blob: 60a7ac3af389be4c800af987991ad85d599d115b [file] [log] [blame]
/*
* Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.graalvm.compiler.core.amd64;
import static jdk.vm.ci.code.ValueUtil.asRegister;
import static jdk.vm.ci.code.ValueUtil.isAllocatableValue;
import static jdk.vm.ci.code.ValueUtil.isRegister;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64BinaryArithmetic.CMP;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.DWORD;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.PD;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.PS;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.QWORD;
import static org.graalvm.compiler.core.common.GraalOptions.GeneratePIC;
import static org.graalvm.compiler.lir.LIRValueUtil.asConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.asConstantValue;
import static org.graalvm.compiler.lir.LIRValueUtil.asJavaConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.isConstantValue;
import static org.graalvm.compiler.lir.LIRValueUtil.isIntConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.isJavaConstant;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64BinaryArithmetic;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64MIOp;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64RMOp;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.ConditionFlag;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.SSEOp;
import org.graalvm.compiler.core.common.LIRKind;
import org.graalvm.compiler.core.common.NumUtil;
import org.graalvm.compiler.core.common.calc.Condition;
import org.graalvm.compiler.core.common.spi.ForeignCallLinkage;
import org.graalvm.compiler.core.common.spi.LIRKindTool;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.lir.ConstantValue;
import org.graalvm.compiler.lir.LIRFrameState;
import org.graalvm.compiler.lir.LIRInstruction;
import org.graalvm.compiler.lir.LIRValueUtil;
import org.graalvm.compiler.lir.LabelRef;
import org.graalvm.compiler.lir.StandardOp.JumpOp;
import org.graalvm.compiler.lir.StandardOp.SaveRegistersOp;
import org.graalvm.compiler.lir.SwitchStrategy;
import org.graalvm.compiler.lir.Variable;
import org.graalvm.compiler.lir.amd64.AMD64AddressValue;
import org.graalvm.compiler.lir.amd64.AMD64ArithmeticLIRGeneratorTool;
import org.graalvm.compiler.lir.amd64.AMD64ArrayCompareToOp;
import org.graalvm.compiler.lir.amd64.AMD64ArrayEqualsOp;
import org.graalvm.compiler.lir.amd64.AMD64Binary;
import org.graalvm.compiler.lir.amd64.AMD64BinaryConsumer;
import org.graalvm.compiler.lir.amd64.AMD64ByteSwapOp;
import org.graalvm.compiler.lir.amd64.AMD64Call;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.BranchOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.CondMoveOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.CondSetOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.FloatBranchOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.FloatCondMoveOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.FloatCondSetOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.ReturnOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.StrategySwitchOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.TableSwitchOp;
import org.graalvm.compiler.lir.amd64.AMD64LFenceOp;
import org.graalvm.compiler.lir.amd64.AMD64Move;
import org.graalvm.compiler.lir.amd64.AMD64Move.CompareAndSwapOp;
import org.graalvm.compiler.lir.amd64.AMD64Move.MembarOp;
import org.graalvm.compiler.lir.amd64.AMD64Move.StackLeaOp;
import org.graalvm.compiler.lir.amd64.AMD64PauseOp;
import org.graalvm.compiler.lir.amd64.AMD64StringIndexOfOp;
import org.graalvm.compiler.lir.amd64.AMD64ZapRegistersOp;
import org.graalvm.compiler.lir.amd64.AMD64ZapStackOp;
import org.graalvm.compiler.lir.gen.LIRGenerationResult;
import org.graalvm.compiler.lir.gen.LIRGenerator;
import org.graalvm.compiler.phases.util.Providers;
import jdk.vm.ci.amd64.AMD64;
import jdk.vm.ci.amd64.AMD64Kind;
import jdk.vm.ci.code.CallingConvention;
import jdk.vm.ci.code.Register;
import jdk.vm.ci.code.RegisterValue;
import jdk.vm.ci.code.StackSlot;
import jdk.vm.ci.meta.AllocatableValue;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.JavaKind;
import jdk.vm.ci.meta.PlatformKind;
import jdk.vm.ci.meta.VMConstant;
import jdk.vm.ci.meta.Value;
import jdk.vm.ci.meta.ValueKind;
/**
* This class implements the AMD64 specific portion of the LIR generator.
*/
public abstract class AMD64LIRGenerator extends LIRGenerator {
public AMD64LIRGenerator(LIRKindTool lirKindTool, AMD64ArithmeticLIRGenerator arithmeticLIRGen, MoveFactory moveFactory, Providers providers, LIRGenerationResult lirGenRes) {
super(lirKindTool, arithmeticLIRGen, moveFactory, providers, lirGenRes);
}
/**
* Checks whether the supplied constant can be used without loading it into a register for store
* operations, i.e., on the right hand side of a memory access.
*
* @param c The constant to check.
* @return True if the constant can be used directly, false if the constant needs to be in a
* register.
