blob: 6e3c7e6ac8e6775759434dc9b630a7be9cbed4e0 [file] [log] [blame]
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/os.hpp"
#include "utilities/ostream.hpp"
#include "unittest.hpp"
static size_t small_page_size() {
return os::vm_page_size();
}
static size_t large_page_size() {
const size_t large_page_size_example = 4 * M;
return os::page_size_for_region_aligned(large_page_size_example, 1);
}
TEST_VM(os, page_size_for_region) {
size_t large_page_example = 4 * M;
size_t large_page = os::page_size_for_region_aligned(large_page_example, 1);
size_t small_page = os::vm_page_size();
if (large_page > small_page) {
size_t num_small_in_large = large_page / small_page;
size_t page = os::page_size_for_region_aligned(large_page, num_small_in_large);
ASSERT_EQ(page, small_page) << "Did not get a small page";
}
}
TEST_VM(os, page_size_for_region_aligned) {
if (UseLargePages) {
const size_t small_page = small_page_size();
const size_t large_page = large_page_size();
if (large_page > small_page) {
size_t num_small_pages_in_large = large_page / small_page;
size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
ASSERT_EQ(page, small_page);
}
}
}
TEST_VM(os, page_size_for_region_alignment) {
if (UseLargePages) {
const size_t small_page = small_page_size();
const size_t large_page = large_page_size();
if (large_page > small_page) {
const size_t unaligned_region = large_page + 17;
size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
ASSERT_EQ(page, small_page);
const size_t num_pages = 5;
const size_t aligned_region = large_page * num_pages;
page = os::page_size_for_region_aligned(aligned_region, num_pages);
ASSERT_EQ(page, large_page);
}
}
}
TEST_VM(os, page_size_for_region_unaligned) {
if (UseLargePages) {
// Given exact page size, should return that page size.
for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
size_t expected = os::_page_sizes[i];
size_t actual = os::page_size_for_region_unaligned(expected, 1);
ASSERT_EQ(expected, actual);
}
// Given slightly larger size than a page size, return the page size.
for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
size_t expected = os::_page_sizes[i];
size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
ASSERT_EQ(expected, actual);
}
// Given a slightly smaller size than a page size,
// return the next smaller page size.
if (os::_page_sizes[1] > os::_page_sizes[0]) {
size_t expected = os::_page_sizes[0];
size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
ASSERT_EQ(actual, expected);
}
// Return small page size for values less than a small page.
size_t small_page = small_page_size();
size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
ASSERT_EQ(small_page, actual);
}
}
TEST(os, test_random) {
const double m = 2147483647;
double mean = 0.0, variance = 0.0, t;
const int reps = 10000;
unsigned int seed = 1;
// tty->print_cr("seed %ld for %ld repeats...", seed, reps);
os::init_random(seed);
int num;
for (int k = 0; k < reps; k++) {
num = os::random();
double u = (double)num / m;
ASSERT_TRUE(u >= 0.0 && u <= 1.0) << "bad random number!";
// calculate mean and variance of the random sequence
mean += u;
variance += (u*u);
}
mean /= reps;
variance /= (reps - 1);
ASSERT_EQ(num, 1043618065) << "bad seed";
// tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
int intmean = mean*100;
ASSERT_EQ(intmean, 50);
// tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
int intvariance = variance*100;
ASSERT_EQ(intvariance, 33);
const double eps = 0.0001;
t = fabsd(mean - 0.5018);
ASSERT_LT(t, eps) << "bad mean";
t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
ASSERT_LT(t, eps) << "bad variance";
}
#ifdef ASSERT
TEST_VM_ASSERT_MSG(os, page_size_for_region_with_zero_min_pages, "sanity") {
size_t region_size = 16 * os::vm_page_size();
os::page_size_for_region_aligned(region_size, 0); // should assert
}
#endif
static void do_test_print_hex_dump(address addr, size_t len, int unitsize, const char* expected) {
char buf[256];
buf[0] = '\0';
stringStream ss(buf, sizeof(buf));
os::print_hex_dump(&ss, addr, addr + len, unitsize);
// tty->print_cr("expected: %s", expected);
// tty->print_cr("result: %s", buf);
ASSERT_NE(strstr(buf, expected), (char*)NULL);
}
TEST_VM(os, test_print_hex_dump) {
const char* pattern [4] = {
#ifdef VM_LITTLE_ENDIAN
"00 01 02 03 04 05 06 07",
"0100 0302 0504 0706",
"03020100 07060504",
"0706050403020100"
#else
"00 01 02 03 04 05 06 07",
"0001 0203 0405 0607",
"00010203 04050607",
"0001020304050607"
#endif
};
const char* pattern_not_readable [4] = {
"?? ?? ?? ?? ?? ?? ?? ??",
"???? ???? ???? ????",
"???????? ????????",
"????????????????"
