blob: ecb61d72c430b1e0c354d6dd20bf48f05ce7e2d7 [file] [log] [blame]
/*
* Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.nodes.calc;
import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.graalvm.compiler.core.common.LIRKind;
import org.graalvm.compiler.core.common.type.ArithmeticStamp;
import org.graalvm.compiler.core.common.type.FloatStamp;
import org.graalvm.compiler.core.common.type.IntegerStamp;
import org.graalvm.compiler.core.common.type.Stamp;
import org.graalvm.compiler.core.common.type.StampFactory;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.lir.gen.ArithmeticLIRGeneratorTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.NodeView;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable;
import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
import jdk.vm.ci.code.CodeUtil;
import jdk.vm.ci.meta.JavaKind;
import jdk.vm.ci.meta.SerializableConstant;
/**
* The {@code ReinterpretNode} class represents a reinterpreting conversion that changes the stamp
* of a primitive value to some other incompatible stamp. The new stamp must have the same width as
* the old stamp.
*/
@NodeInfo(cycles = CYCLES_1)
public final class ReinterpretNode extends UnaryNode implements ArithmeticLIRLowerable {
public static final NodeClass<ReinterpretNode> TYPE = NodeClass.create(ReinterpretNode.class);
protected ReinterpretNode(JavaKind to, ValueNode value) {
this(StampFactory.forKind(to), value);
}
protected ReinterpretNode(Stamp to, ValueNode value) {
super(TYPE, getReinterpretStamp(to, value.stamp(NodeView.DEFAULT)), value);
assert to instanceof ArithmeticStamp;
}
public static ValueNode create(JavaKind to, ValueNode value, NodeView view) {
return create(StampFactory.forKind(to), value, view);
}
public static ValueNode create(Stamp to, ValueNode value, NodeView view) {
return canonical(null, to, value, view);
}
private static SerializableConstant evalConst(Stamp stamp, SerializableConstant c) {
/*
* We don't care about byte order here. Either would produce the correct result.
*/
ByteBuffer buffer = ByteBuffer.wrap(new byte[c.getSerializedSize()]).order(ByteOrder.nativeOrder());
c.serialize(buffer);
buffer.rewind();
SerializableConstant ret = ((ArithmeticStamp) stamp).deserialize(buffer);
assert !buffer.hasRemaining();
return ret;
}
@Override
public ValueNode canonical(CanonicalizerTool tool, ValueNode forValue) {
NodeView view = NodeView.from(tool);
return canonical(this, this.stamp(view), forValue, view);
}
public static ValueNode canonical(ReinterpretNode node, Stamp forStamp, ValueNode forValue, NodeView view) {
if (forValue.isConstant()) {
return ConstantNode.forConstant(forStamp, evalConst(forStamp, (SerializableConstant) forValue.asConstant()), null);
}
if (forStamp.isCompatible(forValue.stamp(view))) {
return forValue;
}
if (forValue instanceof ReinterpretNode) {
ReinterpretNode reinterpret = (ReinterpretNode) forValue;
return new ReinterpretNode(forStamp, reinterpret.getValue());
}
return node != null ? node : new ReinterpretNode(forStamp, forValue);
}
/**
* Compute the {@link IntegerStamp} from a {@link FloatStamp}, losing as little information as
* possible.
*
* Sorting by their bit pattern reinterpreted as signed integers gives the following order of
* floating point numbers:
*
* -0 | negative numbers | -Inf | NaNs | 0 | positive numbers | +Inf | NaNs
*
* So we can compute a better integer range if we know that the input is positive, negative,
* finite, non-zero and/or not NaN.
*/
private static IntegerStamp floatToInt(FloatStamp stamp) {
int bits = stamp.getBits();
long signBit = 1L << (bits - 1);
long exponentMask;
if (bits == 64) {
exponentMask = Double.doubleToRawLongBits(Double.POSITIVE_INFINITY);
} else {
assert bits == 32;
exponentMask = Float.floatToRawIntBits(Float.POSITIVE_INFINITY);
}
long positiveInfinity = exponentMask;
long negativeInfinity = CodeUtil.signExtend(signBit | positiveInfinity, bits);
long negativeZero = CodeUtil.signExtend(signBit | 0, bits);
if (stamp.isNaN()) {
// special case: in addition to the range, we know NaN has all exponent bits set
return IntegerStamp.create(bits, negativeInfinity + 1, CodeUtil.maxValue(bits), exponentMask, CodeUtil.mask(bits));
}
long upperBound;
if (stamp.isNonNaN()) {
if (stamp.upperBound() < 0.0) {
if (stamp.lowerBound() > Double.NEGATIVE_INFINITY) {
upperBound = negativeInfinity - 1;
} else {
upperBound = negativeInfinity;
}
} else if (stamp.upperBound() == 0.0) {
upperBound = 0;
} else if (stamp.upperBound() < Double.POSITIVE_INFINITY) {
upperBound = positiveInfinity - 1;
} else {
upperBound = positiveInfinity;
}
} else {
upperBound = CodeUtil.maxValue(bits);
}
long lowerBound;
if (stamp.lowerBound() > 0.0) {
if (stamp.isNonNaN()) {
lowerBound = 1;
} else {
lowerBound = negativeInfinity + 1;
}
} else if (stamp.upperBound() == Double.NEGATIVE_INFINITY) {
lowerBound = negativeInfinity;
} else if (stamp.upperBound() < 0.0) {
lowerBound = negativeZero + 1;
} else {
lowerBound = negativeZero;
}
return StampFactory.forInteger(bits, lowerBound, upperBound);
}
/**
* Compute the {@link IntegerStamp} from a {@link FloatStamp}, losing as little information as
* possible.
