| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Utils" |
| |
| #include "LegacyUtils.h" |
| |
| #include <android-base/logging.h> |
| #include <android-base/properties.h> |
| #include <android-base/strings.h> |
| #include <errno.h> |
| #include <nnapi/TypeUtils.h> |
| #include <poll.h> |
| |
| #include <algorithm> |
| #include <functional> |
| #include <limits> |
| #include <numeric> |
| #include <string> |
| #include <tuple> |
| #include <unordered_map> |
| #include <utility> |
| #include <vector> |
| |
| #include "ControlFlow.h" |
| #include "NeuralNetworks.h" |
| #include "NeuralNetworksOEM.h" |
| #include "OperationResolver.h" |
| |
| namespace android { |
| namespace nn { |
| |
| const char kVLogPropKey[] = "debug.nn.vlog"; |
| int vLogMask = ~0; |
| |
| // Split the space separated list of tags from verbose log setting and build the |
| // logging mask from it. note that '1' and 'all' are special cases to enable all |
| // verbose logging. |
| // |
| // NN API verbose logging setting comes from system property debug.nn.vlog. |
| // Example: |
| // setprop debug.nn.vlog 1 : enable all logging tags. |
| // setprop debug.nn.vlog "model compilation" : only enable logging for MODEL and |
| // COMPILATION tags. |
| void initVLogMask() { |
| vLogMask = 0; |
| const std::string vLogSetting = android::base::GetProperty(kVLogPropKey, ""); |
| if (vLogSetting.empty()) { |
| return; |
| } |
| |
| std::unordered_map<std::string, int> vLogFlags = {{"1", -1}, |
| {"all", -1}, |
| {"model", MODEL}, |
| {"compilation", COMPILATION}, |
| {"execution", EXECUTION}, |
| {"cpuexe", CPUEXE}, |
| {"manager", MANAGER}, |
| {"driver", DRIVER}, |
| {"memory", MEMORY}}; |
| |
| std::vector<std::string> elements = android::base::Split(vLogSetting, " ,:"); |
| for (const auto& elem : elements) { |
| const auto& flag = vLogFlags.find(elem); |
| if (flag == vLogFlags.end()) { |
| LOG(ERROR) << "Unknown trace flag: " << elem; |
| continue; |
| } |
| |
| if (flag->second == -1) { |
| // -1 is used for the special values "1" and "all" that enable all |
| // tracing. |
| vLogMask = ~0; |
| return; |
| } else { |
| vLogMask |= 1 << flag->second; |
| } |
| } |
| } |
| |
| Duration makeTimeoutDuration(uint64_t nanoseconds) { |
| constexpr auto kMaxCount = Duration::max().count(); |
| using CommonType = std::common_type_t<Duration::rep, uint64_t>; |
| const auto count = std::min<CommonType>(kMaxCount, nanoseconds); |
| return Duration{static_cast<Duration::rep>(count)}; |
| } |
| |
| OptionalDuration makeTimeoutDuration(int64_t nanoseconds) { |
| CHECK_GE(nanoseconds, -1); |
| if (nanoseconds == -1) { |
| return OptionalDuration{}; |
| } |
| return makeTimeoutDuration(static_cast<uint64_t>(nanoseconds)); |
| } |
| |
| TimePoint makeDeadline(Duration duration) { |
| constexpr auto kMaxTime = TimePoint::max(); |
| const auto currentTime = Clock::now(); |
| |
| // If there would be an overflow, use the max value. |
| if (duration > kMaxTime - currentTime) { |
| return kMaxTime; |
| } |
| return currentTime + duration; |
| } |
| |
| bool hasDeadlinePassed(const OptionalTimePoint& deadline) { |
| if (!deadline.has_value()) { |
| return false; |
| } |
| return Clock::now() >= *deadline; |
| } |
| |
| static bool isExtensionOperandType(int32_t type) { |
| return (static_cast<uint32_t>(type) >> kExtensionTypeBits) != 0; |
| } |
| |
| static bool isExtensionOperationType(ANeuralNetworksOperationType type) { |
| return (static_cast<uint32_t>(type) >> kExtensionTypeBits) != 0; |
| } |
| |
| bool isExtensionOperandType(OperandType type) { |
| return isExtensionOperandType(static_cast<int32_t>(type)); |
| } |
| |
| bool isExtensionOperationType(OperationType type) { |
| return isExtensionOperationType(static_cast<int32_t>(type)); |
| } |
| |
| namespace { |
| |
| template <typename EntryType, uint32_t entryCount, uint32_t entryCountOEM> |
| EntryType tableLookup(const EntryType (&table)[entryCount], |
| const EntryType (&tableOEM)[entryCountOEM], uint32_t code) { |
| if (code < entryCount) { |
| return table[code]; |
| } else if (code >= kOEMCodeBase && (code - kOEMCodeBase) < entryCountOEM) { |
| return tableOEM[code - kOEMCodeBase]; |
| } else { |
| nnAssert(!"tableLookup: bad code"); |
| return EntryType(); |
| } |
| } |
| |
| static Version convert(HalVersion halVersion) { |
| switch (halVersion) { |
| case HalVersion::UNKNOWN: |
| break; |
| case HalVersion::V1_0: |
| return Version::ANDROID_OC_MR1; |
| case HalVersion::V1_1: |
| return Version::ANDROID_P; |
| case HalVersion::V1_2: |
| return Version::ANDROID_Q; |
| case HalVersion::V1_3: |
| return Version::ANDROID_R; |
| case HalVersion::AIDL_UNSTABLE: |
| return Version::ANDROID_S; |
| } |
| LOG(FATAL) << "Cannot convert " << halVersion; |
| return {}; |
| } |
| |
| class OperationValidationContext : public IOperationValidationContext { |
| DISALLOW_IMPLICIT_CONSTRUCTORS(OperationValidationContext); |
| |
| public: |
| OperationValidationContext(const char* operationName, uint32_t inputCount, |
| const uint32_t* inputIndexes, uint32_t outputCount, |
| const uint32_t* outputIndexes, const Operand* operands) |
| : operationName(operationName), |
| inputCount(inputCount), |
| inputIndexes(inputIndexes), |
| outputCount(outputCount), |
| outputIndexes(outputIndexes), |
| operands(operands) {} |
| |
| const char* getOperationName() const override; |
| |
| uint32_t getNumInputs() const override; |
| OperandType getInputType(uint32_t index) const override; |
| Shape getInputShape(uint32_t index) const override; |
| const Operand::ExtraParams& getInputExtraParams(uint32_t index) const override; |
| |
| uint32_t getNumOutputs() const override; |
| OperandType getOutputType(uint32_t index) const override; |
| Shape getOutputShape(uint32_t index) const override; |
| |
| private: |
| const Operand* getInputOperand(uint32_t index) const; |
| const Operand* getOutputOperand(uint32_t index) const; |
| |
| const char* operationName; |
| uint32_t inputCount; |
| const uint32_t* inputIndexes; |
| uint32_t outputCount; |
| const uint32_t* outputIndexes; |
| const Operand* operands; |
| }; |
| |
| const char* OperationValidationContext::getOperationName() const { |
| return operationName; |
| } |
| |
| const Operand* OperationValidationContext::getInputOperand(uint32_t index) const { |
| CHECK(index < static_cast<uint32_t>(inputCount)); |
| return &operands[inputIndexes[index]]; |
| } |
| |
| const Operand* OperationValidationContext::getOutputOperand(uint32_t index) const { |
| CHECK(index < static_cast<uint32_t>(outputCount)); |
| return &operands[outputIndexes[index]]; |
| } |
| |
| uint32_t OperationValidationContext::getNumInputs() const { |
| return inputCount; |
| } |
| |
| uint32_t OperationValidationContext::getNumOutputs() const { |
| return outputCount; |
| } |
| |
| OperandType OperationValidationContext::getInputType(uint32_t index) const { |
| return getInputOperand(index)->type; |
| } |
