blob: 0664eacdd64ba9e72196da37704438b46b0dd19a [file] [log] [blame]
/*
* Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 4980035
* @summary Unit test for new methods:
*
* AffineTransform.getRotateInstance(double x, double y);
* AffineTransform.setToRotation(double x, double y);
* AffineTransform.rotate(double x, double y);
*
* AffineTransform.getQuadrantRotateInstance(int numquads);
* AffineTransform.setToQuadrantRotation(int numquads);
* AffineTransform.quadrantRotate(int numquads);
*
* @author flar
* @run main TestRotateMethods
*/
import java.awt.geom.AffineTransform;
import java.awt.geom.Point2D;
public class TestRotateMethods {
/* The maximum errors allowed, measured in double precision "ulps"
* Note that for most fields, the tests are extremely accurate - to
* within 3 ulps of the smaller value in the comparison
* For the translation components, the tests are still very accurate,
* but the absolute number of ulps can be noticeably higher when we
* use one of the rotate methods that takes an anchor point.
* Since a double precision value has 56 bits of precision, even
* 1024 ulps is extremely small as a ratio of the value.
*/
public static final double MAX_ULPS = 3.0;
public static final double MAX_ANCHOR_TX_ULPS = 1024.0;
public static double MAX_TX_ULPS = MAX_ULPS;
// Vectors for quadrant rotations
public static final double quadxvec[] = { 1.0, 0.0, -1.0, 0.0 };
public static final double quadyvec[] = { 0.0, 1.0, 0.0, -1.0 };
// Run tests once for each type of method:
// tx = AffineTransform.get<Rotate>Instance()
// tx.set<Rotate>()
// tx.<rotate>()
public static enum Mode { GET, SET, MOD };
// Used to accumulate and report largest differences encountered by tests
public static double maxulps = 0.0;
public static double maxtxulps = 0.0;
// Sample anchor points for testing.
public static Point2D zeropt = new Point2D.Double(0, 0);
public static Point2D testtxpts[] = {
new Point2D.Double( 5, 5),
new Point2D.Double( 20, -10),
new Point2D.Double(-Math.PI, Math.E),
};
public static void main(String argv[]) {
test(Mode.GET);
test(Mode.SET);
test(Mode.MOD);
System.out.println("Max scale and shear difference: "+maxulps+" ulps");
System.out.println("Max translate difference: "+maxtxulps+" ulps");
}
public static void test(Mode mode) {
MAX_TX_ULPS = MAX_ULPS; // Stricter tx testing with no anchor point
test(mode, 0.5, null);
test(mode, 1.0, null);
test(mode, 3.0, null);
// Anchor points make the tx values less reliable
MAX_TX_ULPS = MAX_ANCHOR_TX_ULPS;
for (int i = 0; i < testtxpts.length; i++) {
test(mode, 1.0, testtxpts[i]);
}
MAX_TX_ULPS = MAX_ULPS; // Restore to default
}
public static void verify(AffineTransform at1, AffineTransform at2,
Mode mode, double vectorscale, Point2D txpt,
String message, double num, String units)
{
if (!compare(at1, at2)) {
System.out.println("mode == "+mode);
System.out.println("vectorscale == "+vectorscale);
System.out.println("txpt == "+txpt);
System.out.println(at1+", type = "+at1.getType());
System.out.println(at2+", type = "+at2.getType());
System.out.println("ScaleX values differ by "+
ulps(at1.getScaleX(), at2.getScaleX())+" ulps");
System.out.println("ScaleY values differ by "+
ulps(at1.getScaleY(), at2.getScaleY())+" ulps");
System.out.println("ShearX values differ by "+
ulps(at1.getShearX(), at2.getShearX())+" ulps");
System.out.println("ShearY values differ by "+
ulps(at1.getShearY(), at2.getShearY())+" ulps");
System.out.println("TranslateX values differ by "+
ulps(at1.getTranslateX(),
at2.getTranslateX())+" ulps");
System.out.println("TranslateY values differ by "+
ulps(at1.getTranslateY(),
at2.getTranslateY())+" ulps");
throw new RuntimeException(message + num + units);
}
}
public static void test(Mode mode, double vectorscale, Point2D txpt) {
AffineTransform at1, at2, at3;
for (int deg = -720; deg <= 720; deg++) {
if ((deg % 90) == 0) continue;
double radians = Math.toRadians(deg);
double vecy = Math.sin(radians) * vectorscale;
double vecx = Math.cos(radians) * vectorscale;
at1 = makeAT(mode, txpt, radians);
at2 = makeAT(mode, txpt, vecx, vecy);
verify(at1, at2, mode, vectorscale, txpt,
"vector and radians do not match for ", deg, " degrees");
if (txpt == null) {
// Make sure output was same as a with a 0,0 anchor point
if (vectorscale == 1.0) {
// Only need to test radians method for one scale factor
at3 = makeAT(mode, zeropt, radians);
verify(at1, at3, mode, vectorscale, zeropt,
"radians not invariant with 0,0 translate at ",
deg, " degrees");
}
// But test vector methods with all scale factors
at3 = makeAT(mode, zeropt, vecx, vecy);
verify(at2, at3, mode, vectorscale, zeropt,
"vector not invariant with 0,0 translate at ",
deg, " degrees");
}
}
for (int quad = -8; quad <= 8; quad++) {
double degrees = quad * 90.0;