};
// On AIX, zero page is readable.
address unreadable =
#ifdef AIX
(address) 0xFFFFFFFFFFFF0000ULL;
#else
(address) 0
#endif
;
ResourceMark rm;
char buf[64];
stringStream ss(buf, sizeof(buf));
outputStream* out = &ss;
// outputStream* out = tty; // enable for printout
// Test dumping unreadable memory
// Exclude test for Windows for now, since it needs SEH handling to work which cannot be
// guaranteed when we call directly into VM code. (see JDK-8220220)
#ifndef _WIN32
do_test_print_hex_dump(unreadable, 100, 1, pattern_not_readable[0]);
do_test_print_hex_dump(unreadable, 100, 2, pattern_not_readable[1]);
do_test_print_hex_dump(unreadable, 100, 4, pattern_not_readable[2]);
do_test_print_hex_dump(unreadable, 100, 8, pattern_not_readable[3]);
#endif
// Test dumping readable memory
address arr = (address)os::malloc(100, mtInternal);
for (int c = 0; c < 100; c++) {
arr[c] = c;
}
// properly aligned
do_test_print_hex_dump(arr, 100, 1, pattern[0]);
do_test_print_hex_dump(arr, 100, 2, pattern[1]);
do_test_print_hex_dump(arr, 100, 4, pattern[2]);
do_test_print_hex_dump(arr, 100, 8, pattern[3]);
// Not properly aligned. Should automatically down-align by unitsize
do_test_print_hex_dump(arr + 1, 100, 2, pattern[1]);
do_test_print_hex_dump(arr + 1, 100, 4, pattern[2]);
do_test_print_hex_dump(arr + 1, 100, 8, pattern[3]);
os::free(arr);
}
//////////////////////////////////////////////////////////////////////////////
// Test os::vsnprintf and friends.
static void check_snprintf_result(int expected, size_t limit, int actual, bool expect_count) {
if (expect_count || ((size_t)expected < limit)) {
ASSERT_EQ(expected, actual);
} else {
ASSERT_GT(0, actual);
}
}
// PrintFn is expected to be int (*)(char*, size_t, const char*, ...).
// But jio_snprintf is a C-linkage function with that signature, which
// has a different type on some platforms (like Solaris).
template<typename PrintFn>
static void test_snprintf(PrintFn pf, bool expect_count) {
const char expected[] = "abcdefghijklmnopqrstuvwxyz";
const int expected_len = sizeof(expected) - 1;
const size_t padding_size = 10;
char buffer[2 * (sizeof(expected) + padding_size)];
char check_buffer[sizeof(buffer)];
const char check_char = '1'; // Something not in expected.
memset(check_buffer, check_char, sizeof(check_buffer));
const size_t sizes_to_test[] = {
sizeof(buffer) - padding_size, // Fits, with plenty of space to spare.
sizeof(buffer)/2, // Fits, with space to spare.
sizeof(buffer)/4, // Doesn't fit.
sizeof(expected) + padding_size + 1, // Fits, with a little room to spare
sizeof(expected) + padding_size, // Fits exactly.
sizeof(expected) + padding_size - 1, // Doesn't quite fit.
2, // One char + terminating NUL.
1, // Only space for terminating NUL.
0 }; // No space at all.
for (unsigned i = 0; i < ARRAY_SIZE(sizes_to_test); ++i) {
memset(buffer, check_char, sizeof(buffer)); // To catch stray writes.
size_t test_size = sizes_to_test[i];
ResourceMark rm;
stringStream s;
s.print("test_size: " SIZE_FORMAT, test_size);
SCOPED_TRACE(s.as_string());
size_t prefix_size = padding_size;
guarantee(test_size <= (sizeof(buffer) - prefix_size), "invariant");
size_t write_size = MIN2(sizeof(expected), test_size);
size_t suffix_size = sizeof(buffer) - prefix_size - write_size;
char* write_start = buffer + prefix_size;
char* write_end = write_start + write_size;
int result = pf(write_start, test_size, "%s", expected);
check_snprintf_result(expected_len, test_size, result, expect_count);
// Verify expected output.
if (test_size > 0) {
ASSERT_EQ(0, strncmp(write_start, expected, write_size - 1));
// Verify terminating NUL of output.
ASSERT_EQ('\0', write_start[write_size - 1]);
} else {
guarantee(test_size == 0, "invariant");
guarantee(write_size == 0, "invariant");
guarantee(prefix_size + suffix_size == sizeof(buffer), "invariant");
guarantee(write_start == write_end, "invariant");
}
// Verify no scribbling on prefix or suffix.
ASSERT_EQ(0, strncmp(buffer, check_buffer, prefix_size));
ASSERT_EQ(0, strncmp(write_end, check_buffer, suffix_size));
}
// Special case of 0-length buffer with empty (except for terminator) output.
check_snprintf_result(0, 0, pf(NULL, 0, "%s", ""), expect_count);
check_snprintf_result(0, 0, pf(NULL, 0, ""), expect_count);
}
// This is probably equivalent to os::snprintf, but we're being
// explicit about what we're testing here.
static int vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = os::vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
TEST_VM(os, vsnprintf) {
test_snprintf(vsnprintf_wrapper, true);
}
TEST_VM(os, snprintf) {
test_snprintf(os::snprintf, true);
}
// These are declared in jvm.h; test here, with related functions.
extern "C" {
int jio_vsnprintf(char*, size_t, const char*, va_list);
int jio_snprintf(char*, size_t, const char*, ...);
}
// This is probably equivalent to jio_snprintf, but we're being
// explicit about what we're testing here.
static int jio_vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = jio_vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
TEST_VM(os, jio_vsnprintf) {
test_snprintf(jio_vsnprintf_wrapper, false);
}
TEST_VM(os, jio_snprintf) {
test_snprintf(jio_snprintf, false);
}