| |
| Shape OperationValidationContext::getInputShape(uint32_t index) const { |
| const Operand* operand = getInputOperand(index); |
| return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint, |
| operand->extraParams}; |
| } |
| |
| const Operand::ExtraParams& OperationValidationContext::getInputExtraParams(uint32_t index) const { |
| return getInputOperand(index)->extraParams; |
| } |
| |
| OperandType OperationValidationContext::getOutputType(uint32_t index) const { |
| return getOutputOperand(index)->type; |
| } |
| |
| Shape OperationValidationContext::getOutputShape(uint32_t index) const { |
| const Operand* operand = getOutputOperand(index); |
| return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint, |
| operand->extraParams}; |
| } |
| |
| }; // anonymous namespace |
| |
| #define COUNT(X) (sizeof(X) / sizeof(X[0])) |
| |
| const uint32_t kSizeOfDataType[]{ |
| 4, // ANEURALNETWORKS_FLOAT32 |
| 4, // ANEURALNETWORKS_INT32 |
| 4, // ANEURALNETWORKS_UINT32 |
| 4, // ANEURALNETWORKS_TENSOR_FLOAT32 |
| 4, // ANEURALNETWORKS_TENSOR_INT32 |
| 1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM |
| 1, // ANEURALNETWORKS_BOOL |
| 2, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM |
| 2, // ANEURALNETWORKS_TENSOR_FLOAT16 |
| 1, // ANEURALNETWORKS_TENSOR_BOOL8 |
| 2, // ANEURALNETWORKS_FLOAT16 |
| 1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL |
| 2, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM |
| 1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM |
| 1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED |
| 0, // ANEURALNETWORKS_MODEL |
| }; |
| |
| static_assert(COUNT(kSizeOfDataType) == kNumberOfDataTypes, "kSizeOfDataType is incorrect"); |
| |
| const bool kScalarDataType[]{ |
| true, // ANEURALNETWORKS_FLOAT32 |
| true, // ANEURALNETWORKS_INT32 |
| true, // ANEURALNETWORKS_UINT32 |
| false, // ANEURALNETWORKS_TENSOR_FLOAT32 |
| false, // ANEURALNETWORKS_TENSOR_INT32 |
| false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM |
| true, // ANEURALNETWORKS_BOOL |
| false, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM |
| false, // ANEURALNETWORKS_TENSOR_FLOAT16 |
| false, // ANEURALNETWORKS_TENSOR_BOOL8 |
| true, // ANEURALNETWORKS_FLOAT16 |
| false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL |
| false, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM |
| false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM |
| false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED |
| true, // ANEURALNETWORKS_MODEL |
| }; |
| |
| static_assert(COUNT(kScalarDataType) == kNumberOfDataTypes, "kScalarDataType is incorrect"); |
| |
| const uint32_t kSizeOfDataTypeOEM[]{ |
| 0, // ANEURALNETWORKS_OEM |
| 1, // ANEURALNETWORKS_TENSOR_OEM_BYTE |
| }; |
| |
| static_assert(COUNT(kSizeOfDataTypeOEM) == kNumberOfDataTypesOEM, |
| "kSizeOfDataTypeOEM is incorrect"); |
| |
| const bool kScalarDataTypeOEM[]{ |
| true, // ANEURALNETWORKS_OEM |
| false, // ANEURALNETWORKS_TENSOR_OEM_BYTE |
| }; |
| |
| static_assert(COUNT(kScalarDataTypeOEM) == kNumberOfDataTypesOEM, |
| "kScalarDataTypeOEM is incorrect"); |
| |
| bool nonExtensionOperandTypeIsScalar(int type) { |
| CHECK(!isExtensionOperandType(type)) << "Extension operand types are not supported"; |
| return tableLookup(kScalarDataType, kScalarDataTypeOEM, type); |
| } |
| |
| uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions) { |
| const size_t size = getNonExtensionSize(type, dimensions).value(); |
| CHECK_LE(size, std::numeric_limits<uint32_t>::max()); |
| return size; |
| } |
| |
| // Returns a pair of {false, size} on success, {true, 0} if size overflows uint32_t. |
| static std::pair<bool, uint32_t> sizeOfTensorDataHelper(uint32_t sizeOfElement, |
| const std::vector<uint32_t>& dimensions) { |
| if (dimensions.empty()) { |
| return {false, 0}; |
| } |
| uint64_t size = static_cast<uint64_t>(sizeOfElement); |
| constexpr uint64_t kMaxSize = static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()); |
| for (uint32_t d : dimensions) { |
| size *= d; |
| if (size > kMaxSize) return {true, 0}; |
| } |
| return {false, static_cast<uint32_t>(size)}; |
| } |
| |
| uint32_t sizeOfTensorData(uint32_t sizeOfElement, const std::vector<uint32_t>& dimensions) { |
| const auto [overflow, size] = sizeOfTensorDataHelper(sizeOfElement, dimensions); |
| CHECK(!overflow); |
| return size; |
| } |
| |
| bool nonExtensionOperandSizeOfDataOverflowsUInt32(OperandType type, |
| const std::vector<uint32_t>& dimensions) { |
| CHECK(!isExtension(type)) << "Size of extension operand data is unknown"; |
| int n = static_cast<int>(type); |
| uint32_t sizeOfElement = tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, n); |
| return tableLookup(kScalarDataType, kScalarDataTypeOEM, n) |
| ? false |
| : sizeOfTensorDataOverflowsUInt32(sizeOfElement, dimensions); |
| } |
| |
| bool sizeOfTensorDataOverflowsUInt32(uint32_t sizeOfElement, |
| const std::vector<uint32_t>& dimensions) { |
| return sizeOfTensorDataHelper(sizeOfElement, dimensions).first; |
| } |
| |
| bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount) { |
| if (!isExtensionOperandType(type)) { |
| CHECK(!nonExtensionOperandTypeIsScalar(type)) |
| << "A scalar type can never have unspecified dimensions"; |
| } |
| return dimCount == 0 || std::find(dim, dim + dimCount, 0) != (dim + dimCount); |
| } |
| |
| bool tensorHasUnspecifiedDimensions(OperandType type, const std::vector<uint32_t>& dimensions) { |
| return tensorHasUnspecifiedDimensions(static_cast<int>(type), dimensions.data(), |
| dimensions.size()); |
| } |
| |
| bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type) { |
| return tensorHasUnspecifiedDimensions(type->type, type->dimensions, type->dimensionCount); |
| } |
| |
| bool tensorHasUnspecifiedDimensions(const Operand& operand) { |
| return tensorHasUnspecifiedDimensions(operand.type, operand.dimensions); |
| } |
| |
| uint32_t alignBytesNeeded(uint32_t index, size_t length) { |
| uint32_t alignment = getAlignmentForLength(length); |
| uint32_t pattern = alignment - 1; |
| uint32_t extra = (~(index - 1)) & pattern; |
| return extra; |
| } |
| |
| void logModelToInfo(const Model& model) { |
| LOG(INFO) << model; |
| } |
| |
| static bool validateScalarDimensions(const ANeuralNetworksOperandType& type, const char* tag) { |
| NN_RET_CHECK_EQ(type.dimensionCount, 0u) << tag << " invalid dimensions for scalar type"; |
| NN_RET_CHECK(type.dimensions == nullptr) << tag << " invalid dimensions for scalar type"; |
| return true; |
| } |
| |
| static bool validateQuant8AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) { |
| NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 255) |
| << tag << " invalid zeroPoint: " << type.zeroPoint; |
| NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; |
| return true; |
| } |
| |
| static bool validateQuant8AsymmSignedParams(const ANeuralNetworksOperandType& type, |
