blob: 6c8c3ef9314d0e372abe4a1ad83e1b27958a5661 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bufferCopy.h"
namespace android {
namespace hardware {
namespace automotive {
namespace evs {
namespace V1_0 {
namespace implementation {
// Round up to the nearest multiple of the given alignment value
template<unsigned alignment>
int align(int value) {
static_assert((alignment && !(alignment & (alignment - 1))),
"alignment must be a power of 2");
unsigned mask = alignment - 1;
return (value + mask) & ~mask;
}
// Limit the given value to the provided range. :)
static inline float clamp(float v, float min, float max) {
if (v < min) return min;
if (v > max) return max;
return v;
}
static uint32_t yuvToRgbx(const unsigned char Y, const unsigned char Uin, const unsigned char Vin) {
// Don't use this if you want to see the best performance. :)
// Better to do this in a pixel shader if we really have to, but on actual
// embedded hardware we expect to be able to texture directly from the YUV data
float U = Uin - 128.0f;
float V = Vin - 128.0f;
float Rf = Y + 1.140f*V;
float Gf = Y - 0.395f*U - 0.581f*V;
float Bf = Y + 2.032f*U;
unsigned char R = (unsigned char)clamp(Rf, 0.0f, 255.0f);
unsigned char G = (unsigned char)clamp(Gf, 0.0f, 255.0f);
unsigned char B = (unsigned char)clamp(Bf, 0.0f, 255.0f);
return ((R & 0xFF)) |
((G & 0xFF) << 8) |
((B & 0xFF) << 16) |
0xFF000000; // Fill the alpha channel with ones
}
void fillNV21FromNV21(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned) {
// The NV21 format provides a Y array of 8bit values, followed by a 1/2 x 1/2 interleave U/V array.
// It assumes an even width and height for the overall image, and a horizontal stride that is
// an even multiple of 16 bytes for both the Y and UV arrays.
// Target and source image layout properties (They match since the formats match!)
const unsigned strideLum = align<16>(tgtBuff.width);
const unsigned sizeY = strideLum * tgtBuff.height;
const unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels
const unsigned sizeColor = strideColor * tgtBuff.height/2;
const unsigned totalBytes = sizeY + sizeColor;
// Simply copy the data byte for byte
memcpy(tgt, imgData, totalBytes);
}
void fillNV21FromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) {
// The YUYV format provides an interleaved array of pixel values with U and V subsampled in
// the horizontal direction only. Also known as interleaved 422 format. A 4 byte
// "macro pixel" provides the Y value for two adjacent pixels and the U and V values shared
// between those two pixels. The width of the image must be an even number.
// We need to down sample the UV values and collect them together after all the packed Y values
// to construct the NV21 format.
// NV21 requires even width and height, so we assume that is the case for the incomming image
// as well.
uint32_t *srcDataYUYV = (uint32_t*)imgData;
struct YUYVpixel {
uint8_t Y1;
uint8_t U;
uint8_t Y2;
uint8_t V;
};
// Target image layout properties
const unsigned strideLum = align<16>(tgtBuff.width);
const unsigned sizeY = strideLum * tgtBuff.height;
const unsigned strideColor = strideLum; // 1/2 the samples, but two interleaved channels
// Source image layout properties
const unsigned srcRowPixels = imgStride/4; // imgStride is in units of bytes
const unsigned srcRowDoubleStep = srcRowPixels * 2;
uint32_t* topSrcRow = srcDataYUYV;
uint32_t* botSrcRow = srcDataYUYV + srcRowPixels;
// We're going to work on one 2x2 cell in the output image at at time
for (unsigned cellRow = 0; cellRow < tgtBuff.height/2; cellRow++) {
// Set up the output pointers
uint8_t* yTopRow = tgt + (cellRow*2) * strideLum;
