUses) {
if (Op) {
if (Op->isUse())
Op = nullptr;
else
assert(!Op->isDebug() && "Can't have debug defs");
}
} else {
// If this is an operand we don't care about, skip it.
while (Op && ((!ReturnDefs && Op->isDef()) ||
(SkipDebug && Op->isDebug())))
Op = getNextOperandForReg(Op);
}
}
public:
typedef std::iterator<std::forward_iterator_tag,
MachineInstr, ptrdiff_t>::reference reference;
typedef std::iterator<std::forward_iterator_tag,
MachineInstr, ptrdiff_t>::pointer pointer;
defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator() : Op(nullptr) {}
bool operator==(const defusechain_iterator &x) const {
return Op == x.Op;
}
bool operator!=(const defusechain_iterator &x) const {
return !operator==(x);
}
/// atEnd - return true if this iterator is equal to reg_end() on the value.
bool atEnd() const { return Op == nullptr; }
// Iterator traversal: forward iteration only
defusechain_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
if (ByOperand)
advance();
else if (ByInstr) {
MachineInstr *P = Op->getParent();
do {
advance();
} while (Op && Op->getParent() == P);
} else if (ByBundle) {
MachineInstr *P = getBundleStart(Op->getParent());
do {
advance();
} while (Op && getBundleStart(Op->getParent()) == P);
}
return *this;
}
defusechain_iterator operator++(int) { // Postincrement
defusechain_iterator tmp = *this; ++*this; return tmp;
}
/// getOperandNo - Return the operand # of this MachineOperand in its
/// MachineInstr.
unsigned getOperandNo() const {
assert(Op && "Cannot dereference end iterator!");
return Op - &Op->getParent()->getOperand(0);
}
// Retrieve a reference to the current operand.
MachineOperand &operator*() const {
assert(Op && "Cannot dereference end iterator!");
return *Op;
}
MachineOperand *operator->() const {
assert(Op && "Cannot dereference end iterator!");
return Op;
}
};
/// defusechain_iterator - This class provides iterator support for machine
/// operands in the function that use or define a specific register. If
/// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
/// returns defs. If neither are true then you are silly and it always
/// returns end(). If SkipDebug is true it skips uses marked Debug
/// when incrementing.
template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
bool ByOperand, bool ByInstr, bool ByBundle>
class defusechain_instr_iterator
: public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
MachineOperand *Op;
explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
// If the first node isn't one we're interested in, advance to one that
// we are interested in.
if (op) {
if ((!ReturnUses && op->isUse()) ||
(!ReturnDefs && op->isDef()) ||
(SkipDebug && op->isDebug()))
advance();
}
}
friend class MachineRegisterInfo;
void advance() {
assert(Op && "Cannot increment end iterator!");
Op = getNextOperandForReg(Op);
// All defs come before the uses, so stop def_iterator early.
if (!ReturnUses) {
if (Op) {
if (Op->isUse())
Op = nullptr;
else
assert(!Op->isDebug() && "Can't have debug defs");
}
} else {
// If this is an operand we don't care about, skip it.
while (Op && ((!ReturnDefs && Op->isDef()) ||
(SkipDebug && Op->isDebug())))
Op = getNextOperandForReg(Op);
}
}
public:
typedef std::iterator<std::forward_iterator_tag,
MachineInstr, ptrdiff_t>::reference reference;
typedef std::iterator<std::forward_iterator_tag,
MachineInstr, ptrdiff_t>::pointer pointer;
defusechain_instr_iterator(const defusechain_instr_iterator &I) : Op(I.Op){}
defusechain_instr_iterator() : Op(nullptr) {}
bool operator==(const defusechain_instr_iterator &x) const {
return Op == x.Op;
}
bool operator!=(const defusechain_instr_iterator &x) const {
return !operator==(x);
}
/// atEnd - return true if this iterator is equal to reg_end() on the value.
bool atEnd() const { return Op == nullptr; }
// Iterator traversal: forward iteration only
defusechain_instr_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
if (ByOperand)
advance();
else if (ByInstr) {
MachineInstr *P = Op->getParent();
do {
advance();
} while (Op && Op->getParent() == P);
} else if (ByBundle) {
MachineInstr *P = getBundleStart(Op->getParent());
do {
advance();
} while (Op && getBundleStart(Op->getParent()) == P);
}
return *this;
}
defusechain_instr_iterator operator++(int) { // Postincrement
defusechain_instr_iterator tmp = *this; ++*this; return tmp;
}
// Retrieve a reference to the current operand.
MachineInstr &operator*() const {
assert(Op && "Cannot dereference end iterator!");
if (ByBundle) return *(getBundleStart(Op->getParent()));
return *Op->getParent();
}
MachineInstr *operator->() const {
assert(Op && "Cannot dereference end iterator!");
if (ByBundle) return getBundleStart(Op->getParent());
return Op->getParent();
}
};
};
/// Iterate over the pressure sets affected by the given physical or virtual
/// register. If Reg is physical, it must be a register unit (from
/// MCRegUnitIterator).
class PSetIterator {
const int *PSet;
unsigned Weight;
public:
PSetIterator(): PSet(nullptr), Weight(0) {}
PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
PSet = TRI->getRegClassPressureSets(RC);
Weight = TRI->getRegClassWeight(RC).RegWeight;
}
else {
PSet = TRI->getRegUnitPressureSets(RegUnit);
Weight = TRI->getRegUnitWeight(RegUnit);
}
if (*PSet == -1)
PSet = nullptr;
}
bool isValid() const { return PSet; }
unsigned getWeight() const { return Weight; }
unsigned operator*() const { return *PSet; }
void operator++() {
assert(isValid() && "Invalid PSetIterator.");
++PSet;
if (*PSet == -1)
PSet = nullptr;
}
};
inline PSetIterator MachineRegisterInfo::
getPressureSets(unsigned RegUnit) const {
return PSetIterator(RegUnit, this);
}
} // End llvm namespace
#endif