blob: 3683920377d7b7345b389a9f066165eb636c8060 [file] [log] [blame]
/* $NetBSD: getaddrinfo.c,v 1.82 2006/03/25 12:09:40 rpaulo Exp $ */
/* $KAME: getaddrinfo.c,v 1.29 2000/08/31 17:26:57 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define LOG_TAG "resolv"
#include "getaddrinfo.h"
#include <arpa/inet.h>
#include <arpa/nameser.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <unistd.h>
#include <android-base/logging.h>
#include "netd_resolv/resolv.h"
#include "res_comp.h"
#include "res_debug.h"
#include "res_init.h"
#include "resolv_cache.h"
#include "resolv_private.h"
#define ANY 0
using android::net::NetworkDnsEventReported;
const char in_addrany[] = {0, 0, 0, 0};
const char in_loopback[] = {127, 0, 0, 1};
const char in6_addrany[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const char in6_loopback[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
const struct afd {
int a_af;
int a_addrlen;
int a_socklen;
int a_off;
const char* a_addrany;
const char* a_loopback;
int a_scoped;
} afdl[] = {
{PF_INET6, sizeof(struct in6_addr), sizeof(struct sockaddr_in6),
offsetof(struct sockaddr_in6, sin6_addr), in6_addrany, in6_loopback, 1},
{PF_INET, sizeof(struct in_addr), sizeof(struct sockaddr_in),
offsetof(struct sockaddr_in, sin_addr), in_addrany, in_loopback, 0},
{0, 0, 0, 0, NULL, NULL, 0},
};
struct Explore {
int e_af;
int e_socktype;
int e_protocol;
int e_wild;
#define WILD_AF(ex) ((ex).e_wild & 0x01)
#define WILD_SOCKTYPE(ex) ((ex).e_wild & 0x02)
#define WILD_PROTOCOL(ex) ((ex).e_wild & 0x04)
};
const Explore explore_options[] = {
{PF_INET6, SOCK_DGRAM, IPPROTO_UDP, 0x07},
{PF_INET6, SOCK_STREAM, IPPROTO_TCP, 0x07},
{PF_INET6, SOCK_RAW, ANY, 0x05},
{PF_INET, SOCK_DGRAM, IPPROTO_UDP, 0x07},
{PF_INET, SOCK_STREAM, IPPROTO_TCP, 0x07},
{PF_INET, SOCK_RAW, ANY, 0x05},
{PF_UNSPEC, SOCK_DGRAM, IPPROTO_UDP, 0x07},
{PF_UNSPEC, SOCK_STREAM, IPPROTO_TCP, 0x07},
{PF_UNSPEC, SOCK_RAW, ANY, 0x05},
};
#define PTON_MAX 16
struct res_target {
struct res_target* next;
const char* name; // domain name
int qclass, qtype; // class and type of query
std::vector<uint8_t> answer = std::vector<uint8_t>(MAXPACKET, 0); // buffer to put answer
int n = 0; // result length
};
static int str2number(const char*);
static int explore_fqdn(const struct addrinfo*, const char*, const char*, struct addrinfo**,
const struct android_net_context*, NetworkDnsEventReported* event);
static int explore_null(const struct addrinfo*, const char*, struct addrinfo**);
static int explore_numeric(const struct addrinfo*, const char*, const char*, struct addrinfo**,
const char*);
static int explore_numeric_scope(const struct addrinfo*, const char*, const char*,
struct addrinfo**);
static int get_canonname(const struct addrinfo*, struct addrinfo*, const char*);
static struct addrinfo* get_ai(const struct addrinfo*, const struct afd*, const char*);
static int get_portmatch(const struct addrinfo*, const char*);
static int get_port(const struct addrinfo*, const char*, int);
static const struct afd* find_afd(int);
static int ip6_str2scopeid(const char*, struct sockaddr_in6*, uint32_t*);
static struct addrinfo* getanswer(const std::vector<uint8_t>&, int, const char*, int,
const struct addrinfo*, int* herrno);
static int dns_getaddrinfo(const char* name, const addrinfo* pai,
const android_net_context* netcontext, addrinfo** rv,
NetworkDnsEventReported* event);
static void _sethtent(FILE**);
static void _endhtent(FILE**);
static struct addrinfo* _gethtent(FILE**, const char*, const struct addrinfo*);
static struct addrinfo* getCustomHosts(const size_t netid, const char*, const struct addrinfo*);
static bool files_getaddrinfo(const size_t netid, const char* name, const addrinfo* pai,
addrinfo** res);
static int _find_src_addr(const struct sockaddr*, struct sockaddr*, unsigned, uid_t);
static int res_queryN(const char* name, res_target* target, res_state res, int* herrno);
static int res_searchN(const char* name, res_target* target, res_state res, int* herrno);
static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res,
int* herrno);
const char* const ai_errlist[] = {
"Success",
"Address family for hostname not supported", /* EAI_ADDRFAMILY */
"Temporary failure in name resolution", /* EAI_AGAIN */
"Invalid value for ai_flags", /* EAI_BADFLAGS */
"Non-recoverable failure in name resolution", /* EAI_FAIL */
"ai_family not supported", /* EAI_FAMILY */
"Memory allocation failure", /* EAI_MEMORY */
"No address associated with hostname", /* EAI_NODATA */
"hostname nor servname provided, or not known", /* EAI_NONAME */
"servname not supported for ai_socktype", /* EAI_SERVICE */
"ai_socktype not supported", /* EAI_SOCKTYPE */
"System error returned in errno", /* EAI_SYSTEM */
"Invalid value for hints", /* EAI_BADHINTS */
"Resolved protocol is unknown", /* EAI_PROTOCOL */
"Argument buffer overflow", /* EAI_OVERFLOW */
"Unknown error", /* EAI_MAX */
};
/* XXX macros that make external reference is BAD. */
#define GET_AI(ai, afd, addr) \
do { \
/* external reference: pai, error, and label free */ \
(ai) = get_ai(pai, (afd), (addr)); \
if ((ai) == NULL) { \
error = EAI_MEMORY; \
goto free; \
} \
} while (0)
#define GET_PORT(ai, serv) \
do { \
/* external reference: error and label free */ \
error = get_port((ai), (serv), 0); \
if (error != 0) goto free; \
} while (0)
#define MATCH_FAMILY(x, y, w) \
((x) == (y) || ((w) && ((x) == PF_UNSPEC || (y) == PF_UNSPEC)))
#define MATCH(x, y, w) ((x) == (y) || ((w) && ((x) == ANY || (y) == ANY)))
const char* gai_strerror(int ecode) {
if (ecode < 0 || ecode > EAI_MAX) ecode = EAI_MAX;
return ai_errlist[ecode];
}
void freeaddrinfo(struct addrinfo* ai) {
while (ai) {
struct addrinfo* next = ai->ai_next;
if (ai->ai_canonname) free(ai->ai_canonname);
// Also frees ai->ai_addr which points to extra space beyond addrinfo
free(ai);
ai = next;
}
}
static int str2number(const char* p) {
char* ep;
unsigned long v;
assert(p != NULL);
if (*p == '\0') return -1;
ep = NULL;
errno = 0;
v = strtoul(p, &ep, 10);
if (errno == 0 && ep && *ep == '\0' && v <= UINT_MAX)
return v;
else
return -1;
}
/*
* The following functions determine whether IPv4 or IPv6 connectivity is
* available in order to implement AI_ADDRCONFIG.
