blob: 6a295a36f7af7b5f633baa4ddcd338ed89937e69 [file] [log] [blame]
/*
* Copyright (c) 2012, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.loop;
import java.util.ArrayDeque;
import java.util.Collections;
import java.util.Deque;
import java.util.Iterator;
import jdk.internal.vm.compiler.collections.EconomicMap;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.graph.Graph;
import org.graalvm.compiler.graph.Graph.DuplicationReplacement;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeBitMap;
import org.graalvm.compiler.graph.iterators.NodeIterable;
import org.graalvm.compiler.nodes.AbstractBeginNode;
import org.graalvm.compiler.nodes.AbstractMergeNode;
import org.graalvm.compiler.nodes.EndNode;
import org.graalvm.compiler.nodes.FixedNode;
import org.graalvm.compiler.nodes.FrameState;
import org.graalvm.compiler.nodes.GuardNode;
import org.graalvm.compiler.nodes.GuardPhiNode;
import org.graalvm.compiler.nodes.GuardProxyNode;
import org.graalvm.compiler.nodes.Invoke;
import org.graalvm.compiler.nodes.LoopExitNode;
import org.graalvm.compiler.nodes.MergeNode;
import org.graalvm.compiler.nodes.NodeView;
import org.graalvm.compiler.nodes.PhiNode;
import org.graalvm.compiler.nodes.ProxyNode;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.ValuePhiNode;
import org.graalvm.compiler.nodes.ValueProxyNode;
import org.graalvm.compiler.nodes.VirtualState;
import org.graalvm.compiler.nodes.cfg.Block;
import org.graalvm.compiler.nodes.java.MonitorEnterNode;
import org.graalvm.compiler.nodes.spi.NodeWithState;
import org.graalvm.compiler.nodes.virtual.CommitAllocationNode;
import org.graalvm.compiler.nodes.virtual.VirtualObjectNode;
import jdk.vm.ci.meta.TriState;
public abstract class LoopFragment {
private final LoopEx loop;
private final LoopFragment original;
protected NodeBitMap nodes;
protected boolean nodesReady;
private EconomicMap<Node, Node> duplicationMap;
public LoopFragment(LoopEx loop) {
this(loop, null);
this.nodesReady = true;
}
public LoopFragment(LoopEx loop, LoopFragment original) {
this.loop = loop;
this.original = original;
this.nodesReady = false;
}
/**
* Return the original LoopEx for this fragment. For duplicated fragments this returns null.
*/
protected LoopEx loop() {
return loop;
}
public abstract LoopFragment duplicate();
public abstract void insertBefore(LoopEx l);
public void disconnect() {
// TODO (gd) possibly abstract
}
public boolean contains(Node n) {
return nodes().isMarkedAndGrow(n);
}
@SuppressWarnings("unchecked")
public <New extends Node, Old extends New> New getDuplicatedNode(Old n) {
assert isDuplicate();
return (New) duplicationMap.get(n);
}
protected <New extends Node, Old extends New> void putDuplicatedNode(Old oldNode, New newNode) {
duplicationMap.put(oldNode, newNode);
}
/**
* Gets the corresponding value in this fragment. Should be called on duplicate fragments with a
* node from the original fragment as argument.
*
* @param b original value
* @return corresponding value in the peel
*/
protected abstract ValueNode prim(ValueNode b);
public boolean isDuplicate() {
return original != null;
}
public LoopFragment original() {
return original;
}
public abstract NodeBitMap nodes();
public StructuredGraph graph() {
LoopEx l;
if (isDuplicate()) {
l = original().loop();
} else {
l = loop();
}
return l.loopBegin().graph();
}
protected abstract DuplicationReplacement getDuplicationReplacement();
protected abstract void beforeDuplication();
protected abstract void finishDuplication();
protected void patchNodes(final DuplicationReplacement dataFix) {
if (isDuplicate() && !nodesReady) {
assert !original.isDuplicate();
final DuplicationReplacement cfgFix = original().getDuplicationReplacement();
DuplicationReplacement dr;
if (cfgFix == null && dataFix != null) {
dr = dataFix;
} else if (cfgFix != null && dataFix == null) {
dr = cfgFix;
} else if (cfgFix != null && dataFix != null) {
dr = new DuplicationReplacement() {
@Override
public Node replacement(Node o) {
Node r1 = dataFix.replacement(o);
if (r1 != o) {
assert cfgFix.replacement(o) == o;
return r1;
}
Node r2 = cfgFix.replacement(o);
if (r2 != o) {
return r2;
}
return o;
}
};
} else {
dr = null;
}
beforeDuplication();
NodeIterable<Node> nodesIterable = original().nodes();
duplicationMap = graph().addDuplicates(nodesIterable, graph(), nodesIterable.count(), dr);
finishDuplication();
nodes = new NodeBitMap(graph());
nodes.markAll(duplicationMap.getValues());
nodesReady = true;
} else {
// TODO (gd) apply fix ?
