blob: 6c5530db3ec6749b7baf51f14d1feb20b4370a02 [file] [log] [blame]
/*
* Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.management.internal;
import java.util.concurrent.TimeUnit;
import java.util.function.DoubleSupplier;
import java.util.function.LongSupplier;
import java.util.function.ToDoubleFunction;
import jdk.internal.platform.Metrics;
import sun.management.BaseOperatingSystemImpl;
import sun.management.VMManagement;
/**
* Implementation class for the operating system.
* Standard and committed hotspot-specific metrics if any.
*
* ManagementFactory.getOperatingSystemMXBean() returns an instance
* of this class.
*/
class OperatingSystemImpl extends BaseOperatingSystemImpl
implements com.sun.management.UnixOperatingSystemMXBean {
private static final int MAX_ATTEMPTS_NUMBER = 10;
private final Metrics containerMetrics;
private ContainerCpuTicks systemLoadTicks = new SystemCpuTicks();
private ContainerCpuTicks processLoadTicks = new ProcessCpuTicks();
private abstract class ContainerCpuTicks {
private long usageTicks = 0;
private long totalTicks = 0;
private double getUsageDividesTotal(long usageTicks, long totalTicks) {
// If cpu quota or cpu shares are in effect. Calculate the cpu load
// based on the following formula (similar to how
// getCpuLoad0() is being calculated):
//
// | usageTicks - usageTicks' |
// ------------------------------
// | totalTicks - totalTicks' |
//
// where usageTicks' and totalTicks' are historical values
// retrieved via an earlier call of this method.
if (usageTicks < 0 || totalTicks <= 0) {
return -1;
}
long distance = usageTicks - this.usageTicks;
this.usageTicks = usageTicks;
long totalDistance = totalTicks - this.totalTicks;
this.totalTicks = totalTicks;
double systemLoad = 0.0;
if (distance > 0 && totalDistance > 0) {
systemLoad = ((double)distance) / totalDistance;
}
// Ensure the return value is in the range 0.0 -> 1.0
systemLoad = Math.max(0.0, systemLoad);
systemLoad = Math.min(1.0, systemLoad);
return systemLoad;
}
public double getContainerCpuLoad() {
assert(containerMetrics != null);
long quota = containerMetrics.getCpuQuota();
long share = containerMetrics.getCpuShares();
if (quota > 0) {
long numPeriods = containerMetrics.getCpuNumPeriods();
long quotaNanos = TimeUnit.MICROSECONDS.toNanos(quota * numPeriods);
return getUsageDividesTotal(cpuUsageSupplier().getAsLong(), quotaNanos);
} else if (share > 0) {
long hostTicks = getHostTotalCpuTicks0();
int totalCPUs = getHostOnlineCpuCount0();
int containerCPUs = getAvailableProcessors();
// scale the total host load to the actual container cpus
hostTicks = hostTicks * containerCPUs / totalCPUs;
return getUsageDividesTotal(cpuUsageSupplier().getAsLong(), hostTicks);
} else {
// If CPU quotas and shares are not active then find the average load for
// all online CPUs that are allowed to run this container.
// If the cpuset is the same as the host's one there is no need to iterate over each CPU
if (isCpuSetSameAsHostCpuSet()) {
return defaultCpuLoadSupplier().getAsDouble();
} else {
int[] cpuSet = containerMetrics.getEffectiveCpuSetCpus();
// in case the effectiveCPUSetCpus are not available, attempt to use just cpusets.cpus
if (cpuSet == null || cpuSet.length <= 0) {
cpuSet = containerMetrics.getCpuSetCpus();
}
if (cpuSet == null) {
// cgroups is mounted, but CPU resource is not limited.
// We can assume the VM is run on the host CPUs.