*
* Strictly speaking, AI_ADDRCONFIG should not look at whether connectivity is
* available, but whether addresses of the specified family are "configured
* on the local system". However, bionic doesn't currently support getifaddrs,
* so checking for connectivity is the next best thing.
*/
static int have_ipv6(unsigned mark, uid_t uid) {
static const struct sockaddr_in6 sin6_test = {
.sin6_family = AF_INET6,
.sin6_addr.s6_addr = {// 2000::
0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
sockaddr_union addr = {.sin6 = sin6_test};
return _find_src_addr(&addr.sa, NULL, mark, uid) == 1;
}
static int have_ipv4(unsigned mark, uid_t uid) {
static const struct sockaddr_in sin_test = {
.sin_family = AF_INET,
.sin_addr.s_addr = __constant_htonl(0x08080808L) // 8.8.8.8
};
sockaddr_union addr = {.sin = sin_test};
return _find_src_addr(&addr.sa, NULL, mark, uid) == 1;
}
// Internal version of getaddrinfo(), but limited to AI_NUMERICHOST.
// NOTE: also called by resolv_set_nameservers().
int getaddrinfo_numeric(const char* hostname, const char* servname, addrinfo hints,
addrinfo** result) {
hints.ai_flags = AI_NUMERICHOST;
const android_net_context netcontext = {
.app_netid = NETID_UNSET,
.app_mark = MARK_UNSET,
.dns_netid = NETID_UNSET,
.dns_mark = MARK_UNSET,
.uid = NET_CONTEXT_INVALID_UID,
.pid = NET_CONTEXT_INVALID_PID,
};
NetworkDnsEventReported event;
return android_getaddrinfofornetcontext(hostname, servname, &hints, &netcontext, result,
&event);
}
namespace {
int validateHints(const addrinfo* _Nonnull hints) {
if (!hints) return EAI_BADHINTS;
// error check for hints
if (hints->ai_addrlen || hints->ai_canonname || hints->ai_addr || hints->ai_next) {
return EAI_BADHINTS;
}
if (hints->ai_flags & ~AI_MASK) {
return EAI_BADFLAGS;
}
if (!(hints->ai_family == PF_UNSPEC || hints->ai_family == PF_INET ||
hints->ai_family == PF_INET6)) {
return EAI_FAMILY;
}
// Socket types which are not in explore_options.
switch (hints->ai_socktype) {
case SOCK_RAW:
case SOCK_DGRAM:
case SOCK_STREAM:
case ANY:
break;
default:
return EAI_SOCKTYPE;
}
if (hints->ai_socktype == ANY || hints->ai_protocol == ANY) return 0;
// if both socktype/protocol are specified, check if they are meaningful combination.
for (const Explore& ex : explore_options) {
if (hints->ai_family != ex.e_af) continue;
if (ex.e_socktype == ANY) continue;
if (ex.e_protocol == ANY) continue;
if (hints->ai_socktype == ex.e_socktype && hints->ai_protocol != ex.e_protocol) {
return EAI_BADHINTS;
}
}
return 0;
}
} // namespace
int android_getaddrinfofornetcontext(const char* hostname, const char* servname,
const addrinfo* hints, const android_net_context* netcontext,
addrinfo** res, NetworkDnsEventReported* event) {
// hostname is allowed to be nullptr
// servname is allowed to be nullptr
// hints is allowed to be nullptr
assert(res != nullptr);
assert(netcontext != nullptr);
assert(event != nullptr);
addrinfo sentinel = {};
addrinfo* cur = &sentinel;
int error = 0;
do {
if (hostname == nullptr && servname == nullptr) {
error = EAI_NONAME;
break;
}
if (hints && (error = validateHints(hints))) break;
addrinfo ai = hints ? *hints : addrinfo{};
// Check for special cases:
// (1) numeric servname is disallowed if socktype/protocol are left unspecified.
// (2) servname is disallowed for raw and other inet{,6} sockets.
if (MATCH_FAMILY(ai.ai_family, PF_INET, 1) || MATCH_FAMILY(ai.ai_family, PF_INET6, 1)) {
addrinfo tmp = ai;
if (tmp.ai_family == PF_UNSPEC) {
tmp.ai_family = PF_INET6;
}
error = get_portmatch(&tmp, servname);
if (error) break;
}
// NULL hostname, or numeric hostname
for (const Explore& ex : explore_options) {
/* PF_UNSPEC entries are prepared for DNS queries only */
if (ex.e_af == PF_UNSPEC) continue;
if (!MATCH_FAMILY(ai.ai_family, ex.e_af, WILD_AF(ex))) continue;
if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue;
if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue;
addrinfo tmp = ai;
if (tmp.ai_family == PF_UNSPEC) tmp.ai_family = ex.e_af;
if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype;
if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol;
LOG(DEBUG) << __func__ << ": explore_numeric: ai_family=" << tmp.ai_family
<< " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol;
if (hostname == nullptr)
error = explore_null(&tmp, servname, &cur->ai_next);
else
error = explore_numeric_scope(&tmp, hostname, servname, &cur->ai_next);
if (error) break;
while (cur->ai_next) cur = cur->ai_next;
}
if (error) break;
// If numeric representation of AF1 can be interpreted as FQDN
// representation of AF2, we need to think again about the code below.
if (sentinel.ai_next) break;
if (hostname == nullptr) {
error = EAI_NODATA;
break;
}
if (ai.ai_flags & AI_NUMERICHOST) {
error = EAI_NONAME;
break;
}
return resolv_getaddrinfo(hostname, servname, hints, netcontext, res, event);
} while (0);
if (error) {
freeaddrinfo(sentinel.ai_next);
*res = nullptr;
} else {
*res = sentinel.ai_next;
}
return error;
}
int resolv_getaddrinfo(const char* _Nonnull hostname, const char* servname, const addrinfo* hints,
const android_net_context* _Nonnull netcontext, addrinfo** _Nonnull res,
NetworkDnsEventReported* _Nonnull event) {
if (hostname == nullptr && servname == nullptr) return EAI_NONAME;
if (hostname == nullptr) return EAI_NODATA;
// servname is allowed to be nullptr
// hints is allowed to be nullptr
assert(res != nullptr);
assert(netcontext != nullptr);
assert(event != nullptr);
int error = EAI_FAIL;
if (hints && (error = validateHints(hints))) {
*res = nullptr;
return error;
}
addrinfo ai = hints ? *hints : addrinfo{};
addrinfo sentinel = {};
addrinfo* cur = &sentinel;
// hostname as alphanumeric name.
