| |
| // Copyright (C) 2021 The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| #include <errno.h> |
| #include <gtest/gtest.h> |
| #include <netdb.h> |
| #include <netinet/in.h> |
| #include <signal.h> |
| #include <string.h> |
| #include <sys/socket.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <condition_variable> |
| #include <cstdint> |
| #include <cstring> |
| #include <functional> |
| #include <memory> |
| #include <mutex> |
| #include <random> |
| #include <vector> |
| |
| #include "model/setup/async_manager.h" |
| #include "net/posix/posix_async_socket_connector.h" |
| #include "net/posix/posix_async_socket_server.h" |
| #include "os/log.h" // for LOG_INFO |
| |
| namespace android { |
| namespace net { |
| |
| using clock = std::chrono::system_clock; |
| |
| class SigPipeSignalHandler { |
| public: |
| SigPipeSignalHandler() { |
| sSignal = -1; |
| struct sigaction act = {}; |
| act.sa_handler = myHandler; |
| ::sigaction(SIGPIPE, &act, &mOldAction); |
| } |
| |
| ~SigPipeSignalHandler() { ::sigaction(SIGPIPE, &mOldAction, nullptr); } |
| |
| int signaled() const { return sSignal; } |
| |
| private: |
| struct sigaction mOldAction; |
| |
| static int sSignal; |
| |
| static void myHandler(int sig) { sSignal = sig; } |
| }; |
| |
| // static |
| int SigPipeSignalHandler::sSignal = 0; |
| |
| using SocketCon = std::shared_ptr<AsyncDataChannel>; |
| |
| class PosixSocketTest : public testing::Test { |
| public: |
| PosixSocketTest() : pasc_(&async_manager_), pass_(0, &async_manager_) {} |
| |
| ~PosixSocketTest() { pass_.Close(); } |
| |
| std::tuple<SocketCon, SocketCon> connectPair( |
| std::chrono::milliseconds timeout = 500ms) { |
| std::mutex m; |
| std::condition_variable cv; |
| |
| std::shared_ptr<AsyncDataChannel> sock1; |
| std::shared_ptr<AsyncDataChannel> sock2; |
| |
| pass_.SetOnConnectCallback( |
| [&](std::shared_ptr<AsyncDataChannel> sock, AsyncDataChannelServer*) { |
| std::unique_lock<std::mutex> guard(m); |
| sock1 = sock; |
| cv.notify_all(); |
| }); |
| EXPECT_TRUE(pass_.StartListening()); |
| |
| sock2 = pasc_.ConnectToRemoteServer("localhost", pass_.port(), 1000ms); |
| EXPECT_TRUE(sock2.get() != nullptr); |
| EXPECT_TRUE(sock2->Connected()); |
| |
| std::unique_lock<std::mutex> lk(m); |
| EXPECT_TRUE( |
| cv.wait_for(lk, timeout, [&] { return sock1.get() != nullptr; })); |
| EXPECT_TRUE(sock1); |
| EXPECT_TRUE(sock1->Connected()); |
| |
| return {sock1, sock2}; |
| } |
| |
| protected: |
| AsyncManager async_manager_; |
| PosixAsyncSocketConnector pasc_; |
| PosixAsyncSocketServer pass_; |
| }; |
| |
| TEST_F(PosixSocketTest, canConnect) { |
| auto [sock1, sock2] = connectPair(); |
| ASSERT_TRUE(sock1->Connected()); |
| ASSERT_TRUE(sock2->Connected()); |
| |
| sock1->Close(); |
| sock2->Close(); |
| |
| ASSERT_FALSE(sock1->Connected()); |
| ASSERT_FALSE(sock2->Connected()); |
| } |
| |
| TEST_F(PosixSocketTest, socketSendDoesNotGenerateSigPipe) { |
| // Check that writing to a broken pipe does not generate a SIGPIPE |
| // signal. |
| SigPipeSignalHandler handler; |
| ASSERT_EQ(-1, handler.signaled()); |
| auto [sock1, sock2] = connectPair(); |
| |
| // s1 and s2 are now connected. Close s1 immediately, then try to |
| // send data through s2. |
| sock1->Close(); |
| ASSERT_FALSE(sock1->Connected()); |
| // The EPIPE might not happen on the first send due to |
| // TCP packet buffering in the kernel. Perform multiple send() |
| // in a loop to work-around this. |
| errno = 0; |
| const int kMaxSendCount = 1000; |
| int n = 0; |
| while (n < kMaxSendCount) { |
| int ret = sock2->Send((uint8_t*)"xxxx", 4); |
| if (ret < 0) { |
| #ifdef __APPLE__ |
| // On OS X, errno is sometimes EPROTOTYPE instead of EPIPE |
| // when this happens. |
| ASSERT_TRUE(errno == EPIPE || errno == EPROTOTYPE) << strerror(errno); |
| #else |
| ASSERT_EQ(EPIPE, errno) << strerror(errno); |
| #endif |
| break; |
| } |
| n++; |
| } |
| |
| // On MacOS you usually have n < 30 |
| ASSERT_LT(n, kMaxSendCount); |
| |
| // No signals were raised. |
| ASSERT_EQ(-1, handler.signaled()); |
| } |
| |
| TEST_F(PosixSocketTest, can_send_data_around_poll) { |
| auto [sock1, sock2] = connectPair(); |
| std::string word = "Hello World"; |
| std::string input = " "; |
| |
| ASSERT_EQ(word.size(), input.size()); |
| ASSERT_NE(word, input); |