| const char* tag) { |
| NN_RET_CHECK(-128 <= type.zeroPoint && type.zeroPoint <= 127) |
| << tag << " invalid zeroPoint: " << type.zeroPoint; |
| NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; |
| return true; |
| } |
| |
| static bool validateQuant8SymmParams(const ANeuralNetworksOperandType& type, const char* tag) { |
| NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " invalid zeroPoint: " << type.zeroPoint; |
| NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; |
| return true; |
| } |
| |
| static bool validateQuant16AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) { |
| NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 65535) |
| << tag << " invalid zeroPoint: " << type.zeroPoint; |
| NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; |
| return true; |
| } |
| |
| static bool validateQuantSymmParams(const ANeuralNetworksOperandType& type, const char* tag) { |
| NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero"; |
| NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; |
| return true; |
| } |
| |
| static bool validateNoQuantParams(const ANeuralNetworksOperandType& type, const char* tag) { |
| NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero"; |
| NN_RET_CHECK_EQ(type.scale, 0.f) << tag << " scale is not zero"; |
| return true; |
| } |
| |
| static bool validateTensorDimensions( |
| const ANeuralNetworksOperandType& type, |
| const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag, |
| bool allowPartial) { |
| if (!allowPartial) { |
| NN_RET_CHECK_GT(type.dimensionCount, 0u) << tag << " invalid operand dimensions"; |
| } |
| uint64_t size = |
| isExtensionOperandType(type.type) |
| ? extensionOperandTypeInfo->byteSize |
| : tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, static_cast<int>(type.type)); |
| constexpr uint64_t kMaxSize = std::numeric_limits<uint32_t>::max(); |
| for (uint32_t i = 0; i < type.dimensionCount; i++) { |
| if (!allowPartial) { |
| NN_RET_CHECK_NE(type.dimensions[i], 0u) << tag << " invalid operand dimensions"; |
| } |
| if (type.dimensions[i] != 0) { |
| size *= type.dimensions[i]; |
| NN_RET_CHECK_LE(size, kMaxSize) << tag << " operand byte size exceeds " << kMaxSize; |
| } |
| } |
| return true; |
| } |
| |
| static bool validateOperandTypeHelper( |
| const ANeuralNetworksOperandType& type, |
| const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag, |
| bool allowPartial) { |
| NN_RET_CHECK_EQ(type.dimensionCount == 0, type.dimensions == nullptr); |
| if (isExtensionOperandType(type.type)) { |
| NN_RET_CHECK(extensionOperandTypeInfo != nullptr); |
| if (extensionOperandTypeInfo->isTensor) { |
| NN_RET_CHECK( |
| validateTensorDimensions(type, extensionOperandTypeInfo, tag, allowPartial)); |
| } else { |
| NN_RET_CHECK(validateScalarDimensions(type, tag)); |
| } |
| return validateNoQuantParams(type, tag); |
| } |
| |
| NN_RET_CHECK(extensionOperandTypeInfo == nullptr); |
| NN_RET_CHECK(validCode(kNumberOfDataTypes, kNumberOfDataTypesOEM, type.type)) |
| << tag << " invalid OperandType: " << type.type; |
| |
| bool isScalar = tableLookup(kScalarDataType, kScalarDataTypeOEM, type.type); |
| if (isScalar) { |
| NN_RET_CHECK(validateScalarDimensions(type, tag)); |
| if (type.type != ANEURALNETWORKS_OEM_SCALAR) { // Historically, we have allowed OEM types |
| // to use quantization parameters. |
| NN_RET_CHECK(validateNoQuantParams(type, tag)); |
| } |
| } else { |
| NN_RET_CHECK(validateTensorDimensions(type, extensionOperandTypeInfo, tag, allowPartial)); |
| if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) { |
| NN_RET_CHECK(validateQuant8AsymmParams(type, tag)); |
| } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RET_CHECK(validateQuant8AsymmSignedParams(type, tag)); |
| } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_SYMM) { |
| NN_RET_CHECK(validateQuant8SymmParams(type, tag)); |
| } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_ASYMM) { |
| NN_RET_CHECK(validateQuant16AsymmParams(type, tag)); |
| } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_SYMM) { |
| NN_RET_CHECK(validateQuantSymmParams(type, tag)); |
| } else if (type.type == ANEURALNETWORKS_TENSOR_INT32) { |
| // TODO(b/119869082): TENSOR_INT32 should not use quantization parameters. |
| } else if (type.type == ANEURALNETWORKS_TENSOR_OEM_BYTE) { |
| // Historically, we have allowed OEM types to use quantization parameters. |
| } else { |
| NN_RET_CHECK(validateNoQuantParams(type, tag)); |
| } |
| } |
| |
| return true; |
| } |
| |
| int validateOperandType(const ANeuralNetworksOperandType& type, |
| const Extension::OperandTypeInformation* const extensionOperandTypeInfo, |
| const char* tag, bool allowPartial) { |
| return validateOperandTypeHelper(type, extensionOperandTypeInfo, tag, allowPartial) |
| ? ANEURALNETWORKS_NO_ERROR |
| : ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount, |
| const char* tag) { |
| for (uint32_t i = 0; i < count; i++) { |
| if (list[i] >= operandCount) { |
| LOG(ERROR) << tag << " invalid operand index at " << i << " = " << list[i] |
| << ", operandCount " << operandCount; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int validateOperationOperandTypes(const std::vector<Operand>& operands, uint32_t inOperandCount, |
| const uint32_t* inOperandIndexes, |
| const std::vector<OperandType>& inExpectedTypes, |
| uint32_t outOperandCount, const uint32_t* outOperandIndexes, |
| const std::vector<OperandType>& outExpectedInTypes) { |
| if (inOperandCount != static_cast<uint32_t>(inExpectedTypes.size()) || |
| outOperandCount != static_cast<uint32_t>(outExpectedInTypes.size())) { |
| LOG(ERROR) << "Wrong operand count: expected " << inExpectedTypes.size() << " inputs and " |
| << outExpectedInTypes.size() << " outputs," |
| << "got " << inOperandCount << " inputs and " << outOperandCount << " outputs"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| for (uint32_t i = 0; i < inOperandCount; i++) { |
| if (operands[inOperandIndexes[i]].type != inExpectedTypes[i]) { |
| LOG(ERROR) << "Invalid input tensor type " << operands[inOperandIndexes[i]].type |
| << " for input " << i << ", expected " << inExpectedTypes[i]; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| for (uint32_t i = 0; i < outOperandCount; i++) { |
| if (operands[outOperandIndexes[i]].type != outExpectedInTypes[i]) { |
| LOG(ERROR) << "Invalid output tensor type " << operands[outOperandIndexes[i]].type |
| << " for input " << i << ", expected " << outExpectedInTypes[i]; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| static int validateHalVersion(ANeuralNetworksOperationType opType, HalVersion halVersion, |
| HalVersion minSupportedHalVersion) { |
| if (halVersion < minSupportedHalVersion) { |
| LOG(ERROR) << "The given inputs and outputs for operation " << opType |
| << " are only supported in " << minSupportedHalVersion |