// We would like to prefer AF_INET6 over AF_INET, so we'll make a outer loop by AFs.
for (const Explore& ex : explore_options) {
// Require exact match for family field
if (ai.ai_family != ex.e_af) continue;
if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue;
if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue;
addrinfo tmp = ai;
if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype;
if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol;
LOG(DEBUG) << __func__ << ": explore_fqdn(): ai_family=" << tmp.ai_family
<< " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol;
error = explore_fqdn(&tmp, hostname, servname, &cur->ai_next, netcontext, event);
while (cur->ai_next) cur = cur->ai_next;
}
// Propagate the last error from explore_fqdn(), but only when *all* attempts failed.
if ((*res = sentinel.ai_next)) return 0;
// TODO: consider removing freeaddrinfo.
freeaddrinfo(sentinel.ai_next);
*res = nullptr;
return (error == 0) ? EAI_FAIL : error;
}
// FQDN hostname, DNS lookup
static int explore_fqdn(const addrinfo* pai, const char* hostname, const char* servname,
addrinfo** res, const android_net_context* netcontext,
NetworkDnsEventReported* event) {
assert(pai != nullptr);
// hostname may be nullptr
// servname may be nullptr
assert(res != nullptr);
addrinfo* result = nullptr;
int error = 0;
// If the servname does not match socktype/protocol, return error code.
if ((error = get_portmatch(pai, servname))) return error;
if (!files_getaddrinfo(netcontext->dns_netid, hostname, pai, &result)) {
error = dns_getaddrinfo(hostname, pai, netcontext, &result, event);
}
if (error) {
freeaddrinfo(result);
return error;
}
for (addrinfo* cur = result; cur; cur = cur->ai_next) {
// canonname should be filled already
if ((error = get_port(cur, servname, 0))) {
freeaddrinfo(result);
return error;
}
}
*res = result;
return 0;
}
/*
* hostname == NULL.
* passive socket -> anyaddr (0.0.0.0 or ::)
* non-passive socket -> localhost (127.0.0.1 or ::1)
*/
static int explore_null(const struct addrinfo* pai, const char* servname, struct addrinfo** res) {
int s;
const struct afd* afd;
struct addrinfo* cur;
struct addrinfo sentinel;
int error;
LOG(DEBUG) << __func__;
assert(pai != NULL);
/* servname may be NULL */
assert(res != NULL);
*res = NULL;
sentinel.ai_next = NULL;
cur = &sentinel;
/*
* filter out AFs that are not supported by the kernel
* XXX errno?
*/
s = socket(pai->ai_family, SOCK_DGRAM | SOCK_CLOEXEC, 0);
if (s < 0) {
if (errno != EMFILE) return 0;
} else
close(s);
/*
* if the servname does not match socktype/protocol, ignore it.
*/
if (get_portmatch(pai, servname) != 0) return 0;
afd = find_afd(pai->ai_family);
if (afd == NULL) return 0;
if (pai->ai_flags & AI_PASSIVE) {
GET_AI(cur->ai_next, afd, afd->a_addrany);
GET_PORT(cur->ai_next, servname);
} else {
GET_AI(cur->ai_next, afd, afd->a_loopback);
GET_PORT(cur->ai_next, servname);
}
cur = cur->ai_next;
*res = sentinel.ai_next;
return 0;
free:
freeaddrinfo(sentinel.ai_next);
return error;
}
/*
* numeric hostname
*/
static int explore_numeric(const struct addrinfo* pai, const char* hostname, const char* servname,
struct addrinfo** res, const char* canonname) {
const struct afd* afd;
struct addrinfo* cur;
struct addrinfo sentinel;
int error;
char pton[PTON_MAX];
assert(pai != NULL);
/* hostname may be NULL */
/* servname may be NULL */
assert(res != NULL);
*res = NULL;
sentinel.ai_next = NULL;
cur = &sentinel;
/*
* if the servname does not match socktype/protocol, ignore it.
*/
if (get_portmatch(pai, servname) != 0) return 0;
afd = find_afd(pai->ai_family);
if (afd == NULL) return 0;
if (inet_pton(afd->a_af, hostname, pton) == 1) {
if (pai->ai_family == afd->a_af || pai->ai_family == PF_UNSPEC /*?*/) {
GET_AI(cur->ai_next, afd, pton);
GET_PORT(cur->ai_next, servname);
if ((pai->ai_flags & AI_CANONNAME)) {
/*
* Set the numeric address itself as
* the canonical name, based on a
* clarification in rfc2553bis-03.
*/
error = get_canonname(pai, cur->ai_next, canonname);
if (error != 0) {
freeaddrinfo(sentinel.ai_next);
return error;
}
}
while (cur->ai_next) cur = cur->ai_next;
} else
return EAI_FAMILY;
}
*res = sentinel.ai_next;
return 0;
free:
freeaddrinfo(sentinel.ai_next);
return error;
}
/*
* numeric hostname with scope
*/
static int explore_numeric_scope(const struct addrinfo* pai, const char* hostname,
const char* servname, struct addrinfo** res) {
const struct afd* afd;
struct addrinfo* cur;
int error;
const char *cp, *scope, *addr;
struct sockaddr_in6* sin6;
LOG(DEBUG) << __func__;
assert(pai != NULL);
/* hostname may be NULL */
/* servname may be NULL */
assert(res != NULL);
/*
* if the servname does not match socktype/protocol, ignore it.
