blob: 662359491f89983286984d913fbe5218cb61fc35 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SURROUND_VIEW_SERVICE_IMPL_MATH_HELP_H_
#define SURROUND_VIEW_SERVICE_IMPL_MATH_HELP_H_
#include "Matrix4x4.h"
#include "core_lib.h"
#include <android-base/logging.h>
namespace android {
namespace hardware {
namespace automotive {
namespace sv {
namespace V1_0 {
namespace implementation {
using android_auto::surround_view::Mat4x4;
const int gMat4Size = 4 * 4 * sizeof(float);
const Mat4x4 gMat4Identity = {1, 0, 0, /*tx=*/0.0, 0, 1, 0, /*ty=*/0,
0, 0, 1, /*tz=*/0.0, 0, 0, 0, 1};
inline float degToRad(float angleInDegrees) {
return 1.0f * angleInDegrees / 180 * M_PI;
}
typedef std::array<float, 3> VectorT;
typedef std::array<float, 4> HomVectorT;
typedef Matrix4x4<float> HomMatrixT;
// Create a Translation matrix.
inline HomMatrixT translationMatrix(const VectorT& v) {
HomMatrixT m = HomMatrixT::identity();
m.setRow(3, HomVectorT{v[0], v[1], v[2], 1});
return m;
}
// Create a Rotation matrix.
inline HomMatrixT rotationMatrix(const VectorT& v, float angle, int orientation) {
const float c = cos(angle);
const float s = orientation * sin(angle);
const float t = 1 - c;
const float tx = t * v[0];
const float ty = t * v[1];
const float tz = t * v[2];
return HomMatrixT(tx * v[0] + c, tx * v[1] + s * v[2], tx * v[2] - s * v[1], 0,
tx * v[1] - s * v[2], ty * v[1] + c, ty * v[2] + s * v[0], 0,
tx * v[2] + s * v[1], ty * v[2] - s * v[0], tz * v[2] + c, 0, 0, 0, 0, 1);
}
inline Mat4x4 toMat4x4(const Matrix4x4F& matrix4x4F) {
Mat4x4 mat4x4;
memcpy(&mat4x4[0], matrix4x4F.transpose().data(), gMat4Size);
return mat4x4;
}
inline Matrix4x4F toMatrix4x4F(const Mat4x4& mat4x4) {
Matrix4x4F matrix4x4F;
memcpy(matrix4x4F.data(), &mat4x4[0], gMat4Size);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (matrix4x4F(i, j) != mat4x4[i * 4 + j]) {
LOG(ERROR) << "Matrix error";
}
}
}
return matrix4x4F.transpose();
}
// Create a Rotation Matrix, around a unit vector by a ccw angle.
inline Mat4x4 rotationMatrix(float angleInDegrees, const VectorT& axis) {
return toMat4x4(rotationMatrix(axis, degToRad(angleInDegrees), 1));
}
inline Mat4x4 appendRotation(float angleInDegrees, const VectorT& axis, const Mat4x4& mat4) {
return toMat4x4(toMatrix4x4F(mat4) * rotationMatrix(axis, degToRad(angleInDegrees), 1));
}
// Append mat_l * mat_r;
inline Mat4x4 appendMat(const Mat4x4& matL, const Mat4x4& matR) {
return toMat4x4(toMatrix4x4F(matL) * toMatrix4x4F(matR));
}
// Rotate about a point about a unit vector.
inline Mat4x4 rotationAboutPoint(float angleInDegrees, const VectorT& point, const VectorT& axis) {
VectorT pointInv = point;
pointInv[0] *= -1;
pointInv[1] *= -1;
pointInv[2] *= -1;
return toMat4x4(translationMatrix(pointInv) *
rotationMatrix(axis, degToRad(angleInDegrees), 1) * translationMatrix(point));
}
inline Mat4x4 translationMatrixToMat4x4(const VectorT& translation) {
return toMat4x4(translationMatrix(translation));
}
inline Mat4x4 appendTranslation(const VectorT& translation, const Mat4x4& mat4) {
return toMat4x4(toMatrix4x4F(mat4) * translationMatrix(translation));
}
inline Mat4x4 appendMatrix(const Mat4x4& deltaMatrix, const Mat4x4& currentMatrix) {
return toMat4x4(toMatrix4x4F(deltaMatrix) * toMatrix4x4F(currentMatrix));
}
} // namespace implementation
} // namespace V1_0
} // namespace sv
} // namespace automotive
} // namespace hardware
} // namespace android
#endif // SURROUND_VIEW_SERVICE_IMPL_MATH_HELP_H_