| << " and later (validating using " << halVersion << ")"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| // Checks if two operands have the same types, ranks (if specified), dimensions |
| // (if specified), scales, zeroPoints, and extraParams. |
| static bool compatible(const Operand& a, const Operand& b) { |
| NN_RET_CHECK(a.type == b.type) << a.type << " != " << b.type; |
| if (a.dimensions.size() != 0 && b.dimensions.size() != 0) { |
| NN_RET_CHECK_EQ(a.dimensions.size(), b.dimensions.size()) << "Incompatible dimensions"; |
| for (uint32_t i = 0, n = a.dimensions.size(); i < n; ++i) { |
| if (a.dimensions[i] != 0 && b.dimensions[i] != 0) { |
| NN_RET_CHECK_EQ(a.dimensions[i], b.dimensions[i]) << "Incompatible dimensions"; |
| } |
| } |
| } |
| NN_RET_CHECK_EQ(a.scale, b.scale); |
| NN_RET_CHECK_EQ(a.zeroPoint, b.zeroPoint); |
| NN_RET_CHECK(a.extraParams == b.extraParams) << a.extraParams << " != " << b.extraParams; |
| return true; |
| } |
| |
| static bool validateConditionOperand(const Operand& operand) { |
| NN_RET_CHECK(operand.type == OperandType::TENSOR_BOOL8) |
| << "Unexpected condition operand type: " << operand.type; |
| NN_RET_CHECK_EQ(operand.dimensions.size(), 1u) << "Condition operand must be a singleton"; |
| NN_RET_CHECK_EQ(operand.dimensions[0], 1u) << "Condition operand must be a singleton"; |
| return true; |
| } |
| |
| static void checkSubgraphValidationHelper(const SubgraphValidationHelper& helper) { |
| CHECK(helper.isValidSubgraphReference != nullptr); |
| CHECK(helper.getSubgraphInputCount != nullptr); |
| CHECK(helper.getSubgraphOutputCount != nullptr); |
| CHECK(helper.getSubgraphInputOperand != nullptr); |
| CHECK(helper.getSubgraphOutputOperand != nullptr); |
| } |
| |
| static bool validateIfOperation(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, |
| const uint32_t* outputs, const std::vector<Operand>& operands, |
| const SubgraphValidationHelper& helper) { |
| namespace op = operation_if; |
| checkSubgraphValidationHelper(helper); |
| NN_RET_CHECK_GE(inputCount, 3u) << "ANEURALNETWORKS_IF must have at least 3 inputs"; |
| NN_RET_CHECK_GE(outputCount, 1u) << "ANEURALNETWORKS_IF must have at least 1 output"; |
| auto validateBranchOperand = [&](const Operand& branchModelOperand) -> bool { |
| NN_RET_CHECK(helper.isValidSubgraphReference(branchModelOperand)) |
| << "Operand is not a valid subgraph reference"; |
| const uint32_t branchModelInputCount = helper.getSubgraphInputCount(branchModelOperand); |
| const uint32_t branchModelOutputCount = helper.getSubgraphOutputCount(branchModelOperand); |
| NN_RET_CHECK_EQ(inputCount, op::kFirstInput + branchModelInputCount); |
| NN_RET_CHECK_EQ(outputCount, branchModelOutputCount); |
| for (uint32_t i = 0; i < branchModelInputCount; ++i) { |
| const Operand& innerOperand = *helper.getSubgraphInputOperand(branchModelOperand, i); |
| const Operand& outerOperand = operands[inputs[op::kFirstInput + i]]; |
| NN_RET_CHECK(compatible(innerOperand, outerOperand)); |
| } |
| for (uint32_t i = 0; i < branchModelOutputCount; ++i) { |
| const Operand& innerOperand = *helper.getSubgraphOutputOperand(branchModelOperand, i); |
| const Operand& outerOperand = operands[outputs[i]]; |
| NN_RET_CHECK(compatible(innerOperand, outerOperand)); |
| } |
| return true; |
| }; |
| NN_RET_CHECK(validateConditionOperand(operands[inputs[op::kCondBoolOperand]])) |
| << "Validation failed for IF condition operand"; |
| NN_RET_CHECK(validateBranchOperand(operands[inputs[op::kThenModelOperand]])) |
| << "Validation failed for IF then model"; |
| NN_RET_CHECK(validateBranchOperand(operands[inputs[op::kElseModelOperand]])) |
| << "Validation failed for IF else model"; |
| return true; |
| } |
| |
| static bool validateControlFlowOperandUnknownSize(const SubgraphValidationHelper& helper, |
| const Operand& operand) { |
| if (!helper.allowControlFlowOperationWithOperandOfUnknownSize && !isExtension(operand.type)) { |
| NN_RET_CHECK_NE(nonExtensionOperandSizeOfData(operand.type, operand.dimensions), 0u); |
| } |
| return true; |
| } |
| |
| static bool validateWhileOperation(uint32_t inputCount, const uint32_t* inputs, |
| uint32_t outputCount, const uint32_t* outputs, |
| const std::vector<Operand>& operands, |
| const SubgraphValidationHelper& helper) { |
| // Let the loop have |
| // - m >= 1 input-output operands, |
| // - k >= 0 state-only operands, and |
| // - n >= 0 input-only operands. |
| // Then |
| // - the WHILE loop operation has (2 + m + k + n) inputs and m outputs. |
| // - the condition model has (m + k + n) inputs and 1 output. |
| // - the body model has (m + k + n) inputs and (m + k) outputs. |
| namespace op = operation_while; |
| checkSubgraphValidationHelper(helper); |
| NN_RET_CHECK_GE(inputCount, 3u) << "ANEURALNETWORKS_WHILE must have at least 3 inputs"; |
| NN_RET_CHECK_GE(outputCount, 1u) << "ANEURALNETWORKS_WHILE must have at least 1 output"; |
| auto validateCondOperand = [&](const Operand& condModelOperand) -> bool { |
| NN_RET_CHECK(helper.isValidSubgraphReference(condModelOperand)) |
| << "Operand is not a valid subgraph reference"; |
| const uint32_t condModelInputCount = helper.getSubgraphInputCount(condModelOperand); |
| const uint32_t condModelOutputCount = helper.getSubgraphOutputCount(condModelOperand); |
| NN_RET_CHECK_EQ(inputCount, op::kFirstInput + condModelInputCount); |
| NN_RET_CHECK_EQ(condModelOutputCount, 1u); |
| for (uint32_t i = 0; i < condModelInputCount; ++i) { |
| const Operand& innerOperand = *helper.getSubgraphInputOperand(condModelOperand, i); |
| const Operand& outerOperand = operands[inputs[op::kFirstInput + i]]; |
| NN_RET_CHECK(compatible(innerOperand, outerOperand)); |
| NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, innerOperand)); |
| NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outerOperand)); |
| } |
| NN_RET_CHECK( |
| validateConditionOperand(*helper.getSubgraphOutputOperand(condModelOperand, 0))); |
| return true; |
| }; |
| auto validateBodyOperand = [&](const Operand& bodyModelOperand) -> bool { |
| NN_RET_CHECK(helper.isValidSubgraphReference(bodyModelOperand)) |
| << "Operand is not a valid subgraph reference"; |
| const uint32_t bodyModelInputCount = helper.getSubgraphInputCount(bodyModelOperand); |
| const uint32_t bodyModelOutputCount = helper.getSubgraphOutputCount(bodyModelOperand); |
| NN_RET_CHECK_EQ(inputCount, op::kFirstInput + bodyModelInputCount); |
| NN_RET_CHECK_GE(bodyModelOutputCount, outputCount); |
| NN_RET_CHECK_GE(bodyModelInputCount, bodyModelOutputCount); |
| const uint32_t inputOutputCount = outputCount; |
| const uint32_t stateOnlyCount = bodyModelOutputCount - inputOutputCount; |
| const uint32_t inputOnlyCount = bodyModelInputCount - bodyModelOutputCount; |
| for (uint32_t i = 0, n = inputOutputCount + stateOnlyCount + inputOnlyCount; i < n; ++i) { |
| const Operand& innerOperand = *helper.getSubgraphInputOperand(bodyModelOperand, i); |
| const Operand& outerOperand = operands[inputs[op::kFirstInput + i]]; |