*/
if (get_portmatch(pai, servname) != 0) return 0;
afd = find_afd(pai->ai_family);
if (afd == NULL) return 0;
if (!afd->a_scoped) return explore_numeric(pai, hostname, servname, res, hostname);
cp = strchr(hostname, SCOPE_DELIMITER);
if (cp == NULL) return explore_numeric(pai, hostname, servname, res, hostname);
/*
* Handle special case of <scoped_address><delimiter><scope id>
*/
char* hostname2 = strdup(hostname);
if (hostname2 == NULL) return EAI_MEMORY;
/* terminate at the delimiter */
hostname2[cp - hostname] = '\0';
addr = hostname2;
scope = cp + 1;
error = explore_numeric(pai, addr, servname, res, hostname);
if (error == 0) {
uint32_t scopeid;
for (cur = *res; cur; cur = cur->ai_next) {
if (cur->ai_family != AF_INET6) continue;
sin6 = (struct sockaddr_in6*) (void*) cur->ai_addr;
if (ip6_str2scopeid(scope, sin6, &scopeid) == -1) {
free(hostname2);
return (EAI_NODATA); /* XXX: is return OK? */
}
sin6->sin6_scope_id = scopeid;
}
}
free(hostname2);
return error;
}
static int get_canonname(const struct addrinfo* pai, struct addrinfo* ai, const char* str) {
assert(pai != NULL);
assert(ai != NULL);
assert(str != NULL);
if ((pai->ai_flags & AI_CANONNAME) != 0) {
ai->ai_canonname = strdup(str);
if (ai->ai_canonname == NULL) return EAI_MEMORY;
}
return 0;
}
static struct addrinfo* get_ai(const struct addrinfo* pai, const struct afd* afd,
const char* addr) {
char* p;
struct addrinfo* ai;
assert(pai != NULL);
assert(afd != NULL);
assert(addr != NULL);
ai = (struct addrinfo*) malloc(sizeof(struct addrinfo) + sizeof(sockaddr_union));
if (ai == NULL) return NULL;
memcpy(ai, pai, sizeof(struct addrinfo));
ai->ai_addr = (struct sockaddr*) (void*) (ai + 1);
memset(ai->ai_addr, 0, sizeof(sockaddr_union));
ai->ai_addrlen = afd->a_socklen;
ai->ai_addr->sa_family = ai->ai_family = afd->a_af;
p = (char*) (void*) (ai->ai_addr);
memcpy(p + afd->a_off, addr, (size_t) afd->a_addrlen);
return ai;
}
static int get_portmatch(const struct addrinfo* ai, const char* servname) {
assert(ai != NULL);
/* servname may be NULL */
return get_port(ai, servname, 1);
}
static int get_port(const struct addrinfo* ai, const char* servname, int matchonly) {
const char* proto;
struct servent* sp;
int port;
int allownumeric;
assert(ai != NULL);
/* servname may be NULL */
if (servname == NULL) return 0;
switch (ai->ai_family) {
case AF_INET:
case AF_INET6:
break;
default:
return 0;
}
switch (ai->ai_socktype) {
case SOCK_RAW:
return EAI_SERVICE;
case SOCK_DGRAM:
case SOCK_STREAM:
allownumeric = 1;
break;
case ANY:
allownumeric = 1;
break;
default:
return EAI_SOCKTYPE;
}
port = str2number(servname);
if (port >= 0) {
if (!allownumeric) return EAI_SERVICE;
if (port < 0 || port > 65535) return EAI_SERVICE;
port = htons(port);
} else {
if (ai->ai_flags & AI_NUMERICSERV) return EAI_NONAME;
switch (ai->ai_socktype) {
case SOCK_DGRAM:
proto = "udp";
break;
case SOCK_STREAM:
proto = "tcp";
break;
default:
proto = NULL;
break;
}
if ((sp = getservbyname(servname, proto)) == NULL) return EAI_SERVICE;
port = sp->s_port;
}
if (!matchonly) {
switch (ai->ai_family) {
case AF_INET:
((struct sockaddr_in*) (void*) ai->ai_addr)->sin_port = port;
break;
case AF_INET6:
((struct sockaddr_in6*) (void*) ai->ai_addr)->sin6_port = port;
break;
}
}
return 0;
}
static const struct afd* find_afd(int af) {
const struct afd* afd;
if (af == PF_UNSPEC) return NULL;
for (afd = afdl; afd->a_af; afd++) {
if (afd->a_af == af) return afd;
}
return NULL;
}
// Convert a string to a scope identifier.
static int ip6_str2scopeid(const char* scope, struct sockaddr_in6* sin6, uint32_t* scopeid) {
uint64_t lscopeid;
struct in6_addr* a6;
char* ep;
assert(scope != NULL);
assert(sin6 != NULL);
assert(scopeid != NULL);
a6 = &sin6->sin6_addr;
/* empty scopeid portion is invalid */
if (*scope == '\0') return -1;
if (IN6_IS_ADDR_LINKLOCAL(a6) || IN6_IS_ADDR_MC_LINKLOCAL(a6)) {
/*
* We currently assume a one-to-one mapping between links
* and interfaces, so we simply use interface indices for
* like-local scopes.
*/
*scopeid = if_nametoindex(scope);
if (*scopeid != 0) return 0;
}
// try to convert to a numeric id as a last resort
errno = 0;
lscopeid = strtoul(scope, &ep, 10);
*scopeid = (uint32_t)(lscopeid & 0xffffffffUL);
if (errno == 0 && ep && *ep == '\0' && *scopeid == lscopeid)
return 0;
else
return -1;
}
/* code duplicate with gethnamaddr.c */
#define BOUNDED_INCR(x) \
do { \
BOUNDS_CHECK(cp, x); \
cp += (x); \
} while (0)
#define BOUNDS_CHECK(ptr, count) \
do { \
if (eom - (ptr) < (count)) { \
*herrno = NO_RECOVERY; \
return NULL; \
} \
} while (0)
static struct addrinfo* getanswer(const std::vector<uint8_t>& answer, int anslen, const char* qname,
int qtype, const struct addrinfo* pai, int* herrno) {
struct addrinfo sentinel = {};
struct addrinfo *cur;
struct addrinfo ai;
const struct afd* afd;
char* canonname;
const HEADER* hp;
const uint8_t* cp;
int n;
const uint8_t* eom;
char *bp, *ep;
int type, ancount, qdcount;
int haveanswer, had_error;
char tbuf[MAXDNAME];
char hostbuf[8 * 1024];
assert(qname != NULL);
assert(pai != NULL);
cur = &sentinel;
canonname = NULL;
eom = answer.data() + anslen;
bool (*name_ok)(const char* dn);
switch (qtype) {
case T_A:
case T_AAAA:
case T_ANY: /*use T_ANY only for T_A/T_AAAA lookup*/
name_ok = res_hnok;
break;
default:
return NULL; /* XXX should be abort(); */
}
/*
* find first satisfactory answer
*/
hp = reinterpret_cast<const HEADER*>(answer.data());
ancount = ntohs(hp->ancount);
qdcount = ntohs(hp->qdcount);
bp = hostbuf;
ep = hostbuf + sizeof hostbuf;
cp = answer.data();
BOUNDED_INCR(HFIXEDSZ);
if (qdcount != 1) {
*herrno = NO_RECOVERY;
return (NULL);
}
n = dn_expand(answer.data(), eom, cp, bp, ep - bp);
if ((n < 0) || !(*name_ok)(bp)) {
*herrno = NO_RECOVERY;
return (NULL);
}
BOUNDED_INCR(n + QFIXEDSZ);
if (qtype == T_A || qtype == T_AAAA || qtype == T_ANY) {
/* res_send() has already verified that the query name is the
* same as the one we sent; this just gets the expanded name
* (i.e., with the succeeding search-domain tacked on).
