blob: c499e3edd1f667ee1c6820e054c493873af3d525 [file] [log] [blame]
// Generated from split_quant8_1.mod.py
// DO NOT EDIT
// clang-format off
#include "TestGenerated.h"
namespace generated_tests::split_quant8_1 {
void CreateModel(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_QUANT8_ASYMM, {0}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_all_inputs_as_internal(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 0);
OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
auto input0_tmp = model->addOperand(&type0);
auto dummy = model->addOperand(&type4);
auto param = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static uint8_t dummy_init[] = {0};
model->setOperandValue(dummy, dummy_init, sizeof(uint8_t) * 1);
static int32_t param_init[] = {0};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy, param}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_all_inputs_as_internal(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_all_inputs_as_internal_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_QUANT8_ASYMM, {0}, 1.0f, 0);
OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
auto input0_tmp = model->addOperand(&type0);
auto dummy1 = model->addOperand(&type4);
auto param1 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static uint8_t dummy1_init[] = {0};
model->setOperandValue(dummy1, dummy1_init, sizeof(uint8_t) * 1);
static int32_t param1_init[] = {0};
model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy1, param1}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_all_inputs_as_internal_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_relaxed(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_relaxed_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_QUANT8_ASYMM, {0}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_relaxed_all_inputs_as_internal(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 0);
OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
auto input0_tmp = model->addOperand(&type0);
auto dummy2 = model->addOperand(&type4);
auto param2 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static uint8_t dummy2_init[] = {0};
model->setOperandValue(dummy2, dummy2_init, sizeof(uint8_t) * 1);
static int32_t param2_init[] = {0};
model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy2, param2}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_all_inputs_as_internal(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1
namespace generated_tests::split_quant8_1 {
void CreateModel_relaxed_all_inputs_as_internal_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_QUANT8_ASYMM, {6}, 1.0f, 0);
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_QUANT8_ASYMM, {0}, 1.0f, 0);
OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1}, 1.0f, 0);
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
auto input0_tmp = model->addOperand(&type0);
auto dummy3 = model->addOperand(&type4);
auto param3 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static uint8_t dummy3_init[] = {0};
model->setOperandValue(dummy3, dummy3_init, sizeof(uint8_t) * 1);
static int32_t param3_init[] = {0};
model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy3, param3}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_all_inputs_as_internal_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_quant8_1