}
}
protected static NodeBitMap computeNodes(Graph graph, Iterable<AbstractBeginNode> blocks) {
return computeNodes(graph, blocks, Collections.emptyList());
}
protected static NodeBitMap computeNodes(Graph graph, Iterable<AbstractBeginNode> blocks, Iterable<AbstractBeginNode> earlyExits) {
final NodeBitMap nodes = graph.createNodeBitMap();
computeNodes(nodes, graph, blocks, earlyExits);
return nodes;
}
protected static void computeNodes(NodeBitMap nodes, Graph graph, Iterable<AbstractBeginNode> blocks, Iterable<AbstractBeginNode> earlyExits) {
for (AbstractBeginNode b : blocks) {
if (b.isDeleted()) {
continue;
}
for (Node n : b.getBlockNodes()) {
if (n instanceof Invoke) {
nodes.mark(((Invoke) n).callTarget());
}
if (n instanceof NodeWithState) {
NodeWithState withState = (NodeWithState) n;
withState.states().forEach(state -> state.applyToVirtual(node -> nodes.mark(node)));
}
if (n instanceof AbstractMergeNode) {
// if a merge is in the loop, all of its phis are also in the loop
for (PhiNode phi : ((AbstractMergeNode) n).phis()) {
nodes.mark(phi);
}
}
nodes.mark(n);
}
}
for (AbstractBeginNode earlyExit : earlyExits) {
if (earlyExit.isDeleted()) {
continue;
}
nodes.mark(earlyExit);
if (earlyExit instanceof LoopExitNode) {
LoopExitNode loopExit = (LoopExitNode) earlyExit;
FrameState stateAfter = loopExit.stateAfter();
if (stateAfter != null) {
stateAfter.applyToVirtual(node -> nodes.mark(node));
}
for (ProxyNode proxy : loopExit.proxies()) {
nodes.mark(proxy);
}
}
}
final NodeBitMap nonLoopNodes = graph.createNodeBitMap();
Deque<WorkListEntry> worklist = new ArrayDeque<>();
for (AbstractBeginNode b : blocks) {
if (b.isDeleted()) {
continue;
}
for (Node n : b.getBlockNodes()) {
if (n instanceof CommitAllocationNode) {
for (VirtualObjectNode obj : ((CommitAllocationNode) n).getVirtualObjects()) {
markFloating(worklist, obj, nodes, nonLoopNodes);
}
}
if (n instanceof MonitorEnterNode) {
markFloating(worklist, ((MonitorEnterNode) n).getMonitorId(), nodes, nonLoopNodes);
}
if (n instanceof AbstractMergeNode) {
/*
* Since we already marked all phi nodes as being in the loop to break cycles,
* we also have to iterate over their usages here.
*/
for (PhiNode phi : ((AbstractMergeNode) n).phis()) {
for (Node usage : phi.usages()) {
markFloating(worklist, usage, nodes, nonLoopNodes);
}
}
}
for (Node usage : n.usages()) {
markFloating(worklist, usage, nodes, nonLoopNodes);
}
}
}
}
static class WorkListEntry {
final Iterator<Node> usages;
final Node n;
boolean isLoopNode;
WorkListEntry(Node n, NodeBitMap loopNodes) {
this.n = n;
this.usages = n.usages().iterator();
this.isLoopNode = loopNodes.isMarked(n);
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof WorkListEntry)) {
return false;
}
WorkListEntry other = (WorkListEntry) obj;
return this.n == other.n;
}
@Override
public int hashCode() {
return n.hashCode();
}
}
static TriState isLoopNode(Node n, NodeBitMap loopNodes, NodeBitMap nonLoopNodes) {
if (loopNodes.isMarked(n)) {
return TriState.TRUE;
}
if (nonLoopNodes.isMarked(n)) {
return TriState.FALSE;
}
if (n instanceof FixedNode || n instanceof PhiNode) {
// phi nodes are treated the same as fixed nodes in this algorithm to break cycles
return TriState.FALSE;
}
return TriState.UNKNOWN;
}
private static void pushWorkList(Deque<WorkListEntry> workList, Node node, NodeBitMap loopNodes) {
WorkListEntry entry = new WorkListEntry(node, loopNodes);
assert !workList.contains(entry) : "node " + node + " added to worklist twice";
workList.push(entry);
}
private static void markFloating(Deque<WorkListEntry> workList, Node start, NodeBitMap loopNodes, NodeBitMap nonLoopNodes) {
if (isLoopNode(start, loopNodes, nonLoopNodes).isKnown()) {
return;
}
pushWorkList(workList, start, loopNodes);
while (!workList.isEmpty()) {
WorkListEntry currentEntry = workList.peek();
if (currentEntry.usages.hasNext()) {
Node current = currentEntry.usages.next();
TriState result = isLoopNode(current, loopNodes, nonLoopNodes);
if (result.isKnown()) {
if (result.toBoolean()) {
currentEntry.isLoopNode = true;
}
} else {
pushWorkList(workList, current, loopNodes);
}
} else {
workList.pop();
boolean isLoopNode = currentEntry.isLoopNode;
Node current = currentEntry.n;
if (!isLoopNode && current instanceof GuardNode) {
/*
* (gd) this is only OK if we are not going to make loop transforms based on
* this
*/
assert !((GuardNode) current).graph().hasValueProxies();
isLoopNode = true;
}
if (isLoopNode) {
loopNodes.mark(current);
for (WorkListEntry e : workList) {
e.isLoopNode = true;
}
} else {
nonLoopNodes.mark(current);
}
}
}
}
public static NodeIterable<AbstractBeginNode> toHirBlocks(final Iterable<Block> blocks) {
return new NodeIterable<AbstractBeginNode>() {
@Override
public Iterator<AbstractBeginNode> iterator() {
final Iterator<Block> it = blocks.iterator();
return new Iterator<AbstractBeginNode>() {
@Override
public void remove() {
throw new UnsupportedOperationException();
}
@Override
public AbstractBeginNode next() {
return it.next().getBeginNode();
}
@Override
public boolean hasNext() {
return it.hasNext();
}
};
}
};
}
public static NodeIterable<AbstractBeginNode> toHirExits(final Iterable<Block> blocks) {
return new NodeIterable<AbstractBeginNode>() {
@Override
public Iterator<AbstractBeginNode> iterator() {
final Iterator<Block> it = blocks.iterator();
return new Iterator<AbstractBeginNode>() {
@Override
public void remove() {
throw new UnsupportedOperationException();
}
/**
* Return the true LoopExitNode for this loop or the BeginNode for the block.