*/
n = strlen(bp) + 1; /* for the \0 */
if (n >= MAXHOSTNAMELEN) {
*herrno = NO_RECOVERY;
return (NULL);
}
canonname = bp;
bp += n;
/* The qname can be abbreviated, but h_name is now absolute. */
qname = canonname;
}
haveanswer = 0;
had_error = 0;
while (ancount-- > 0 && cp < eom && !had_error) {
n = dn_expand(answer.data(), eom, cp, bp, ep - bp);
if ((n < 0) || !(*name_ok)(bp)) {
had_error++;
continue;
}
cp += n; /* name */
BOUNDS_CHECK(cp, 3 * INT16SZ + INT32SZ);
type = ntohs(*reinterpret_cast<const uint16_t*>(cp));
cp += INT16SZ; /* type */
int cl = ntohs(*reinterpret_cast<const uint16_t*>(cp));
cp += INT16SZ + INT32SZ; /* class, TTL */
n = ntohs(*reinterpret_cast<const uint16_t*>(cp));
cp += INT16SZ; /* len */
BOUNDS_CHECK(cp, n);
if (cl != C_IN) {
/* XXX - debug? syslog? */
cp += n;
continue; /* XXX - had_error++ ? */
}
if ((qtype == T_A || qtype == T_AAAA || qtype == T_ANY) && type == T_CNAME) {
n = dn_expand(answer.data(), eom, cp, tbuf, sizeof tbuf);
if ((n < 0) || !(*name_ok)(tbuf)) {
had_error++;
continue;
}
cp += n;
/* Get canonical name. */
n = strlen(tbuf) + 1; /* for the \0 */
if (n > ep - bp || n >= MAXHOSTNAMELEN) {
had_error++;
continue;
}
strlcpy(bp, tbuf, (size_t)(ep - bp));
canonname = bp;
bp += n;
continue;
}
if (qtype == T_ANY) {
if (!(type == T_A || type == T_AAAA)) {
cp += n;
continue;
}
} else if (type != qtype) {
if (type != T_KEY && type != T_SIG)
LOG(DEBUG) << __func__ << ": asked for \"" << qname << " " << p_class(C_IN) << " "
<< p_type(qtype) << "\", got type \"" << p_type(type) << "\"";
cp += n;
continue; /* XXX - had_error++ ? */
}
switch (type) {
case T_A:
case T_AAAA:
if (strcasecmp(canonname, bp) != 0) {
LOG(DEBUG) << __func__ << ": asked for \"" << canonname << "\", got \"" << bp
<< "\"";
cp += n;
continue; /* XXX - had_error++ ? */
}
if (type == T_A && n != INADDRSZ) {
cp += n;
continue;
}
if (type == T_AAAA && n != IN6ADDRSZ) {
cp += n;
continue;
}
if (type == T_AAAA) {
struct in6_addr in6;
memcpy(&in6, cp, IN6ADDRSZ);
if (IN6_IS_ADDR_V4MAPPED(&in6)) {
cp += n;
continue;
}
}
if (!haveanswer) {
int nn;
canonname = bp;
nn = strlen(bp) + 1; /* for the \0 */
bp += nn;
}
/* don't overwrite pai */
ai = *pai;
ai.ai_family = (type == T_A) ? AF_INET : AF_INET6;
afd = find_afd(ai.ai_family);
if (afd == NULL) {
cp += n;
continue;
}
cur->ai_next = get_ai(&ai, afd, (const char*) cp);
if (cur->ai_next == NULL) had_error++;
while (cur && cur->ai_next) cur = cur->ai_next;
cp += n;
break;
default:
abort();
}
if (!had_error) haveanswer++;
}
if (haveanswer) {
if (!canonname)
(void) get_canonname(pai, sentinel.ai_next, qname);
else
(void) get_canonname(pai, sentinel.ai_next, canonname);
*herrno = NETDB_SUCCESS;
return sentinel.ai_next;
}
*herrno = NO_RECOVERY;
return NULL;
}
struct addrinfo_sort_elem {
struct addrinfo* ai;
int has_src_addr;
sockaddr_union src_addr;
int original_order;
};
static int _get_scope(const struct sockaddr* addr) {
if (addr->sa_family == AF_INET6) {
const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) {
return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr);
} else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) ||
IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) {
/*
* RFC 4291 section 2.5.3 says loopback is to be treated as having
* link-local scope.
*/
return IPV6_ADDR_SCOPE_LINKLOCAL;
} else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
return IPV6_ADDR_SCOPE_SITELOCAL;
} else {
return IPV6_ADDR_SCOPE_GLOBAL;
}
} else if (addr->sa_family == AF_INET) {
const struct sockaddr_in* addr4 = (const struct sockaddr_in*) addr;
unsigned long int na = ntohl(addr4->sin_addr.s_addr);
if (IN_LOOPBACK(na) || /* 127.0.0.0/8 */
(na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */
return IPV6_ADDR_SCOPE_LINKLOCAL;
} else {
/*
* RFC 6724 section 3.2. Other IPv4 addresses, including private addresses
* and shared addresses (100.64.0.0/10), are assigned global scope.
*/
return IPV6_ADDR_SCOPE_GLOBAL;
}
} else {
/*
* This should never happen.
* Return a scope with low priority as a last resort.
*/
return IPV6_ADDR_SCOPE_NODELOCAL;
}
}
/* These macros are modelled after the ones in <netinet/in6.h>. */
/* RFC 4380, section 2.6 */
#define IN6_IS_ADDR_TEREDO(a) \
((*(const uint32_t*) (const void*) (&(a)->s6_addr[0]) == ntohl(0x20010000)))
/* RFC 3056, section 2. */
#define IN6_IS_ADDR_6TO4(a) (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02))
/* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */
#define IN6_IS_ADDR_6BONE(a) (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe))
/*
* Get the label for a given IPv4/IPv6 address.
* RFC 6724, section 2.1.
*/
static int _get_label(const struct sockaddr* addr) {
if (addr->sa_family == AF_INET) {
return 4;
} else if (addr->sa_family == AF_INET6) {
const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
return 0;
} else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) {
return 4;
} else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
return 2;
} else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
return 5;
} else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) {
return 13;
} else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) {
return 3;
} else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
return 11;
} else if (IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) {
return 12;
} else {
/* All other IPv6 addresses, including global unicast addresses. */
return 1;
}
} else {
/*
* This should never happen.
* Return a semi-random label as a last resort.
*/
return 1;
}
}
/*
* Get the precedence for a given IPv4/IPv6 address.
* RFC 6724, section 2.1.