*
* Sorting by their bit pattern reinterpreted as signed integers gives the following order of
* floating point numbers:
*
* -0 | negative numbers | -Inf | NaNs | 0 | positive numbers | +Inf | NaNs
*
* So from certain integer ranges we may be able to infer something about the sign, finiteness
* or NaN-ness of the result.
*/
private static FloatStamp intToFloat(IntegerStamp stamp) {
int bits = stamp.getBits();
double minPositive;
double maxPositive;
long signBit = 1L << (bits - 1);
long exponentMask;
if (bits == 64) {
exponentMask = Double.doubleToRawLongBits(Double.POSITIVE_INFINITY);
minPositive = Double.MIN_VALUE;
maxPositive = Double.MAX_VALUE;
} else {
assert bits == 32;
exponentMask = Float.floatToRawIntBits(Float.POSITIVE_INFINITY);
minPositive = Float.MIN_VALUE;
maxPositive = Float.MAX_VALUE;
}
long significandMask = CodeUtil.mask(bits) & ~(signBit | exponentMask);
long positiveInfinity = exponentMask;
long negativeInfinity = CodeUtil.signExtend(signBit | positiveInfinity, bits);
long negativeZero = CodeUtil.signExtend(signBit | 0, bits);
if ((stamp.downMask() & exponentMask) == exponentMask && (stamp.downMask() & significandMask) != 0) {
// if all exponent bits and at least one significand bit are set, the result is NaN
return new FloatStamp(bits, Double.NaN, Double.NaN, false);
}
double upperBound;
if (stamp.upperBound() < negativeInfinity) {
if (stamp.lowerBound() > negativeZero) {
upperBound = -minPositive;
} else {
upperBound = -0.0;
}
} else if (stamp.upperBound() < 0) {
if (stamp.lowerBound() > negativeInfinity) {
return new FloatStamp(bits, Double.NaN, Double.NaN, false);
} else if (stamp.lowerBound() == negativeInfinity) {
upperBound = Double.NEGATIVE_INFINITY;
} else if (stamp.lowerBound() > negativeZero) {
upperBound = -minPositive;
} else {
upperBound = -0.0;
}
} else if (stamp.upperBound() == 0) {
upperBound = 0.0;
} else if (stamp.upperBound() < positiveInfinity) {
upperBound = maxPositive;
} else {
upperBound = Double.POSITIVE_INFINITY;
}
double lowerBound;
if (stamp.lowerBound() > positiveInfinity) {
return new FloatStamp(bits, Double.NaN, Double.NaN, false);
} else if (stamp.lowerBound() == positiveInfinity) {
lowerBound = Double.POSITIVE_INFINITY;
} else if (stamp.lowerBound() > 0) {
lowerBound = minPositive;
} else if (stamp.lowerBound() > negativeInfinity) {
lowerBound = 0.0;
} else {
lowerBound = Double.NEGATIVE_INFINITY;
}
boolean nonNaN;
if ((stamp.upMask() & exponentMask) != exponentMask) {
// NaN has all exponent bits set
nonNaN = true;
} else {
boolean negativeNaNBlock = stamp.lowerBound() < 0 && stamp.upperBound() > negativeInfinity;
boolean positiveNaNBlock = stamp.upperBound() > positiveInfinity;
nonNaN = !negativeNaNBlock && !positiveNaNBlock;
}
return new FloatStamp(bits, lowerBound, upperBound, nonNaN);
}
private static Stamp getReinterpretStamp(Stamp toStamp, Stamp fromStamp) {
if (toStamp instanceof IntegerStamp && fromStamp instanceof FloatStamp) {
return floatToInt((FloatStamp) fromStamp);
} else if (toStamp instanceof FloatStamp && fromStamp instanceof IntegerStamp) {
return intToFloat((IntegerStamp) fromStamp);
} else {
return toStamp;
}
}
@Override
public boolean inferStamp() {
return updateStamp(getReinterpretStamp(stamp(NodeView.DEFAULT), getValue().stamp(NodeView.DEFAULT)));
}
@Override
public void generate(NodeLIRBuilderTool builder, ArithmeticLIRGeneratorTool gen) {
LIRKind kind = builder.getLIRGeneratorTool().getLIRKind(stamp(NodeView.DEFAULT));
builder.setResult(this, gen.emitReinterpret(kind, builder.operand(getValue())));
}
public static ValueNode reinterpret(JavaKind toKind, ValueNode value) {
return value.graph().unique(new ReinterpretNode(toKind, value));
}
}