return defaultCpuLoadSupplier().getAsDouble();
} else if (cpuSet.length > 0) {
return cpuSetCalc().applyAsDouble(cpuSet);
}
return -1;
}
}
}
protected abstract DoubleSupplier defaultCpuLoadSupplier();
protected abstract ToDoubleFunction<int[]> cpuSetCalc();
protected abstract LongSupplier cpuUsageSupplier();
}
private class ProcessCpuTicks extends ContainerCpuTicks {
@Override
protected DoubleSupplier defaultCpuLoadSupplier() {
return () -> getProcessCpuLoad0();
}
@Override
protected ToDoubleFunction<int[]> cpuSetCalc() {
return (int[] cpuSet) -> {
int totalCPUs = getHostOnlineCpuCount0();
int containerCPUs = getAvailableProcessors();
return Math.min(1.0, getProcessCpuLoad0() * totalCPUs / containerCPUs);
};
}
@Override
protected LongSupplier cpuUsageSupplier() {
return () -> getProcessCpuTime();
}
}
private class SystemCpuTicks extends ContainerCpuTicks {
@Override
protected DoubleSupplier defaultCpuLoadSupplier() {
return () -> getSystemCpuLoad0();
}
@Override
protected ToDoubleFunction<int[]> cpuSetCalc() {
return (int[] cpuSet) -> {
double systemLoad = 0.0;
for (int cpu : cpuSet) {
double cpuLoad = getSingleCpuLoad0(cpu);
if (cpuLoad < 0) {
return -1;
}
systemLoad += cpuLoad;
}
return systemLoad / cpuSet.length;
};
}
@Override
protected LongSupplier cpuUsageSupplier() {
return () -> containerMetrics.getCpuUsage();
}
}
OperatingSystemImpl(VMManagement vm) {
super(vm);
this.containerMetrics = jdk.internal.platform.Container.metrics();
}
public long getCommittedVirtualMemorySize() {
return getCommittedVirtualMemorySize0();
}
public long getTotalSwapSpaceSize() {
if (containerMetrics != null) {
long limit = containerMetrics.getMemoryAndSwapLimit();
// The memory limit metrics is not available if JVM runs on Linux host (not in a docker container)
// or if a docker container was started without specifying a memory limit (without '--memory='
// Docker option). In latter case there is no limit on how much memory the container can use and
// it can use as much memory as the host's OS allows.
long memLimit = containerMetrics.getMemoryLimit();
if (limit >= 0 && memLimit >= 0) {
// we see a limit == 0 on some machines where "kernel does not support swap limit capabilities"
return (limit < memLimit) ? 0 : limit - memLimit;
}
}
return getTotalSwapSpaceSize0();
}
public long getFreeSwapSpaceSize() {
if (containerMetrics != null) {
long memSwapLimit = containerMetrics.getMemoryAndSwapLimit();
long memLimit = containerMetrics.getMemoryLimit();
if (memSwapLimit >= 0 && memLimit >= 0) {
long deltaLimit = memSwapLimit - memLimit;
// Return 0 when memSwapLimit == memLimit, which means no swap space is allowed.
// And the same for memSwapLimit < memLimit.
if (deltaLimit <= 0) {
return 0;
}
for (int attempt = 0; attempt < MAX_ATTEMPTS_NUMBER; attempt++) {
long memSwapUsage = containerMetrics.getMemoryAndSwapUsage();
long memUsage = containerMetrics.getMemoryUsage();
if (memSwapUsage > 0 && memUsage > 0) {
// We read "memory usage" and "memory and swap usage" not atomically,
// and it's possible to get the negative value when subtracting these two.
// If this happens just retry the loop for a few iterations.
long deltaUsage = memSwapUsage - memUsage;
if (deltaUsage >= 0) {
long freeSwap = deltaLimit - deltaUsage;
if (freeSwap >= 0) {
return freeSwap;
}
}
}
}
}
}
return getFreeSwapSpaceSize0();
}
public long getProcessCpuTime() {
return getProcessCpuTime0();
}
public long getFreePhysicalMemorySize() {
if (containerMetrics != null) {
long usage = containerMetrics.getMemoryUsage();
long limit = containerMetrics.getMemoryLimit();
if (usage > 0 && limit >= 0) {
return limit - usage;
}
}
return getFreePhysicalMemorySize0();
}
public long getTotalPhysicalMemorySize() {
if (containerMetrics != null) {
long limit = containerMetrics.getMemoryLimit();
if (limit >= 0) {
return limit;
}
}
return getTotalPhysicalMemorySize0();
}
public long getOpenFileDescriptorCount() {
return getOpenFileDescriptorCount0();
}
public long getMaxFileDescriptorCount() {
return getMaxFileDescriptorCount0();
}
public double getSystemCpuLoad() {
if (containerMetrics != null) {
return systemLoadTicks.getContainerCpuLoad();
}
return getSystemCpuLoad0();
}
public double getProcessCpuLoad() {
if (containerMetrics != null) {
return processLoadTicks.getContainerCpuLoad();
}
return getProcessCpuLoad0();
}
private boolean isCpuSetSameAsHostCpuSet() {
if (containerMetrics != null) {
return containerMetrics.getCpuSetCpus().length == getHostOnlineCpuCount0();
}
return false;
}
/* native methods */
private native long getCommittedVirtualMemorySize0();
private native long getFreePhysicalMemorySize0();
private native long getFreeSwapSpaceSize0();
private native long getMaxFileDescriptorCount0();
private native long getOpenFileDescriptorCount0();
private native long getProcessCpuTime0();
private native double getProcessCpuLoad0();
private native double getSystemCpuLoad0();
private native long getTotalPhysicalMemorySize0();
private native long getTotalSwapSpaceSize0();
private native double getSingleCpuLoad0(int cpuNum);
private native int getHostConfiguredCpuCount0();
private native int getHostOnlineCpuCount0();
// CPU ticks since boot in nanoseconds
private native long getHostTotalCpuTicks0();
static {
initialize0();
}
private static native void initialize0();
}