*/
static int _get_precedence(const struct sockaddr* addr) {
if (addr->sa_family == AF_INET) {
return 35;
} else if (addr->sa_family == AF_INET6) {
const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
return 50;
} else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) {
return 35;
} else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
return 30;
} else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
return 5;
} else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) {
return 3;
} else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) ||
IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) ||
IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) {
return 1;
} else {
/* All other IPv6 addresses, including global unicast addresses. */
return 40;
}
} else {
return 1;
}
}
/*
* Find number of matching initial bits between the two addresses a1 and a2.
*/
static int _common_prefix_len(const struct in6_addr* a1, const struct in6_addr* a2) {
const char* p1 = (const char*) a1;
const char* p2 = (const char*) a2;
unsigned i;
for (i = 0; i < sizeof(*a1); ++i) {
int x, j;
if (p1[i] == p2[i]) {
continue;
}
x = p1[i] ^ p2[i];
for (j = 0; j < CHAR_BIT; ++j) {
if (x & (1 << (CHAR_BIT - 1))) {
return i * CHAR_BIT + j;
}
x <<= 1;
}
}
return sizeof(*a1) * CHAR_BIT;
}
/*
* Compare two source/destination address pairs.
* RFC 6724, section 6.
*/
static int _rfc6724_compare(const void* ptr1, const void* ptr2) {
const struct addrinfo_sort_elem* a1 = (const struct addrinfo_sort_elem*) ptr1;
const struct addrinfo_sort_elem* a2 = (const struct addrinfo_sort_elem*) ptr2;
int scope_src1, scope_dst1, scope_match1;
int scope_src2, scope_dst2, scope_match2;
int label_src1, label_dst1, label_match1;
int label_src2, label_dst2, label_match2;
int precedence1, precedence2;
int prefixlen1, prefixlen2;
/* Rule 1: Avoid unusable destinations. */
if (a1->has_src_addr != a2->has_src_addr) {
return a2->has_src_addr - a1->has_src_addr;
}
/* Rule 2: Prefer matching scope. */
scope_src1 = _get_scope(&a1->src_addr.sa);
scope_dst1 = _get_scope(a1->ai->ai_addr);
scope_match1 = (scope_src1 == scope_dst1);
scope_src2 = _get_scope(&a2->src_addr.sa);
scope_dst2 = _get_scope(a2->ai->ai_addr);
scope_match2 = (scope_src2 == scope_dst2);
if (scope_match1 != scope_match2) {
return scope_match2 - scope_match1;
}
/*
* Rule 3: Avoid deprecated addresses.
* TODO(sesse): We don't currently have a good way of finding this.
*/
/*
* Rule 4: Prefer home addresses.
* TODO(sesse): We don't currently have a good way of finding this.
*/
/* Rule 5: Prefer matching label. */
label_src1 = _get_label(&a1->src_addr.sa);
label_dst1 = _get_label(a1->ai->ai_addr);
label_match1 = (label_src1 == label_dst1);
label_src2 = _get_label(&a2->src_addr.sa);
label_dst2 = _get_label(a2->ai->ai_addr);
label_match2 = (label_src2 == label_dst2);
if (label_match1 != label_match2) {
return label_match2 - label_match1;
}
/* Rule 6: Prefer higher precedence. */
precedence1 = _get_precedence(a1->ai->ai_addr);
precedence2 = _get_precedence(a2->ai->ai_addr);
if (precedence1 != precedence2) {
return precedence2 - precedence1;
}
/*
* Rule 7: Prefer native transport.
* TODO(sesse): We don't currently have a good way of finding this.
*/
/* Rule 8: Prefer smaller scope. */
if (scope_dst1 != scope_dst2) {
return scope_dst1 - scope_dst2;
}
/*
* Rule 9: Use longest matching prefix.
* We implement this for IPv6 only, as the rules in RFC 6724 don't seem
* to work very well directly applied to IPv4. (glibc uses information from
* the routing table for a custom IPv4 implementation here.)
*/
if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 && a2->has_src_addr &&
a2->ai->ai_addr->sa_family == AF_INET6) {
const struct sockaddr_in6* a1_src = &a1->src_addr.sin6;
const struct sockaddr_in6* a1_dst = (const struct sockaddr_in6*) a1->ai->ai_addr;
const struct sockaddr_in6* a2_src = &a2->src_addr.sin6;
const struct sockaddr_in6* a2_dst = (const struct sockaddr_in6*) a2->ai->ai_addr;
prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr);
prefixlen2 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr);
if (prefixlen1 != prefixlen2) {
return prefixlen2 - prefixlen1;
}
}
/*
* Rule 10: Leave the order unchanged.
* We need this since qsort() is not necessarily stable.
*/
return a1->original_order - a2->original_order;
}
/*
* Find the source address that will be used if trying to connect to the given
* address. src_addr must be large enough to hold a struct sockaddr_in6.
*
* Returns 1 if a source address was found, 0 if the address is unreachable,
* and -1 if a fatal error occurred. If 0 or -1, the contents of src_addr are
* undefined.
*/
static int _find_src_addr(const struct sockaddr* addr, struct sockaddr* src_addr, unsigned mark,
uid_t uid) {
int sock;
int ret;
socklen_t len;
switch (addr->sa_family) {
case AF_INET:
len = sizeof(struct sockaddr_in);
break;
case AF_INET6:
len = sizeof(struct sockaddr_in6);
break;
default:
/* No known usable source address for non-INET families. */
return 0;
}
sock = socket(addr->sa_family, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP);
if (sock == -1) {
if (errno == EAFNOSUPPORT) {
return 0;
} else {
return -1;
}
}
if (mark != MARK_UNSET && setsockopt(sock, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) {
close(sock);
return 0;
}
if (uid > 0 && uid != NET_CONTEXT_INVALID_UID && fchown(sock, uid, (gid_t) -1) < 0) {
close(sock);
return 0;
}
do {
ret = connect(sock, addr, len);
} while (ret == -1 && errno == EINTR);
if (ret == -1) {
close(sock);
return 0;
}
if (src_addr && getsockname(sock, src_addr, &len) == -1) {
close(sock);
return -1;
}
close(sock);
return 1;
}
/*
* Sort the linked list starting at sentinel->ai_next in RFC6724 order.
* Will leave the list unchanged if an error occurs.
*/
static void _rfc6724_sort(struct addrinfo* list_sentinel, unsigned mark, uid_t uid) {
struct addrinfo* cur;
int nelem = 0, i;
struct addrinfo_sort_elem* elems;
cur = list_sentinel->ai_next;
while (cur) {
++nelem;
cur = cur->ai_next;
}
elems = (struct addrinfo_sort_elem*) malloc(nelem * sizeof(struct addrinfo_sort_elem));
if (elems == NULL) {
goto error;
}
/*
* Convert the linked list to an array that also contains the candidate
* source address for each destination address.
