| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "bufferCopy.h" |
| |
| |
| namespace android { |
| namespace hardware { |
| namespace automotive { |
| namespace evs { |
| namespace V1_1 { |
| namespace implementation { |
| |
| |
| // Round up to the nearest multiple of the given alignment value |
| template<unsigned alignment> |
| int align(int value) { |
| static_assert((alignment && !(alignment & (alignment - 1))), |
| "alignment must be a power of 2"); |
| |
| unsigned mask = alignment - 1; |
| return (value + mask) & ~mask; |
| } |
| |
| |
| // Limit the given value to the provided range. :) |
| static inline float clamp(float v, float min, float max) { |
| if (v < min) return min; |
| if (v > max) return max; |
| return v; |
| } |
| |
| |
| static uint32_t yuvToRgbx(const unsigned char Y, const unsigned char Uin, const unsigned char Vin) { |
| // Don't use this if you want to see the best performance. :) |
| // Better to do this in a pixel shader if we really have to, but on actual |
| // embedded hardware we expect to be able to texture directly from the YUV data |
| float U = Uin - 128.0f; |
| float V = Vin - 128.0f; |
| |
| float Rf = Y + 1.140f*V; |
| float Gf = Y - 0.395f*U - 0.581f*V; |
| float Bf = Y + 2.032f*U; |
| unsigned char R = (unsigned char)clamp(Rf, 0.0f, 255.0f); |
| unsigned char G = (unsigned char)clamp(Gf, 0.0f, 255.0f); |
| unsigned char B = (unsigned char)clamp(Bf, 0.0f, 255.0f); |
| |
| return ((R & 0xFF)) | |
| ((G & 0xFF) << 8) | |
| ((B & 0xFF) << 16) | |
| 0xFF000000; // Fill the alpha channel with ones |
| } |
| |
| |
| void fillNV21FromNV21(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned) { |
| // The NV21 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 interleave U/V array. |
| // It assumes an even width and height for the overall image, and a horizontal stride that is |
| // an even multiple of 16 bytes for both the Y and UV arrays. |
| |
| // Target and source image layout properties (They match since the formats match!) |
| const AHardwareBuffer_Desc* pDesc = |
| reinterpret_cast<const AHardwareBuffer_Desc*>(&tgtBuff.buffer.description); |
| const unsigned strideLum = align<16>(pDesc->width); |
| const unsigned sizeY = strideLum * pDesc->height; |
| const unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels |
| const unsigned sizeColor = strideColor * pDesc->height/2; |
| const unsigned totalBytes = sizeY + sizeColor; |
| |
| // Simply copy the data byte for byte |
| memcpy(tgt, imgData, totalBytes); |
| } |
| |
| |
| void fillNV21FromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { |
| // The YUYV format provides an interleaved array of pixel values with U and V subsampled in |
| // the horizontal direction only. Also known as interleaved 422 format. A 4 byte |
| // "macro pixel" provides the Y value for two adjacent pixels and the U and V values shared |
| // between those two pixels. The width of the image must be an even number. |
| // We need to down sample the UV values and collect them together after all the packed Y values |
| // to construct the NV21 format. |
| // NV21 requires even width and height, so we assume that is the case for the incomming image |
| // as well. |
| uint32_t *srcDataYUYV = (uint32_t*)imgData; |
| struct YUYVpixel { |
| uint8_t Y1; |
| uint8_t U; |
| uint8_t Y2; |
| uint8_t V; |
| }; |
| |
| // Target image layout properties |
| const AHardwareBuffer_Desc* pDesc = |
| reinterpret_cast<const AHardwareBuffer_Desc*>(&tgtBuff.buffer.description); |
| const unsigned strideLum = align<16>(pDesc->width); |
| const unsigned sizeY = strideLum * pDesc->height; |
| const unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels |
| |
| // Source image layout properties |
| const unsigned srcRowPixels = imgStride/4; // imgStride is in units of bytes |
| const unsigned srcRowDoubleStep = srcRowPixels * 2; |
| uint32_t* topSrcRow = srcDataYUYV; |
| uint32_t* botSrcRow = srcDataYUYV + srcRowPixels; |
| |
| // We're going to work on one 2x2 cell in the output image at at time |
| for (unsigned cellRow = 0; cellRow < pDesc->height/2; cellRow++) { |
| |
| // Set up the output pointers |
| uint8_t* yTopRow = tgt + (cellRow*2) * strideLum; |
| uint8_t* yBotRow = yTopRow + strideLum; |
| uint8_t* uvRow = (tgt + sizeY) + cellRow * strideColor; |
