blob: 4cfa789e77d054b202c3a60ee2e4f7cb6f06ebb4 [file] [log] [blame]
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "unittest.hpp"
typedef BitMap::idx_t idx_t;
typedef BitMap::bm_word_t bm_word_t;
static const idx_t BITMAP_SIZE = 1024;
static const size_t search_chunk_size = 64;
// Entries must be monotonically increasing.
// Maximum entry must be < search_chunk_size.
// Cluster values around possible word-size boundaries.
static const size_t search_offsets[] =
{ 0, 1, 2, 29, 30, 31, 32, 33, 34, 60, 62, 63 };
static const size_t search_noffsets = ARRAY_SIZE(search_offsets);
static const size_t search_nchunks = BITMAP_SIZE / search_chunk_size;
STATIC_ASSERT(search_nchunks * search_chunk_size == BITMAP_SIZE);
namespace {
class TestIteratorFn : public BitMapClosure {
public:
TestIteratorFn(size_t start, size_t end, size_t left, size_t right);
virtual bool do_bit(size_t offset);
private:
size_t _entries[2];
size_t _index;
size_t _count;
size_t _start;
size_t _end;
size_t _left;
size_t _right;
void do_bit_aux(size_t offset);
};
} // anonymous namespace
TestIteratorFn::TestIteratorFn(size_t start, size_t end,
size_t left, size_t right) :
_index(0), _count(0), _start(start), _end(end), _left(left), _right(right)
{
if ((_start <= _left) && (_left < _end)) {
_entries[_count++] = _left;
}
if ((_start <= _right) && (_right < _end)) {
_entries[_count++] = _right;
}
}
void TestIteratorFn::do_bit_aux(size_t offset) {
EXPECT_LT(_index, _count);
if (_index < _count) {
EXPECT_EQ(_entries[_index], offset);
_index += 1;
}
}
bool TestIteratorFn::do_bit(size_t offset) {
do_bit_aux(offset);
return true;
}
static idx_t compute_expected(idx_t search_start,
idx_t search_end,
idx_t left_bit,
idx_t right_bit) {
idx_t expected = search_end;
if (search_start <= left_bit) {
if (left_bit < search_end) {
expected = left_bit;
}
} else if (search_start <= right_bit) {
if (right_bit < search_end) {
expected = right_bit;
}
}
return expected;
}
static void test_search_ranges(BitMap& test_ones,
BitMap& test_zeros,
idx_t left,
idx_t right) {
// Test get_next_one_offset with full range of map.
EXPECT_EQ(left, test_ones.get_next_one_offset(0));
EXPECT_EQ(right, test_ones.get_next_one_offset(left + 1));
EXPECT_EQ(BITMAP_SIZE, test_ones.get_next_one_offset(right + 1));
// Test get_next_one_offset_aligned_right with full range of map.
EXPECT_EQ(left, test_ones.get_next_one_offset_aligned_right(0, BITMAP_SIZE));
EXPECT_EQ(right, test_ones.get_next_one_offset_aligned_right(left + 1, BITMAP_SIZE));
EXPECT_EQ(BITMAP_SIZE, test_ones.get_next_one_offset_aligned_right(right + 1, BITMAP_SIZE));
// Test get_next_zero_offset with full range of map.
EXPECT_EQ(left, test_zeros.get_next_zero_offset(0));
EXPECT_EQ(right, test_zeros.get_next_zero_offset(left + 1));
EXPECT_EQ(BITMAP_SIZE, test_zeros.get_next_zero_offset(right + 1));
// Check that iterate invokes the closure function on left and right values.
TestIteratorFn test_iteration(0, BITMAP_SIZE, left, right);
test_ones.iterate(&test_iteration, 0, BITMAP_SIZE);
// Test searches with various start and end ranges.
for (size_t c_start = 0; c_start < search_nchunks; ++c_start) {
for (size_t o_start = 0; o_start < search_noffsets; ++o_start) {
idx_t start = c_start * search_chunk_size + search_offsets[o_start];
// Terminate start iteration if start is more than two full
// chunks beyond left. There isn't anything new to learn by
// continuing the iteration, and this noticably reduces the
// time to run the test.