*/
for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) {
int has_src_addr;
assert(cur != NULL);
elems[i].ai = cur;
elems[i].original_order = i;
has_src_addr = _find_src_addr(cur->ai_addr, &elems[i].src_addr.sa, mark, uid);
if (has_src_addr == -1) {
goto error;
}
elems[i].has_src_addr = has_src_addr;
}
/* Sort the addresses, and rearrange the linked list so it matches the sorted order. */
qsort((void*) elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc6724_compare);
list_sentinel->ai_next = elems[0].ai;
for (i = 0; i < nelem - 1; ++i) {
elems[i].ai->ai_next = elems[i + 1].ai;
}
elems[nelem - 1].ai->ai_next = NULL;
error:
free(elems);
}
static int dns_getaddrinfo(const char* name, const addrinfo* pai,
const android_net_context* netcontext, addrinfo** rv,
NetworkDnsEventReported* event) {
res_target q = {};
res_target q2 = {};
switch (pai->ai_family) {
case AF_UNSPEC: {
/* prefer IPv6 */
q.name = name;
q.qclass = C_IN;
int query_ipv6 = 1, query_ipv4 = 1;
if (pai->ai_flags & AI_ADDRCONFIG) {
query_ipv6 = have_ipv6(netcontext->app_mark, netcontext->uid);
query_ipv4 = have_ipv4(netcontext->app_mark, netcontext->uid);
}
if (query_ipv6) {
q.qtype = T_AAAA;
if (query_ipv4) {
q.next = &q2;
q2.name = name;
q2.qclass = C_IN;
q2.qtype = T_A;
}
} else if (query_ipv4) {
q.qtype = T_A;
} else {
return EAI_NODATA;
}
break;
}
case AF_INET:
q.name = name;
q.qclass = C_IN;
q.qtype = T_A;
break;
case AF_INET6:
q.name = name;
q.qclass = C_IN;
q.qtype = T_AAAA;
break;
default:
return EAI_FAMILY;
}
ResState res;
res_init(&res, netcontext, event);
int he;
if (res_searchN(name, &q, &res, &he) < 0) {
// Return h_errno (he) to catch more detailed errors rather than EAI_NODATA.
// Note that res_searchN() doesn't set the pair NETDB_INTERNAL and errno.
// See also herrnoToAiErrno().
return herrnoToAiErrno(he);
}
addrinfo sentinel = {};
addrinfo* cur = &sentinel;
addrinfo* ai = getanswer(q.answer, q.n, q.name, q.qtype, pai, &he);
if (ai) {
cur->ai_next = ai;
while (cur && cur->ai_next) cur = cur->ai_next;
}
if (q.next) {
ai = getanswer(q2.answer, q2.n, q2.name, q2.qtype, pai, &he);
if (ai) cur->ai_next = ai;
}
if (sentinel.ai_next == NULL) {
// Note that getanswer() doesn't set the pair NETDB_INTERNAL and errno.
// See also herrnoToAiErrno().
return herrnoToAiErrno(he);
}
_rfc6724_sort(&sentinel, netcontext->app_mark, netcontext->uid);
*rv = sentinel.ai_next;
return 0;
}
static void _sethtent(FILE** hostf) {
if (!*hostf)
*hostf = fopen(_PATH_HOSTS, "re");
else
rewind(*hostf);
}
static void _endhtent(FILE** hostf) {
if (*hostf) {
(void) fclose(*hostf);
*hostf = NULL;
}
}
static struct addrinfo* _gethtent(FILE** hostf, const char* name, const struct addrinfo* pai) {
char* p;
char *cp, *tname, *cname;
struct addrinfo *res0, *res;
int error;
const char* addr;
char hostbuf[8 * 1024];
assert(name != NULL);
assert(pai != NULL);
if (!*hostf && !(*hostf = fopen(_PATH_HOSTS, "re"))) return (NULL);
again:
if (!(p = fgets(hostbuf, sizeof hostbuf, *hostf))) return (NULL);
if (*p == '#') goto again;
if (!(cp = strpbrk(p, "#\n"))) goto again;
*cp = '\0';
if (!(cp = strpbrk(p, " \t"))) goto again;
*cp++ = '\0';
addr = p;
/* if this is not something we're looking for, skip it. */
cname = NULL;
while (cp && *cp) {
if (*cp == ' ' || *cp == '\t') {
cp++;
continue;
}
if (!cname) cname = cp;
tname = cp;
if ((cp = strpbrk(cp, " \t")) != NULL) *cp++ = '\0';
if (strcasecmp(name, tname) == 0) goto found;
}
goto again;
found:
error = getaddrinfo_numeric(addr, nullptr, *pai, &res0);
if (error) goto again;
for (res = res0; res; res = res->ai_next) {
/* cover it up */
res->ai_flags = pai->ai_flags;
if (pai->ai_flags & AI_CANONNAME) {
if (get_canonname(pai, res, cname) != 0) {
freeaddrinfo(res0);
goto again;
}
}
}
return res0;
}
static struct addrinfo* getCustomHosts(const size_t netid, const char* _Nonnull name,
const struct addrinfo* _Nonnull pai) {
struct addrinfo sentinel = {};
struct addrinfo *res0, *res;
res = &sentinel;
std::vector<std::string> hosts = getCustomizedTableByName(netid, name);
for (const std::string& host : hosts) {
int error = getaddrinfo_numeric(host.c_str(), nullptr, *pai, &res0);
if (!error && res0 != nullptr) {
res->ai_next = res0;
res = res0;
res0 = nullptr;
}
}
return sentinel.ai_next;
}
static bool files_getaddrinfo(const size_t netid, const char* name, const addrinfo* pai,
addrinfo** res) {
struct addrinfo sentinel = {};
struct addrinfo *p, *cur;
FILE* hostf = nullptr;
cur = &sentinel;
_sethtent(&hostf);
while ((p = _gethtent(&hostf, name, pai)) != nullptr) {
cur->ai_next = p;
while (cur && cur->ai_next) cur = cur->ai_next;
}
_endhtent(&hostf);
if ((p = getCustomHosts(netid, name, pai)) != nullptr) {
cur->ai_next = p;
}
*res = sentinel.ai_next;
return sentinel.ai_next != nullptr;
}
/* resolver logic */
/*
* Formulate a normal query, send, and await answer.
* Returned answer is placed in supplied buffer "answer".
* Perform preliminary check of answer, returning success only
* if no error is indicated and the answer count is nonzero.
* Return the size of the response on success, -1 on error.
* Error number is left in *herrno.
*
* Caller must parse answer and determine whether it answers the question.