double radians = Math.toRadians(degrees);
double vecx = quadxvec[quad & 3] * vectorscale;
double vecy = quadyvec[quad & 3] * vectorscale;
at1 = makeAT(mode, txpt, radians);
at2 = makeAT(mode, txpt, vecx, vecy);
verify(at1, at2, mode, vectorscale, txpt,
"quadrant vector and radians do not match for ",
degrees, " degrees");
at2 = makeQuadAT(mode, txpt, quad);
verify(at1, at2, mode, vectorscale, txpt,
"quadrant and radians do not match for ",
quad, " quadrants");
if (txpt == null) {
at3 = makeQuadAT(mode, zeropt, quad);
verify(at2, at3, mode, vectorscale, zeropt,
"quadrant not invariant with 0,0 translate at ",
quad, " quadrants");
}
}
}
public static AffineTransform makeRandomAT() {
AffineTransform at = new AffineTransform();
at.scale(Math.random() * -10.0, Math.random() * 100.0);
at.rotate(Math.random() * Math.PI);
at.shear(Math.random(), Math.random());
at.translate(Math.random() * 300.0, Math.random() * -20.0);
return at;
}
public static AffineTransform makeAT(Mode mode, Point2D txpt,
double radians)
{
AffineTransform at;
double tx = (txpt == null) ? 0.0 : txpt.getX();
double ty = (txpt == null) ? 0.0 : txpt.getY();
switch (mode) {
case GET:
if (txpt != null) {
at = AffineTransform.getRotateInstance(radians, tx, ty);
} else {
at = AffineTransform.getRotateInstance(radians);
}
break;
case SET:
at = makeRandomAT();
if (txpt != null) {
at.setToRotation(radians, tx, ty);
} else {
at.setToRotation(radians);
}
break;
case MOD:
at = makeRandomAT();
at.setToIdentity();
if (txpt != null) {
at.rotate(radians, tx, ty);
} else {
at.rotate(radians);
}
break;
default:
throw new InternalError("unrecognized mode: "+mode);
}
return at;
}
public static AffineTransform makeAT(Mode mode, Point2D txpt,
double vx, double vy)
{
AffineTransform at;
double tx = (txpt == null) ? 0.0 : txpt.getX();
double ty = (txpt == null) ? 0.0 : txpt.getY();
switch (mode) {
case GET:
if (txpt != null) {
at = AffineTransform.getRotateInstance(vx, vy, tx, ty);
} else {
at = AffineTransform.getRotateInstance(vx, vy);
}
break;
case SET:
at = makeRandomAT();
if (txpt != null) {
at.setToRotation(vx, vy, tx, ty);
} else {
at.setToRotation(vx, vy);
}
break;
case MOD:
at = makeRandomAT();
at.setToIdentity();
if (txpt != null) {
at.rotate(vx, vy, tx, ty);
} else {
at.rotate(vx, vy);
}
break;
default:
throw new InternalError("unrecognized mode: "+mode);
}
return at;
}
public static AffineTransform makeQuadAT(Mode mode, Point2D txpt,
int quads)
{
AffineTransform at;
double tx = (txpt == null) ? 0.0 : txpt.getX();
double ty = (txpt == null) ? 0.0 : txpt.getY();
switch (mode) {
case GET:
if (txpt != null) {
at = AffineTransform.getQuadrantRotateInstance(quads, tx, ty);
} else {
at = AffineTransform.getQuadrantRotateInstance(quads);
}
break;
case SET:
at = makeRandomAT();
if (txpt != null) {
at.setToQuadrantRotation(quads, tx, ty);
} else {
at.setToQuadrantRotation(quads);
}
break;
case MOD:
at = makeRandomAT();
at.setToIdentity();
if (txpt != null) {
at.quadrantRotate(quads, tx, ty);
} else {
at.quadrantRotate(quads);
}
break;
default:
throw new InternalError("unrecognized mode: "+mode);
}
return at;
}
public static boolean compare(AffineTransform at1, AffineTransform at2) {
maxulps = Math.max(maxulps, ulps(at1.getScaleX(), at2.getScaleX()));
maxulps = Math.max(maxulps, ulps(at1.getScaleY(), at2.getScaleY()));
maxulps = Math.max(maxulps, ulps(at1.getShearX(), at2.getShearX()));
maxulps = Math.max(maxulps, ulps(at1.getShearY(), at2.getShearY()));
maxtxulps = Math.max(maxtxulps,
ulps(at1.getTranslateX(), at2.getTranslateX()));
maxtxulps = Math.max(maxtxulps,
ulps(at1.getTranslateY(), at2.getTranslateY()));
return (getModifiedType(at1) == getModifiedType(at2) &&
(compare(at1.getScaleX(), at2.getScaleX(), MAX_ULPS)) &&
(compare(at1.getScaleY(), at2.getScaleY(), MAX_ULPS)) &&
(compare(at1.getShearX(), at2.getShearX(), MAX_ULPS)) &&
(compare(at1.getShearY(), at2.getShearY(), MAX_ULPS)) &&
(compare(at1.getTranslateX(),
at2.getTranslateX(), MAX_TX_ULPS)) &&
(compare(at1.getTranslateY(),
at2.getTranslateY(), MAX_TX_ULPS)));
}
public static int getModifiedType(AffineTransform at) {
int type = at.getType();
// Some of the vector methods can introduce a tiny uniform scale
// at some angles...
if ((type & AffineTransform.TYPE_UNIFORM_SCALE) != 0) {
maxulps = Math.max(maxulps, ulps(at.getDeterminant(), 1.0));
if (ulps(at.getDeterminant(), 1.0) <= MAX_ULPS) {
// Really tiny - we will ignore it
type &= (~AffineTransform.TYPE_UNIFORM_SCALE);
}
}
return type;
}
public static boolean compare(double val1, double val2, double maxulps) {
return (ulps(val1, val2) <= maxulps);
}
public static double ulps(double val1, double val2) {
double diff = Math.abs(val1 - val2);
double ulpmax = Math.min(Math.ulp(val1), Math.ulp(val2));
return (diff / ulpmax);
}
}