blob: 93c92bf6375ec0648a26bedb9079f93c17c12f7e [file] [log] [blame]
// Generated from split_float_1.mod.py
// DO NOT EDIT
// clang-format off
#include "TestGenerated.h"
namespace generated_tests::split_float_1 {
void CreateModel(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {2});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {0});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_all_inputs_as_internal(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {2});
OperandType type4(Type::TENSOR_FLOAT32, {1});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
auto input0_tmp = model->addOperand(&type0);
auto dummy = model->addOperand(&type4);
auto param = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static float dummy_init[] = {0.0f};
model->setOperandValue(dummy, dummy_init, sizeof(float) * 1);
static int32_t param_init[] = {0};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy, param}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_all_inputs_as_internal(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_all_inputs_as_internal_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {0});
OperandType type4(Type::TENSOR_FLOAT32, {1});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
auto input0_tmp = model->addOperand(&type0);
auto dummy1 = model->addOperand(&type4);
auto param1 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static float dummy1_init[] = {0.0f};
model->setOperandValue(dummy1, dummy1_init, sizeof(float) * 1);
static int32_t param1_init[] = {0};
model->setOperandValue(param1, param1_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy1, param1}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_all_inputs_as_internal_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_relaxed(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {2});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_relaxed_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {0});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_relaxed_all_inputs_as_internal(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {2});
OperandType type4(Type::TENSOR_FLOAT32, {1});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type2);
auto output1 = model->addOperand(&type2);
auto output2 = model->addOperand(&type2);
auto input0_tmp = model->addOperand(&type0);
auto dummy2 = model->addOperand(&type4);
auto param2 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static float dummy2_init[] = {0.0f};
model->setOperandValue(dummy2, dummy2_init, sizeof(float) * 1);
static int32_t param2_init[] = {0};
model->setOperandValue(param2, param2_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy2, param2}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_all_inputs_as_internal(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_relaxed_all_inputs_as_internal_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {6});
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {0});
OperandType type4(Type::TENSOR_FLOAT32, {1});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type3);
auto output1 = model->addOperand(&type3);
auto output2 = model->addOperand(&type3);
auto input0_tmp = model->addOperand(&type0);
auto dummy3 = model->addOperand(&type4);
auto param3 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static float dummy3_init[] = {0.0f};
model->setOperandValue(dummy3, dummy3_init, sizeof(float) * 1);
static int32_t param3_init[] = {0};
model->setOperandValue(param3, param3_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy3, param3}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_all_inputs_as_internal_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_float16(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type5(Type::TENSOR_FLOAT16, {6});
OperandType type6(Type::TENSOR_FLOAT16, {2});
// Phase 1, operands
auto input0 = model->addOperand(&type5);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type6);
auto output1 = model->addOperand(&type6);
auto output2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_float16(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_float16_dynamic_output_shape(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type5(Type::TENSOR_FLOAT16, {6});
OperandType type7(Type::TENSOR_FLOAT16, {0});
// Phase 1, operands
auto input0 = model->addOperand(&type5);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type7);
auto output1 = model->addOperand(&type7);
auto output2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_float16_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_float16_all_inputs_as_internal(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type6(Type::TENSOR_FLOAT16, {2});
OperandType type8(Type::TENSOR_FLOAT16, {6});
OperandType type9(Type::TENSOR_FLOAT16, {1});
// Phase 1, operands
auto input0 = model->addOperand(&type8);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type6);
auto output1 = model->addOperand(&type6);
auto output2 = model->addOperand(&type6);
auto input0_tmp = model->addOperand(&type8);
auto dummy4 = model->addOperand(&type9);
auto param4 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static _Float16 dummy4_init[] = {0.0f};
model->setOperandValue(dummy4, dummy4_init, sizeof(_Float16) * 1);
static int32_t param4_init[] = {0};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy4, param4}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_float16_all_inputs_as_internal(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1
namespace generated_tests::split_float_1 {
void CreateModel_float16_all_inputs_as_internal_dynamic_output_shape(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type7(Type::TENSOR_FLOAT16, {0});
OperandType type8(Type::TENSOR_FLOAT16, {6});
OperandType type9(Type::TENSOR_FLOAT16, {1});
// Phase 1, operands
auto input0 = model->addOperand(&type8);
auto axis = model->addOperand(&type1);
auto num_splits = model->addOperand(&type1);
auto output0 = model->addOperand(&type7);
auto output1 = model->addOperand(&type7);
auto output2 = model->addOperand(&type7);
auto input0_tmp = model->addOperand(&type8);
auto dummy5 = model->addOperand(&type9);
auto param5 = model->addOperand(&type1);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
static int32_t num_splits_init[] = {3};
model->setOperandValue(num_splits, num_splits_init, sizeof(int32_t) * 1);
static _Float16 dummy5_init[] = {0.0f};
model->setOperandValue(dummy5, dummy5_init, sizeof(_Float16) * 1);
static int32_t param5_init[] = {0};
model->setOperandValue(param5, param5_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_ADD, {input0_tmp, dummy5, param5}, {input0});
model->addOperation(ANEURALNETWORKS_SPLIT, {input0, axis, num_splits}, {output0, output1, output2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0_tmp},
{output0, output1, output2});
assert(model->isValid());
}
bool is_ignored_float16_all_inputs_as_internal_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::split_float_1