*/
static int res_queryN(const char* name, res_target* target, res_state res, int* herrno) {
uint8_t buf[MAXPACKET];
int n;
struct res_target* t;
int rcode;
int ancount;
assert(name != NULL);
/* XXX: target may be NULL??? */
rcode = NOERROR;
ancount = 0;
for (t = target; t; t = t->next) {
HEADER* hp = (HEADER*)(void*)t->answer.data();
bool retried = false;
again:
hp->rcode = NOERROR; /* default */
/* make it easier... */
int cl = t->qclass;
int type = t->qtype;
const int anslen = t->answer.size();
LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")";
n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf, sizeof(buf),
res->netcontext_flags);
if (n > 0 &&
(res->netcontext_flags &
(NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) &&
!retried) // TODO: remove the retry flag and provide a sufficient test coverage.
n = res_nopt(res, n, buf, sizeof(buf), anslen);
if (n <= 0) {
LOG(ERROR) << __func__ << ": res_nmkquery failed";
*herrno = NO_RECOVERY;
return n;
}
n = res_nsend(res, buf, n, t->answer.data(), anslen, &rcode, 0);
if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) {
// Record rcode from DNS response header only if no timeout.
// Keep rcode timeout for reporting later if any.
if (rcode != RCODE_TIMEOUT) rcode = hp->rcode; // record most recent error
// if the query choked with EDNS0, retry without EDNS0 that when the server
// has no response, resovler won't retry and do nothing. Even fallback to UDP,
// we also has the same symptom if EDNS is enabled.
if ((res->netcontext_flags &
(NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) &&
(res->_flags & RES_F_EDNS0ERR) && !retried) {
LOG(DEBUG) << __func__ << ": retry without EDNS0";
retried = true;
goto again;
}
LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount);
continue;
}
ancount += ntohs(hp->ancount);
t->n = n;
}
if (ancount == 0) {
switch (rcode) {
// Not defined in RFC.
case RCODE_TIMEOUT:
// DNS metrics monitors DNS query timeout.
*herrno = NETD_RESOLV_H_ERRNO_EXT_TIMEOUT; // extended h_errno.
break;
// Defined in RFC 1035 section 4.1.1.
case NXDOMAIN:
*herrno = HOST_NOT_FOUND;
break;
case SERVFAIL:
*herrno = TRY_AGAIN;
break;
case NOERROR:
*herrno = NO_DATA;
break;
case FORMERR:
case NOTIMP:
case REFUSED:
default:
*herrno = NO_RECOVERY;
break;
}
return -1;
}
return ancount;
}
/*
* Formulate a normal query, send, and retrieve answer in supplied buffer.
* Return the size of the response on success, -1 on error.
* If enabled, implement search rules until answer or unrecoverable failure
* is detected. Error code, if any, is left in *herrno.
*/
static int res_searchN(const char* name, res_target* target, res_state res, int* herrno) {
const char* cp;
HEADER* hp;
uint32_t dots;
int ret, saved_herrno;
int got_nodata = 0, got_servfail = 0, tried_as_is = 0;
assert(name != NULL);
assert(target != NULL);
hp = (HEADER*)(void*)target->answer.data();
errno = 0;
*herrno = HOST_NOT_FOUND; /* default, if we never query */
dots = 0;
for (cp = name; *cp; cp++) dots += (*cp == '.');
const bool trailing_dot = (cp > name && *--cp == '.') ? true : false;
/*
* If there are dots in the name already, let's just give it a try
* 'as is'. The threshold can be set with the "ndots" option.
*/
saved_herrno = -1;
if (dots >= res->ndots) {
ret = res_querydomainN(name, NULL, target, res, herrno);
if (ret > 0) return (ret);
saved_herrno = *herrno;
tried_as_is++;
}
/*
* We do at least one level of search if
* - there is no dot, or
* - there is at least one dot and there is no trailing dot.
*/
if ((!dots) || (dots && !trailing_dot)) {
int done = 0;
/* Unfortunately we need to set stuff up before
* the domain stuff is tried. Will have a better
* fix after thread pools are used.
*/
resolv_populate_res_for_net(res);
for (const auto& domain : res->search_domains) {
ret = res_querydomainN(name, domain.c_str(), target, res, herrno);
if (ret > 0) return ret;
/*
* If no server present, give up.
* If name isn't found in this domain,
* keep trying higher domains in the search list
* (if that's enabled).
* On a NO_DATA error, keep trying, otherwise
* a wildcard entry of another type could keep us
* from finding this entry higher in the domain.
* If we get some other error (negative answer or
* server failure), then stop searching up,
* but try the input name below in case it's
* fully-qualified.
*/
if (errno == ECONNREFUSED) {
*herrno = TRY_AGAIN;
return -1;
}
switch (*herrno) {
case NO_DATA:
got_nodata++;
[[fallthrough]];
case HOST_NOT_FOUND:
/* keep trying */
break;
case TRY_AGAIN:
if (hp->rcode == SERVFAIL) {
/* try next search element, if any */
got_servfail++;
break;
}
[[fallthrough]];
default:
/* anything else implies that we're done */
done++;
}
}
}
/*
* if we have not already tried the name "as is", do that now.
* note that we do this regardless of how many dots were in the
* name or whether it ends with a dot.
*/
if (!tried_as_is) {
ret = res_querydomainN(name, NULL, target, res, herrno);
if (ret > 0) return ret;
}
/*
* if we got here, we didn't satisfy the search.
* if we did an initial full query, return that query's h_errno
* (note that we wouldn't be here if that query had succeeded).
* else if we ever got a nodata, send that back as the reason.
* else send back meaningless h_errno, that being the one from
* the last DNSRCH we did.
*/
if (saved_herrno != -1)
*herrno = saved_herrno;
else if (got_nodata)
*herrno = NO_DATA;
else if (got_servfail)
*herrno = TRY_AGAIN;
return -1;
}
/*
* Perform a call on res_query on the concatenation of name and domain,
* removing a trailing dot from name if domain is NULL.
*/
static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res,
int* herrno) {
char nbuf[MAXDNAME];
const char* longname = nbuf;
size_t n, d;
assert(name != NULL);
if (domain == NULL) {
// Check for trailing '.'; copy without '.' if present.
n = strlen(name);
if (n + 1 > sizeof(nbuf)) {
*herrno = NO_RECOVERY;
return -1;
}
if (n > 0 && name[--n] == '.') {
strncpy(nbuf, name, n);
nbuf[n] = '\0';
} else
longname = name;
} else {
n = strlen(name);
d = strlen(domain);
if (n + 1 + d + 1 > sizeof(nbuf)) {
*herrno = NO_RECOVERY;
return -1;
}
snprintf(nbuf, sizeof(nbuf), "%s.%s", name, domain);
}
return res_queryN(longname, target, res, herrno);
}