if (left + 2 * search_chunk_size < start) {
c_start = search_nchunks; // Set to limit to terminate iteration.
break;
}
for (size_t c_end = c_start; c_end < search_nchunks; ++c_end) {
for (size_t o_end = (c_start == c_end) ? o_start : 0;
o_end < search_noffsets;
++o_end) {
idx_t end = c_end * search_chunk_size + search_offsets[o_end];
// Similarly to start and left, terminate end iteration if
// end is more than two full chunks beyond right.
if (right + 2 * search_chunk_size < end) {
c_end = search_nchunks; // Set to limit to terminate iteration.
break;
}
// Skip this chunk if right is much larger than max(left, start)
// and this chunk is one of many similar chunks in between,
// again to reduce testing time.
if (MAX2(start, left) + 2 * search_chunk_size < end) {
if (end + 2 * search_chunk_size < right) {
break;
}
}
bool aligned_right = search_offsets[o_end] == 0;
ASSERT_LE(start, end); // test bug if fail
ASSERT_LT(end, BITMAP_SIZE); // test bug if fail
idx_t expected = compute_expected(start, end, left, right);
EXPECT_EQ(expected, test_ones.get_next_one_offset(start, end));
EXPECT_EQ(expected, test_zeros.get_next_zero_offset(start, end));
if (aligned_right) {
EXPECT_EQ(
expected,
test_ones.get_next_one_offset_aligned_right(start, end));
}
idx_t start2 = MIN2(expected + 1, end);
idx_t expected2 = compute_expected(start2, end, left, right);
EXPECT_EQ(expected2, test_ones.get_next_one_offset(start2, end));
EXPECT_EQ(expected2, test_zeros.get_next_zero_offset(start2, end));
if (aligned_right) {
EXPECT_EQ(
expected2,
test_ones.get_next_one_offset_aligned_right(start2, end));
}
}
}
}
}
}
TEST(BitMap, search) {
CHeapBitMap test_ones(BITMAP_SIZE);
CHeapBitMap test_zeros(BITMAP_SIZE);
// test_ones is used to test searching for 1s in a region of 0s.
// test_zeros is used to test searching for 0s in a region of 1s.
test_ones.clear_range(0, test_ones.size());
test_zeros.set_range(0, test_zeros.size());
// Searching "empty" sequence should return size.
EXPECT_EQ(BITMAP_SIZE, test_ones.get_next_one_offset(0));
EXPECT_EQ(BITMAP_SIZE, test_zeros.get_next_zero_offset(0));
// With left being in the first or second chunk...
for (size_t c_left = 0; c_left < 2; ++c_left) {
// Right bit is in the same chunk as left, or next chunk, or far away...
for (size_t c_right = c_left;
c_right < search_nchunks;
(c_right == c_left + 1) ? c_right = search_nchunks - 1 : ++c_right) {
// For each offset within the left chunk...
for (size_t o_left = 0; o_left < search_noffsets; ++o_left) {
// left is start of left chunk + offset.
idx_t left = c_left * search_chunk_size + search_offsets[o_left];
// Install the left bit.
test_ones.set_bit(left);
test_zeros.clear_bit(left);
EXPECT_TRUE(test_ones.at(left));
EXPECT_FALSE(test_zeros.at(left));
// For each offset within the right chunk and > left...
for (size_t o_right = (c_left == c_right) ? o_left + 1 : 0;
o_right < search_noffsets;
++o_right) {
// right is start of right chunk + offset.
idx_t right = c_right * search_chunk_size + search_offsets[o_right];
// Install the right bit.
test_ones.set_bit(right);
test_zeros.clear_bit(right);
EXPECT_TRUE(test_ones.at(right));
EXPECT_FALSE(test_zeros.at(right));
// Apply the test.
test_search_ranges(test_ones, test_zeros, left, right);
// Remove the right bit.
test_ones.clear_bit(right);
test_zeros.set_bit(right);
EXPECT_FALSE(test_ones.at(right));
EXPECT_TRUE(test_zeros.at(right));
}
// Remove the left bit.
test_ones.clear_bit(left);
test_zeros.set_bit(left);
EXPECT_FALSE(test_ones.at(left));
EXPECT_TRUE(test_zeros.at(left));
}
}
}
}