| NN_RET_CHECK(compatible(innerOperand, outerOperand)); |
| NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, innerOperand)); |
| NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outerOperand)); |
| } |
| for (uint32_t i = 0; i < inputOutputCount; ++i) { |
| const Operand& innerOperand = *helper.getSubgraphOutputOperand(bodyModelOperand, i); |
| const Operand& outerOperand = operands[outputs[i]]; |
| NN_RET_CHECK(compatible(innerOperand, outerOperand)); |
| NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outerOperand)); |
| } |
| for (uint32_t i = 0, n = inputOutputCount + stateOnlyCount; i < n; ++i) { |
| const Operand& inputOperand = *helper.getSubgraphInputOperand(bodyModelOperand, i); |
| const Operand& outputOperand = *helper.getSubgraphOutputOperand(bodyModelOperand, i); |
| NN_RET_CHECK(compatible(inputOperand, outputOperand)); |
| NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outputOperand)); |
| } |
| return true; |
| }; |
| NN_RET_CHECK(validateCondOperand(operands[inputs[op::kCondModelOperand]])) |
| << "Validation failed for WHILE condition model"; |
| NN_RET_CHECK(validateBodyOperand(operands[inputs[op::kBodyModelOperand]])) |
| << "Validation failed for WHILE body model"; |
| return true; |
| } |
| |
| int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount, |
| const uint32_t* inputIndexes, uint32_t outputCount, |
| const uint32_t* outputIndexes, const std::vector<Operand>& operands, |
| HalVersion halVersion, const SubgraphValidationHelper& helper) { |
| NN_RETURN_IF_ERROR(validateOperandList(inputCount, inputIndexes, |
| static_cast<uint32_t>(operands.size()), |
| "ANeuralNetworksModel_addOperation inputs")); |
| NN_RETURN_IF_ERROR(validateOperandList(outputCount, outputIndexes, |
| static_cast<uint32_t>(operands.size()), |
| "ANeuralNetworksModel_addOperation outputs")); |
| |
| if (isExtensionOperationType(opType)) { |
| if (halVersion < HalVersion::V1_2) { |
| LOG(ERROR) |
| << "Extension operations are supported since HAL version 1.2, validating using " |
| << halVersion; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| // There is no other validation we can do for an extension operation. |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| auto logInvalidInOutNumber = [opType, inputCount, outputCount](int expIn, int expOut) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected " << expIn |
| << ") or output operands (" << outputCount << ", expected " << expOut |
| << ") for operation " << opType; |
| }; |
| |
| switch (opType) { |
| case ANEURALNETWORKS_OEM_OPERATION: { |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| case ANEURALNETWORKS_RESHAPE: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32}; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, |
| OperandType::TENSOR_INT32}; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const auto inputRank = operands[inputIndexes[0]].dimensions.size(); |
| if (inputRank > 4) { |
| LOG(ERROR) << "Unsupported input tensor rank for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_DEPTH_TO_SPACE: { |
| if ((inputCount != 3 && inputCount != 2) || outputCount != 1) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 3 or 2) or output operands (" << outputCount |
| << ", expected 1) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputCount == 3) { |
| inExpectedTypes.push_back(OperandType::BOOL); |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_SPACE_TO_DEPTH: { |
| if ((inputCount != 3 && inputCount != 2) || outputCount != 1) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 3 or 2) or output operands (" << outputCount |
| << ", expected 1) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputCount == 3) { |
| inExpectedTypes.push_back(OperandType::BOOL); |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_EMBEDDING_LOOKUP: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[1]].type; |
| if (inputType != OperandType::TENSOR_FLOAT16 && |
| inputType != OperandType::TENSOR_FLOAT32 && |
| inputType != OperandType::TENSOR_INT32 && |
| inputType != OperandType::TENSOR_QUANT8_ASYMM && |
| inputType != OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> inExpectedTypes = {OperandType::TENSOR_INT32, inputType}; |
| std::vector<OperandType> outExpectedTypes = {inputType}; |
| if (inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else if (inputType == OperandType::TENSOR_INT32 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_HASHTABLE_LOOKUP: { |
| if (inputCount != 3 || outputCount != 2) { |
| logInvalidInOutNumber(3, 2); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[2]].type; |
| if (inputType != OperandType::TENSOR_FLOAT32 && |
| inputType != OperandType::TENSOR_INT32 && |
| inputType != OperandType::TENSOR_QUANT8_ASYMM) { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> inExpectedTypes = {OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, inputType}; |
| std::vector<OperandType> outExpectedTypes = {inputType, |
| OperandType::TENSOR_QUANT8_ASYMM}; |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_LSH_PROJECTION: { |
| if (inputCount != 4 || outputCount != 1) { |
| logInvalidInOutNumber(4, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[1]].type; |
| if (inputType != OperandType::TENSOR_FLOAT16 && |
| inputType != OperandType::TENSOR_FLOAT32 && |
| inputType != OperandType::TENSOR_INT32 && |
| inputType != OperandType::TENSOR_QUANT8_ASYMM) { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto hashType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| if (hashType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, |
| inputType, |
| OperandType::TENSOR_FLOAT16, |
| OperandType::INT32, |
| }; |
| } else if (hashType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, |
| inputType, |
| OperandType::TENSOR_FLOAT32, |
| OperandType::INT32, |
| }; |
| } else { |
| LOG(ERROR) << "Unsupported hash tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_INT32}; |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM: { |
| const uint32_t kNumOutputs = 2; |
| const uint32_t kNumOutputsMerged = 1; |
| const uint32_t kNumOutputsWithState = 6; |
| const uint32_t kNumOutputsMergedWithState = 5; |
| if (inputCount != 61 || |
| (outputCount != kNumOutputs && outputCount != kNumOutputsMerged && |
| outputCount != kNumOutputsWithState && |
| outputCount != kNumOutputsMergedWithState)) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 61) or output operands (" << outputCount |
| << ", expected 1, 2, 5 or 6) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| std::vector<OperandType> inExpectedTypes; |
| auto inputType = operands[inputIndexes[0]].type; |
| if (inputType != OperandType::TENSOR_FLOAT32 && |
| inputType != OperandType::TENSOR_FLOAT16) { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| inExpectedTypes = {}; |
| for (int i = 0; i < 48; ++i) { |
| inExpectedTypes.push_back(inputType); |
| } |