uint8_t* yBotRow = yTopRow + strideLum;
uint8_t* uvRow = (tgt + sizeY) + cellRow * strideColor;
for (unsigned cellCol = 0; cellCol < tgtBuff.width/2; cellCol++) {
// Collect the values from the YUYV interleaved data
const YUYVpixel* pTopMacroPixel = (YUYVpixel*)&topSrcRow[cellCol];
const YUYVpixel* pBotMacroPixel = (YUYVpixel*)&botSrcRow[cellCol];
// Down sample the U/V values by linear average between rows
const uint8_t uValue = (pTopMacroPixel->U + pBotMacroPixel->U) >> 1;
const uint8_t vValue = (pTopMacroPixel->V + pBotMacroPixel->V) >> 1;
// Store the values into the NV21 layout
yTopRow[cellCol*2] = pTopMacroPixel->Y1;
yTopRow[cellCol*2+1] = pTopMacroPixel->Y2;
yBotRow[cellCol*2] = pBotMacroPixel->Y1;
yBotRow[cellCol*2+1] = pBotMacroPixel->Y2;
uvRow[cellCol*2] = uValue;
uvRow[cellCol*2+1] = vValue;
}
// Skipping two rows to get to the next set of two source rows
topSrcRow += srcRowDoubleStep;
botSrcRow += srcRowDoubleStep;
}
}
void fillRGBAFromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) {
unsigned width = tgtBuff.width;
unsigned height = tgtBuff.height;
uint32_t* src = (uint32_t*)imgData;
uint32_t* dst = (uint32_t*)tgt;
unsigned srcStridePixels = imgStride / 2;
unsigned dstStridePixels = tgtBuff.stride;
const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word
const int dstRowPadding32 = dstStridePixels - width; // 4 bytes per pixel, 4 bytes per word
for (unsigned r=0; r<height; r++) {
for (unsigned c=0; c<width/2; c++) {
// Note: we're walking two pixels at a time here (even/odd)
uint32_t srcPixel = *src++;
uint8_t Y1 = (srcPixel) & 0xFF;
uint8_t U = (srcPixel >> 8) & 0xFF;
uint8_t Y2 = (srcPixel >> 16) & 0xFF;
uint8_t V = (srcPixel >> 24) & 0xFF;
// On the RGB output, we're writing one pixel at a time
*(dst+0) = yuvToRgbx(Y1, U, V);
*(dst+1) = yuvToRgbx(Y2, U, V);
dst += 2;
}
// Skip over any extra data or end of row alignment padding
src += srcRowPadding32;
dst += dstRowPadding32;
}
}
void fillYUYVFromYUYV(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) {
unsigned width = tgtBuff.width;
unsigned height = tgtBuff.height;
uint8_t* src = (uint8_t*)imgData;
uint8_t* dst = (uint8_t*)tgt;
unsigned srcStrideBytes = imgStride;
unsigned dstStrideBytes = tgtBuff.stride * 2;
for (unsigned r=0; r<height; r++) {
// Copy a pixel row at a time (2 bytes per pixel, averaged over a YUYV macro pixel)
memcpy(dst+r*dstStrideBytes, src+r*srcStrideBytes, width*2);
}
}
void fillYUYVFromUYVY(const BufferDesc& tgtBuff, uint8_t* tgt, void* imgData, unsigned imgStride) {
unsigned width = tgtBuff.width;
unsigned height = tgtBuff.height;
uint32_t* src = (uint32_t*)imgData;
uint32_t* dst = (uint32_t*)tgt;
unsigned srcStridePixels = imgStride / 2;
unsigned dstStridePixels = tgtBuff.stride;
const int srcRowPadding32 = srcStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word
const int dstRowPadding32 = dstStridePixels/2 - width/2; // 2 bytes per pixel, 4 bytes per word
for (unsigned r=0; r<height; r++) {
for (unsigned c=0; c<width/2; c++) {
// Note: we're walking two pixels at a time here (even/odd)
uint32_t srcPixel = *src++;
uint8_t Y1 = (srcPixel) & 0xFF;
uint8_t U = (srcPixel >> 8) & 0xFF;
uint8_t Y2 = (srcPixel >> 16) & 0xFF;
uint8_t V = (srcPixel >> 24) & 0xFF;
// Now we write back the pair of pixels with the components swizzled
*dst++ = (U) |
(Y1 << 8) |
(V << 16) |
(Y2 << 24);
}
// Skip over any extra data or end of row alignment padding
src += srcRowPadding32;
dst += dstRowPadding32;
}
}
} // namespace implementation
} // namespace V1_0
} // namespace evs
} // namespace automotive
} // namespace hardware
} // namespace android