| |
| ssize_t snd = sock1->Send((uint8_t*)word.data(), word.size()); |
| ASSERT_EQ((ssize_t)word.size(), snd); |
| |
| uint8_t* buffer = (uint8_t*)input.data(); |
| int buflen = input.size(); |
| |
| // Poll for at most 250ms. |
| clock::time_point until = clock::now() + 250ms; |
| do { |
| int recv = sock2->Recv(buffer, buflen); |
| if (recv > 0) { |
| buflen -= recv; |
| buffer += recv; |
| } |
| } while (buflen > 0 && clock::now() < until); |
| |
| ASSERT_EQ(word, input); |
| } |
| |
| TEST_F(PosixSocketTest, data_results_in_read_event) { |
| auto [sock1, sock2] = connectPair(); |
| std::mutex m; |
| std::condition_variable cv; |
| std::string word = "Hello World"; |
| std::string input = " "; |
| |
| bool received = false; |
| |
| // Register a callback that only gets called once.. |
| sock2->WatchForNonBlockingRead([&](auto sock) { |
| std::unique_lock<std::mutex> guard(m); |
| received = true; |
| // Unregister, to prevent surprises.. |
| sock->StopWatching(); |
| cv.notify_all(); |
| }); |
| |
| ssize_t snd = sock1->Send((uint8_t*)word.data(), word.size()); |
| ASSERT_EQ((ssize_t)word.size(), snd); |
| |
| { |
| std::unique_lock<std::mutex> lk(m); |
| |
| // The callback will be called within 250ms. |
| ASSERT_TRUE(cv.wait_for(lk, 250ms, [&] { return received; })); |
| |
| uint8_t* buffer = (uint8_t*)input.data(); |
| int buflen = input.size(); |
| |
| // At least 1 byte is coming in. (Note, we might get just a few |
| // bytes. vs the whole thing as you never know what happens in the |
| // ip stack.) |
| ASSERT_GT(sock2->Recv(buffer, buflen), 0); |
| } |
| } |
| |
| TEST_F(PosixSocketTest, connectFails) { |
| int port = pass_.port(); |
| |
| // Close the port, we should not be able to connect |
| pass_.Close(); |
| ASSERT_FALSE(pass_.Connected()); |
| |
| // Max 250ms to go to nowhere... |
| auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); |
| ASSERT_FALSE(socket->Connected()); |
| } |
| |
| TEST_F(PosixSocketTest, canConnectMultiple) { |
| int port = pass_.port(); |
| int CONNECTION_COUNT = 10; |
| std::mutex m; |
| std::condition_variable cv; |
| std::vector<std::shared_ptr<AsyncDataChannel>> connections; |
| bool connected = false; |
| |
| pass_.SetOnConnectCallback( |
| [&](std::shared_ptr<AsyncDataChannel> sock, AsyncDataChannelServer*) { |
| std::unique_lock<std::mutex> guard(m); |
| connections.push_back(sock); |
| connected = true; |
| ASSERT_TRUE(pass_.StartListening()); |
| cv.notify_all(); |
| }); |
| ASSERT_TRUE(pass_.StartListening()); |
| |
| for (int i = 0; i < CONNECTION_COUNT; i++) { |
| connected = false; |
| auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); |
| ASSERT_TRUE(socket->Connected()); |
| std::unique_lock<std::mutex> lk(m); |
| ASSERT_TRUE(cv.wait_for(lk, 250ms, [&] { return connected; })); |
| connected = false; |
| } |
| |
| ASSERT_EQ(CONNECTION_COUNT, (int)connections.size()); |
| } |
| |
| TEST_F(PosixSocketTest, noConnectWhenNotCallingStart) { |
| int port = pass_.port(); |
| std::mutex m; |
| std::condition_variable cv; |
| std::vector<std::shared_ptr<AsyncDataChannel>> connections; |
| bool connected = false; |
| |
| pass_.SetOnConnectCallback( |
| [&](std::shared_ptr<AsyncDataChannel> sock, AsyncDataChannelServer*) { |
| std::unique_lock<std::mutex> guard(m); |
| connections.push_back(sock); |
| connected = true; |
| cv.notify_all(); |
| }); |
| ASSERT_TRUE(pass_.StartListening()); |
| |
| { |
| connected = false; |
| auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); |
| ASSERT_TRUE(socket->Connected()); |
| std::unique_lock<std::mutex> lk(m); |
| ASSERT_TRUE(cv.wait_for(lk, 250ms, [&] { return connected; })); |
| } |
| |
| // After the first connection there was no call to startListening, and hence |
| // no new sockets should be accepted. |
| { |
| connected = false; |
| auto socket = pasc_.ConnectToRemoteServer("localhost", port, 250ms); |
| |
| // We should have a partial connection, so we don't know yet that it is not |
| // working.. |
| ASSERT_TRUE(socket->Connected()); |
| std::unique_lock<std::mutex> lk(m); |
| |
| // Should timeout, as we never invoke the callback that accepts the socket. |
| ASSERT_FALSE(cv.wait_for(lk, 250ms, [&] { return connected; })); |
| } |
| |
| ASSERT_EQ(1, (int)connections.size()); |
| } |
| } // namespace net |
| } // namespace android |