| inExpectedTypes.push_back(OperandType::INT32); |
| inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32 |
| ? OperandType::FLOAT32 |
| : OperandType::FLOAT16); |
| inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32 |
| ? OperandType::FLOAT32 |
| : OperandType::FLOAT16); |
| inExpectedTypes.push_back(OperandType::BOOL); |
| inExpectedTypes.push_back(OperandType::BOOL); |
| for (int i = 0; i < 8; ++i) { |
| inExpectedTypes.push_back(inputType); |
| } |
| |
| HalVersion minSupportedHalVersion = HalVersion::V1_2; |
| if (outputCount == kNumOutputsWithState || outputCount == kNumOutputsMergedWithState) { |
| minSupportedHalVersion = HalVersion::V1_3; |
| } |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, minSupportedHalVersion)); |
| std::vector<OperandType> outExpectedTypes(outputCount, inputType); |
| auto status = validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| return status; |
| } |
| case ANEURALNETWORKS_LSTM: { |
| if ((inputCount != 23 && inputCount != 27) || outputCount != 4) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 23 or 27) or output operands (" << outputCount |
| << ", expected 4) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| auto inputType = operands[inputIndexes[0]].type; |
| if (inputType != OperandType::TENSOR_FLOAT32 && |
| inputType != OperandType::TENSOR_FLOAT16) { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| inExpectedTypes = {inputType, inputType, inputType, inputType, inputType, |
| inputType, inputType, inputType, inputType, inputType, |
| inputType, inputType, inputType, inputType, inputType, |
| inputType, inputType, inputType, inputType, inputType, |
| OperandType::INT32}; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| inExpectedTypes.push_back(OperandType::FLOAT32); |
| inExpectedTypes.push_back(OperandType::FLOAT32); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes.push_back(OperandType::FLOAT16); |
| inExpectedTypes.push_back(OperandType::FLOAT16); |
| } |
| |
| outExpectedTypes = {inputType, inputType, inputType, inputType}; |
| if (inputCount == 23) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| for (int i = 0; i < 4; ++i) { |
| inExpectedTypes.push_back(inputType); |
| } |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_QUANTIZED_16BIT_LSTM: { |
| if (inputCount != 15 || outputCount != 2) { |
| logInvalidInOutNumber(15, 2); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| std::vector<OperandType> inExpectedTypes = { |
| OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, |
| OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, |
| OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, |
| OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, |
| OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, OperandType::TENSOR_QUANT16_SYMM, |
| OperandType::TENSOR_QUANT8_ASYMM}; |
| std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_QUANT16_SYMM, |
| OperandType::TENSOR_QUANT8_ASYMM}; |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_RANDOM_MULTINOMIAL: { |
| if (inputCount != 3 || outputCount != 1) { |
| logInvalidInOutNumber(3, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| OperandType inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32 || |
| inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| inputType, |
| OperandType::INT32, |
| OperandType::TENSOR_INT32, |
| }; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_INT32}; |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_RNN: { |
| if (inputCount != 6 || outputCount != 2) { |
| logInvalidInOutNumber(6, 2); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| OperandType inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_FLOAT32, OperandType::INT32, |
| }; |
| outExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_FLOAT32, |
| }; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_FLOAT16, OperandType::INT32, |
| }; |
| outExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_FLOAT16, |
| }; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_SVDF: { |
| if (inputCount != 7 || outputCount != 2) { |
| logInvalidInOutNumber(7, 2); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| OperandType inputType = operands[inputIndexes[0]].type; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); |
| |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> inExpectedTypes = { |
| inputType, inputType, inputType, inputType, |
| inputType, OperandType::INT32, OperandType::INT32, |
| }; |
| std::vector<OperandType> outExpectedTypes = {inputType, inputType}; |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_BATCH_TO_SPACE_ND: { |
| if ((inputCount != 3 && inputCount != 2) || outputCount != 1) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 3 or 2) or output operands (" << outputCount |
| << ", expected 1) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| inExpectedTypes = { |
| OperandType::TENSOR_QUANT8_ASYMM, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| inExpectedTypes = { |
| OperandType::TENSOR_QUANT8_ASYMM_SIGNED, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputCount == 3) { |
| inExpectedTypes.push_back(OperandType::BOOL); |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_SPACE_TO_BATCH_ND: { |
| if ((inputCount != 4 && inputCount != 3) || outputCount != 1) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 4 or 3) or output operands (" << outputCount |
| << ", expected 1) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| if (operands[inputIndexes[0]].zeroPoint != 0) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| inExpectedTypes = { |
| OperandType::TENSOR_QUANT8_ASYMM, |
| OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| inExpectedTypes = { |
| OperandType::TENSOR_QUANT8_ASYMM_SIGNED, |
| OperandType::TENSOR_INT32, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputCount == 4) { |
| inExpectedTypes.push_back(OperandType::BOOL); |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_PAD: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| if (operands[inputIndexes[0]].zeroPoint == 0) { |
| NN_RETURN_IF_ERROR( |
| validateHalVersion(opType, halVersion, HalVersion::V1_1)); |
| } else { |
| NN_RETURN_IF_ERROR( |
| validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| } |
| inExpectedTypes = { |
| inputType, |
| OperandType::TENSOR_INT32, |
| }; |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const auto inputRank = operands[inputIndexes[0]].dimensions.size(); |
| if (inputRank > 4) { |
| LOG(ERROR) << "Unsupported input tensor rank for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_PAD_V2: { |
| if (inputCount != 3 || outputCount != 1) { |
| logInvalidInOutNumber(3, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_INT32, |
| OperandType::FLOAT32, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| inExpectedTypes = { |
| OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_INT32, |
| OperandType::FLOAT16, |