| |
| for (unsigned cellCol = 0; cellCol < pDesc->width/2; cellCol++) { |
| // Collect the values from the YUYV interleaved data |
| const YUYVpixel* pTopMacroPixel = (YUYVpixel*)&topSrcRow[cellCol]; |
| const YUYVpixel* pBotMacroPixel = (YUYVpixel*)&botSrcRow[cellCol]; |
| |
| // Down sample the U/V values by linear average between rows |
| const uint8_t uValue = (pTopMacroPixel->U + pBotMacroPixel->U) >> 1; |
| const uint8_t vValue = (pTopMacroPixel->V + pBotMacroPixel->V) >> 1; |
| |
| // Store the values into the NV21 layout |
| yTopRow[cellCol*2] = pTopMacroPixel->Y1; |
| yTopRow[cellCol*2+1] = pTopMacroPixel->Y2; |
| yBotRow[cellCol*2] = pBotMacroPixel->Y1; |
| yBotRow[cellCol*2+1] = pBotMacroPixel->Y2; |
| uvRow[cellCol*2] = uValue; |
| uvRow[cellCol*2+1] = vValue; |
| } |
| |
| // Skipping two rows to get to the next set of two source rows |
| topSrcRow += srcRowDoubleStep; |
| botSrcRow += srcRowDoubleStep; |
| } |
| } |
| |
| |
| void fillRGBAFromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { |
| const AHardwareBuffer_Desc* pDesc = |
| reinterpret_cast<const AHardwareBuffer_Desc*>(&tgtBuff.buffer.description); |
| unsigned width = pDesc->width; |
| unsigned height = pDesc->height; |
| uint32_t* src = (uint32_t*)imgData; |
| uint32_t* dst = (uint32_t*)tgt; |
| unsigned srcStridePixels = imgStride / 2; |
| unsigned dstStridePixels = pDesc->stride; |
| |
| const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word |
| const int dstRowPadding32 = dstStridePixels - width; // 4 bytes per pixel, 4 bytes per word |
| |
| for (unsigned r=0; r<height; r++) { |
| for (unsigned c=0; c<width/2; c++) { |
| // Note: we're walking two pixels at a time here (even/odd) |
| uint32_t srcPixel = *src++; |
| |
| uint8_t Y1 = (srcPixel) & 0xFF; |
| uint8_t U = (srcPixel >> 8) & 0xFF; |
| uint8_t Y2 = (srcPixel >> 16) & 0xFF; |
| uint8_t V = (srcPixel >> 24) & 0xFF; |
| |
| // On the RGB output, we're writing one pixel at a time |
| *(dst+0) = yuvToRgbx(Y1, U, V); |
| *(dst+1) = yuvToRgbx(Y2, U, V); |
| dst += 2; |
| } |
| |
| // Skip over any extra data or end of row alignment padding |
| src += srcRowPadding32; |
| dst += dstRowPadding32; |
| } |
| } |
| |
| |
| void fillYUYVFromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { |
| const AHardwareBuffer_Desc* pDesc = |
| reinterpret_cast<const AHardwareBuffer_Desc*>(&tgtBuff.buffer.description); |
| unsigned width = pDesc->width; |
| unsigned height = pDesc->height; |
| uint8_t* src = (uint8_t*)imgData; |
| uint8_t* dst = (uint8_t*)tgt; |
| unsigned srcStrideBytes = imgStride; |
| unsigned dstStrideBytes = pDesc->stride * 2; |
| |
| for (unsigned r=0; r<height; r++) { |
| // Copy a pixel row at a time (2 bytes per pixel, averaged over a YUYV macro pixel) |
| memcpy(dst+r*dstStrideBytes, src+r*srcStrideBytes, width*2); |
| } |
| } |
| |
| |
| void fillYUYVFromUYVY(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) { |
| const AHardwareBuffer_Desc* pDesc = |
| reinterpret_cast<const AHardwareBuffer_Desc*>(&tgtBuff.buffer.description); |
| unsigned width = pDesc->width; |
| unsigned height = pDesc->height; |
| uint32_t* src = (uint32_t*)imgData; |
| uint32_t* dst = (uint32_t*)tgt; |
| unsigned srcStridePixels = imgStride / 2; |
| unsigned dstStridePixels = pDesc->stride; |
| |
| const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word |
| const int dstRowPadding32 = dstStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word |
| |
| for (unsigned r=0; r<height; r++) { |
| for (unsigned c=0; c<width/2; c++) { |
| // Note: we're walking two pixels at a time here (even/odd) |
| uint32_t srcPixel = *src++; |
| |
| uint8_t Y1 = (srcPixel) & 0xFF; |
| uint8_t U = (srcPixel >> 8) & 0xFF; |
| uint8_t Y2 = (srcPixel >> 16) & 0xFF; |
| uint8_t V = (srcPixel >> 24) & 0xFF; |
| |
| // Now we write back the pair of pixels with the components swizzled |
| *dst++ = (U) | |
| (Y1 << 8) | |
| (V << 16) | |
| (Y2 << 24); |
| } |
| |
| // Skip over any extra data or end of row alignment padding |
| src += srcRowPadding32; |
| dst += dstRowPadding32; |
| } |
| } |
| |
| |
| } // namespace implementation |
| } // namespace V1_1 |
| } // namespace evs |
| } // namespace automotive |
| } // namespace hardware |
| } // namespace android |