*/
@Override
public AbstractBeginNode next() {
Block next = it.next();
LoopExitNode exit = next.getLoopExit();
if (exit != null) {
return exit;
}
return next.getBeginNode();
}
@Override
public boolean hasNext() {
return it.hasNext();
}
};
}
};
}
/**
* Merges the early exits (i.e. loop exits) that were duplicated as part of this fragment, with
* the original fragment's exits.
*/
protected void mergeEarlyExits() {
assert isDuplicate();
StructuredGraph graph = graph();
for (AbstractBeginNode earlyExit : LoopFragment.toHirBlocks(original().loop().loop().getExits())) {
LoopExitNode loopEarlyExit = (LoopExitNode) earlyExit;
FixedNode next = loopEarlyExit.next();
if (loopEarlyExit.isDeleted() || !this.original().contains(loopEarlyExit)) {
continue;
}
AbstractBeginNode newEarlyExit = getDuplicatedNode(loopEarlyExit);
if (newEarlyExit == null) {
continue;
}
MergeNode merge = graph.add(new MergeNode());
EndNode originalEnd = graph.add(new EndNode());
EndNode newEnd = graph.add(new EndNode());
merge.addForwardEnd(originalEnd);
merge.addForwardEnd(newEnd);
loopEarlyExit.setNext(originalEnd);
newEarlyExit.setNext(newEnd);
merge.setNext(next);
FrameState exitState = loopEarlyExit.stateAfter();
if (exitState != null) {
FrameState originalExitState = exitState;
exitState = exitState.duplicateWithVirtualState();
loopEarlyExit.setStateAfter(exitState);
merge.setStateAfter(originalExitState);
/*
* Using the old exit's state as the merge's state is necessary because some of the
* VirtualState nodes contained in the old exit's state may be shared by other
* dominated VirtualStates. Those dominated virtual states need to see the
* proxy->phi update that are applied below.
*
* We now update the original fragment's nodes accordingly:
*/
originalExitState.applyToVirtual(node -> original.nodes.clearAndGrow(node));
exitState.applyToVirtual(node -> original.nodes.markAndGrow(node));
}
FrameState finalExitState = exitState;
for (Node anchored : loopEarlyExit.anchored().snapshot()) {
anchored.replaceFirstInput(loopEarlyExit, merge);
}
boolean newEarlyExitIsLoopExit = newEarlyExit instanceof LoopExitNode;
for (ProxyNode vpn : loopEarlyExit.proxies().snapshot()) {
if (vpn.hasNoUsages()) {
continue;
}
if (vpn.value() == null) {
assert vpn instanceof GuardProxyNode;
vpn.replaceAtUsages(null);
continue;
}
final ValueNode replaceWith;
ValueNode newVpn = prim(newEarlyExitIsLoopExit ? vpn : vpn.value());
if (newVpn != null) {
PhiNode phi;
if (vpn instanceof ValueProxyNode) {
phi = graph.addWithoutUnique(new ValuePhiNode(vpn.stamp(NodeView.DEFAULT), merge));
} else if (vpn instanceof GuardProxyNode) {
phi = graph.addWithoutUnique(new GuardPhiNode(merge));
} else {
throw GraalError.shouldNotReachHere();
}
phi.addInput(vpn);
phi.addInput(newVpn);
replaceWith = phi;
} else {
replaceWith = vpn.value();
}
vpn.replaceAtMatchingUsages(replaceWith, usage -> {
if (merge.isPhiAtMerge(usage)) {
return false;
}
if (usage instanceof VirtualState) {
VirtualState stateUsage = (VirtualState) usage;
if (finalExitState != null && finalExitState.isPartOfThisState(stateUsage)) {
return false;
}
}
return true;
});
}
}
}
}