| }; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| inExpectedTypes = { |
| inputType, |
| OperandType::TENSOR_INT32, |
| OperandType::INT32, |
| }; // TODO(b/116699425): Make it UINT8. |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const auto inputRank = operands[inputIndexes[0]].dimensions.size(); |
| if (inputRank > 4) { |
| LOG(ERROR) << "Unsupported input tensor rank for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_CAST: { |
| if (inputCount != 1 || outputCount != 1) { |
| logInvalidInOutNumber(1, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputOperand = operands[inputIndexes[0]]; |
| auto outputOperand = operands[outputIndexes[0]]; |
| auto inputType = inputOperand.type; |
| auto outputType = outputOperand.type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if ((inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32 || |
| inputType == OperandType::TENSOR_INT32 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM) && |
| (outputType == OperandType::TENSOR_FLOAT16 || |
| outputType == OperandType::TENSOR_FLOAT32 || |
| outputType == OperandType::TENSOR_INT32 || |
| outputType == OperandType::TENSOR_QUANT8_ASYMM)) { |
| inExpectedTypes = {inputType}; |
| outExpectedTypes = {outputType}; |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else if (inputType == OperandType::TENSOR_BOOL8 || |
| inputType == OperandType::TENSOR_QUANT16_ASYMM || |
| inputType == OperandType::TENSOR_QUANT16_SYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED || |
| inputType == OperandType::TENSOR_QUANT8_SYMM) { |
| inExpectedTypes = {inputType}; |
| outExpectedTypes = {inputType}; // Only identity CAST is supported. |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| LOG(ERROR) << "Unsupported data type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| // Validate that output shape is equal to input shape if dimensions |
| // are already known. |
| auto getNumberOfElements = [](const std::vector<uint32_t>& dims) { |
| if (dims.size() == 0) { |
| return 0; |
| } |
| return std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<>()); |
| }; |
| if (inputOperand.dimensions.size() != 0 && outputOperand.dimensions.size() != 0 && |
| getNumberOfElements(outputOperand.dimensions) != 0 && |
| inputOperand.dimensions != outputOperand.dimensions) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_MEAN: { |
| if (inputCount != 3 || outputCount != 1) { |
| logInvalidInOutNumber(3, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const auto inputRank = operands[inputIndexes[0]].dimensions.size(); |
| if (inputRank > 4) { |
| LOG(ERROR) << "Unsupported input tensor rank for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> inExpectedTypes = {inputType, OperandType::TENSOR_INT32, |
| OperandType::INT32}; |
| std::vector<OperandType> outExpectedTypes = {inputType}; |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_ARGMAX: |
| case ANEURALNETWORKS_ARGMIN: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32 || |
| inputType == OperandType::TENSOR_INT32 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| inExpectedTypes = {inputType, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_INT32}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_EXPAND_DIMS: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32 || |
| inputType == OperandType::TENSOR_INT32 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| inExpectedTypes = {inputType, OperandType::INT32}; |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_SPLIT: { |
| if (inputCount != 3) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3)" |
| << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| if (inputType != OperandType::TENSOR_FLOAT16 && |
| inputType != OperandType::TENSOR_FLOAT32 && |
| inputType != OperandType::TENSOR_INT32 && |
| inputType != OperandType::TENSOR_QUANT8_ASYMM && |
| inputType != OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| std::vector<OperandType> inExpectedTypes = {inputType, OperandType::INT32, |
| OperandType::INT32}; |
| std::vector<OperandType> outExpectedTypes(outputCount, inputType); |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_MAXIMUM: |
| case ANEURALNETWORKS_MINIMUM: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| OperandType inputType = operands[inputIndexes[0]].type; |
| if (inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32 || |
| inputType == OperandType::TENSOR_INT32 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| inExpectedTypes = {inputType, inputType}; |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_GROUPED_CONV_2D: { |
| if ((inputCount != 12 && inputCount != 9) || outputCount != 1) { |
| LOG(ERROR) << "Invalid number of input operands (" << inputCount |
| << ", expected 12 or 9) or output operands (" << outputCount |
| << ", expected 1) for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| auto filterType = operands[inputIndexes[1]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, |
| OperandType::TENSOR_FLOAT32, OperandType::INT32, |
| OperandType::INT32, OperandType::INT32, |
| OperandType::INT32, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT32}; |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, |
| OperandType::TENSOR_FLOAT16, OperandType::INT32, |
| OperandType::INT32, OperandType::INT32, |
| OperandType::INT32, OperandType::INT32}; |
| outExpectedTypes = {OperandType::TENSOR_FLOAT16}; |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| if (filterType != inputType && |
| filterType != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { |
| LOG(ERROR) << "Unsupported filter tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL && |
| std::get<Operand::SymmPerChannelQuantParams>( |
| operands[inputIndexes[1]].extraParams) |
| .channelDim != 0) { |
| LOG(ERROR) << "Unsupported filter tensor channel dimension for operation " |
| << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| inExpectedTypes = { |
| inputType, filterType, OperandType::TENSOR_INT32, |
| OperandType::INT32, OperandType::INT32, OperandType::INT32, |
| OperandType::INT32, OperandType::INT32}; |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| if (inputCount == 12) { |
| std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32); |
| inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(), |
| explicitScalarTypes.end()); |
| } |
| inExpectedTypes.push_back(OperandType::BOOL); |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_TILE: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32 || |
| inputType == OperandType::TENSOR_INT32 || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM || |
| inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| inExpectedTypes = {inputType, OperandType::TENSOR_INT32}; |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_POW: { |
| if (inputCount != 2 || outputCount != 1) { |
| logInvalidInOutNumber(2, 1); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto inputType = operands[inputIndexes[0]].type; |
