blob: 6b08390d1f653542eb804514cfa5872d2ac83690 [file] [log] [blame]
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1Predictions.hpp"
#include "unittest.hpp"
static const double epsilon = 1e-6;
// Some basic formula tests with confidence = 0.0
TEST_VM(G1Predictions, basic_predictions) {
G1Predictions predictor(0.0);
TruncatedSeq s;
double p0 = predictor.get_new_prediction(&s);
ASSERT_LT(p0, epsilon) << "Initial prediction of empty sequence must be 0.0";
s.add(5.0);
double p1 = predictor.get_new_prediction(&s);
ASSERT_NEAR(p1, 5.0, epsilon);
for (int i = 0; i < 40; i++) {
s.add(5.0);
}
double p2 = predictor.get_new_prediction(&s);
ASSERT_NEAR(p2, 5.0, epsilon);
}
// The following tests checks that the initial predictions are based on
// the average of the sequence and not on the stddev (which is 0).
TEST_VM(G1Predictions, average_not_stdev_predictions) {
G1Predictions predictor(0.5);
TruncatedSeq s;
s.add(1.0);
double p1 = predictor.get_new_prediction(&s);
ASSERT_GT(p1, s.davg()) << "First prediction must be greater than average";
s.add(1.0);
double p2 = predictor.get_new_prediction(&s);
ASSERT_GT(p1, p2) << "First prediction must be greater than second";
s.add(1.0);
double p3 = predictor.get_new_prediction(&s);
ASSERT_GT(p2, p3) << "Second prediction must be greater than third";
s.add(1.0);
s.add(1.0); // Five elements are now in the sequence.
double p4 = predictor.get_new_prediction(&s);
ASSERT_LT(p4, p3) << "Fourth prediction must be smaller than third";
ASSERT_NEAR(p4, 1.0, epsilon);
}
// The following tests checks that initially prediction based on
// the average is used, that gets overridden by the stddev prediction at
// the end.
TEST_VM(G1Predictions, average_stdev_predictions) {
G1Predictions predictor(0.5);
TruncatedSeq s;
s.add(0.5);
double p1 = predictor.get_new_prediction(&s);
ASSERT_GT(p1, s.davg()) << "First prediction must be greater than average";
s.add(0.2);
double p2 = predictor.get_new_prediction(&s);
ASSERT_GT(p1, p2) << "First prediction must be greater than second";
s.add(0.5);
double p3 = predictor.get_new_prediction(&s);
ASSERT_GT(p2, p3) << "Second prediction must be greater than third";
s.add(0.2);
s.add(2.0);
double p4 = predictor.get_new_prediction(&s);
ASSERT_GT(p4, p3) << "Fourth prediction must be greater than third";
}