| std::vector<OperandType> inExpectedTypes; |
| std::vector<OperandType> outExpectedTypes; |
| if (inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32) { |
| inExpectedTypes = {inputType, inputType}; |
| outExpectedTypes = {inputType}; |
| } else { |
| LOG(ERROR) << "Unsupported input tensor type for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| } else { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); |
| } |
| return validateOperationOperandTypes(operands, inputCount, inputIndexes, |
| inExpectedTypes, outputCount, outputIndexes, |
| outExpectedTypes); |
| } |
| case ANEURALNETWORKS_IF: { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| return validateIfOperation(inputCount, inputIndexes, outputCount, outputIndexes, |
| operands, helper) |
| ? ANEURALNETWORKS_NO_ERROR |
| : ANEURALNETWORKS_BAD_DATA; |
| } |
| case ANEURALNETWORKS_WHILE: { |
| NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); |
| return validateWhileOperation(inputCount, inputIndexes, outputCount, outputIndexes, |
| operands, helper) |
| ? ANEURALNETWORKS_NO_ERROR |
| : ANEURALNETWORKS_BAD_DATA; |
| } |
| default: { |
| const OperationRegistration* operationRegistration = |
| BuiltinOperationResolver::get()->findOperation( |
| static_cast<OperationType>(opType)); |
| if (operationRegistration == nullptr) { |
| if (0 <= opType && opType < kNumberOfOperationTypes) { |
| LOG(ERROR) << opType << " not registered"; |
| } else { |
| LOG(ERROR) << "Operation type " << opType << " out of the range [0, " |
| << kNumberOfOperationTypes << ")"; |
| } |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| if (operationRegistration->validate == nullptr) { |
| LOG(ERROR) << "Incomplete operation registration: " << opType; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| OperationValidationContext context(operationRegistration->name, inputCount, |
| inputIndexes, outputCount, outputIndexes, |
| operands.data()); |
| const auto maybeVersion = operationRegistration->validate(&context); |
| if (!maybeVersion.has_value()) { |
| LOG(ERROR) << "Validation failed for operation " << opType << ": " |
| << maybeVersion.error(); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (!validateVersion(&context, convert(halVersion), maybeVersion.value())) { |
| LOG(ERROR) << "Validation failed for operation " << opType; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| } |
| } |
| |
| ErrorStatus convertResultCodeToErrorStatus(int resultCode) { |
| switch (resultCode) { |
| case ANEURALNETWORKS_NO_ERROR: |
| return ErrorStatus::NONE; |
| |
| case ANEURALNETWORKS_BAD_DATA: |
| case ANEURALNETWORKS_UNEXPECTED_NULL: |
| return ErrorStatus::INVALID_ARGUMENT; |
| |
| case ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE: |
| return ErrorStatus::OUTPUT_INSUFFICIENT_SIZE; |
| |
| case ANEURALNETWORKS_UNAVAILABLE_DEVICE: |
| return ErrorStatus::DEVICE_UNAVAILABLE; |
| |
| case ANEURALNETWORKS_BAD_STATE: |
| case ANEURALNETWORKS_INCOMPLETE: |
| case ANEURALNETWORKS_OP_FAILED: |
| case ANEURALNETWORKS_OUT_OF_MEMORY: |
| case ANEURALNETWORKS_UNMAPPABLE: |
| case ANEURALNETWORKS_DEAD_OBJECT: |
| return ErrorStatus::GENERAL_FAILURE; |
| |
| case ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT: |
| return ErrorStatus::MISSED_DEADLINE_TRANSIENT; |
| case ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT: |
| return ErrorStatus::MISSED_DEADLINE_PERSISTENT; |
| case ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT: |
| return ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT; |
| case ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT: |
| return ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT; |
| } |
| LOG(ERROR) << "Unknown result code " << resultCode << " mapped to ErrorStatus::GENERAL_FAILURE"; |
| return ErrorStatus::GENERAL_FAILURE; |
| } |
| |
| int convertErrorStatusToResultCode(ErrorStatus status) { |
| switch (status) { |
| case ErrorStatus::NONE: |
| return ANEURALNETWORKS_NO_ERROR; |
| case ErrorStatus::DEVICE_UNAVAILABLE: |
| return ANEURALNETWORKS_UNAVAILABLE_DEVICE; |
| case ErrorStatus::GENERAL_FAILURE: |
| return ANEURALNETWORKS_OP_FAILED; |
| case ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: |
| return ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE; |
| case ErrorStatus::INVALID_ARGUMENT: |
| return ANEURALNETWORKS_BAD_DATA; |
| case ErrorStatus::MISSED_DEADLINE_TRANSIENT: |
| return ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT; |
| case ErrorStatus::MISSED_DEADLINE_PERSISTENT: |
| return ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT; |
| case ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT: |
| return ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT; |
| case ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT: |
| return ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT; |
| case ErrorStatus::DEAD_OBJECT: |
| return ANEURALNETWORKS_DEAD_OBJECT; |
| } |
| LOG(ERROR) << "Unknown ErrorStatus " << status << " mapped to ANEURALNETWORKS_OP_FAILED"; |
| return ANEURALNETWORKS_OP_FAILED; |
| } |
| |
| std::tuple<int, std::vector<OutputShape>, Timing> getExecutionResult( |
| ErrorStatus status, std::vector<OutputShape> outputShapes, Timing timing) { |
| constexpr Timing kNoTiming = {}; |
| const int n = convertErrorStatusToResultCode(status); |
| if (status != ErrorStatus::NONE && status != ErrorStatus::OUTPUT_INSUFFICIENT_SIZE && |
| !outputShapes.empty()) { |
| LOG(ERROR) << "The driver returned OutputShapes when it shouldn't."; |
| outputShapes.clear(); |
| } |
| if (status != ErrorStatus::NONE && timing != kNoTiming) { |
| LOG(ERROR) << "The driver returned Timing when it shouldn't."; |
| timing = kNoTiming; |
| } |
| return {n, std::move(outputShapes), timing}; |
| } |
| |
| FenceState syncWait(int fd, int timeout) { |
| // This implementation is directly based on the ::sync_wait() implementation. |
| |
| struct pollfd fds; |
| int ret; |
| |
| if (fd < 0) { |
| errno = EINVAL; |
| return FenceState::UNKNOWN; |
| } |
| |
| fds.fd = fd; |
| fds.events = POLLIN; |
| |
| do { |
| ret = poll(&fds, 1, timeout); |
| if (ret > 0) { |
| if (fds.revents & POLLNVAL) { |
| errno = EINVAL; |
| return FenceState::UNKNOWN; |
| } |
| if (fds.revents & POLLERR) { |
| errno = EINVAL; |
| return FenceState::ERROR; |
| } |
| return FenceState::SIGNALED; |
| } else if (ret == 0) { |
| errno = ETIME; |
| return FenceState::ACTIVE; |
| } |
| } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); |
| |
| return FenceState::UNKNOWN; |
| } |
| |
| #ifdef NN_DEBUGGABLE |
| uint32_t getProp(const char* str, uint32_t defaultValue) { |
| const std::string propStr = android::base::GetProperty(str, ""); |
| if (propStr.size() > 0) { |
| return std::stoi(propStr); |
| } else { |
| return defaultValue; |
| } |
| } |
| #endif // NN_DEBUGGABLE |
| |
| } // namespace nn |
| } // namespace android |