*/
protected static final boolean canStoreConstant(JavaConstant c) {
// there is no immediate move of 64-bit constants on Intel
switch (c.getJavaKind()) {
case Long:
return NumUtil.isInt(c.asLong());
case Double:
return false;
case Object:
return c.isNull();
default:
return true;
}
}
@Override
protected JavaConstant zapValueForKind(PlatformKind kind) {
long dead = 0xDEADDEADDEADDEADL;
switch ((AMD64Kind) kind) {
case BYTE:
return JavaConstant.forByte((byte) dead);
case WORD:
return JavaConstant.forShort((short) dead);
case DWORD:
return JavaConstant.forInt((int) dead);
case QWORD:
return JavaConstant.forLong(dead);
case SINGLE:
return JavaConstant.forFloat(Float.intBitsToFloat((int) dead));
default:
// we don't support vector types, so just zap with double for all of them
return JavaConstant.forDouble(Double.longBitsToDouble(dead));
}
}
public AMD64AddressValue asAddressValue(Value address) {
if (address instanceof AMD64AddressValue) {
return (AMD64AddressValue) address;
} else {
if (address instanceof JavaConstant) {
long displacement = ((JavaConstant) address).asLong();
if (NumUtil.isInt(displacement)) {
return new AMD64AddressValue(address.getValueKind(), Value.ILLEGAL, (int) displacement);
}
}
return new AMD64AddressValue(address.getValueKind(), asAllocatable(address), 0);
}
}
@Override
public Variable emitAddress(AllocatableValue stackslot) {
Variable result = newVariable(LIRKind.value(target().arch.getWordKind()));
append(new StackLeaOp(result, stackslot));
return result;
}
/**
* The AMD64 backend only uses DWORD and QWORD values in registers because of a performance
* penalty when accessing WORD or BYTE registers. This function converts small integer kinds to
* DWORD.
*/
@Override
public <K extends ValueKind<K>> K toRegisterKind(K kind) {
switch ((AMD64Kind) kind.getPlatformKind()) {
case BYTE:
case WORD:
return kind.changeType(AMD64Kind.DWORD);
default:
return kind;
}
}
private AllocatableValue asAllocatable(Value value, ValueKind<?> kind) {
if (value.getValueKind().equals(kind)) {
return asAllocatable(value);
} else if (isRegister(value)) {
return asRegister(value).asValue(kind);
} else if (isConstantValue(value)) {
return emitLoadConstant(kind, asConstant(value));
} else {
Variable variable = newVariable(kind);
emitMove(variable, value);
return variable;
}
}
private Value emitCompareAndSwap(boolean isLogic, LIRKind accessKind, Value address, Value expectedValue, Value newValue, Value trueValue, Value falseValue) {
ValueKind<?> kind = newValue.getValueKind();
assert kind.equals(expectedValue.getValueKind());
AMD64AddressValue addressValue = asAddressValue(address);
LIRKind integralAccessKind = accessKind;
Value reinterpretedExpectedValue = expectedValue;
Value reinterpretedNewValue = newValue;
boolean isXmm = ((AMD64Kind) accessKind.getPlatformKind()).isXMM();
if (isXmm) {
if (accessKind.getPlatformKind().equals(AMD64Kind.SINGLE)) {
integralAccessKind = LIRKind.fromJavaKind(target().arch, JavaKind.Int);
} else {
integralAccessKind = LIRKind.fromJavaKind(target().arch, JavaKind.Long);
}
reinterpretedExpectedValue = arithmeticLIRGen.emitReinterpret(integralAccessKind, expectedValue);
reinterpretedNewValue = arithmeticLIRGen.emitReinterpret(integralAccessKind, newValue);
}
AMD64Kind memKind = (AMD64Kind) integralAccessKind.getPlatformKind();
RegisterValue aRes = AMD64.rax.asValue(integralAccessKind);
AllocatableValue allocatableNewValue = asAllocatable(reinterpretedNewValue, integralAccessKind);
emitMove(aRes, reinterpretedExpectedValue);
append(new CompareAndSwapOp(memKind, aRes, addressValue, aRes, allocatableNewValue));
if (isLogic) {
assert trueValue.getValueKind().equals(falseValue.getValueKind());
Variable result = newVariable(trueValue.getValueKind());
append(new CondMoveOp(result, Condition.EQ, asAllocatable(trueValue), falseValue));
return result;
} else {
if (isXmm) {
return arithmeticLIRGen.emitReinterpret(accessKind, aRes);
} else {
Variable result = newVariable(kind);
emitMove(result, aRes);
return result;
}
}
}
@Override
public Variable emitLogicCompareAndSwap(LIRKind accessKind, Value address, Value expectedValue, Value newValue, Value trueValue, Value falseValue) {
return (Variable) emitCompareAndSwap(true, accessKind, address, expectedValue, newValue, trueValue, falseValue);
}
@Override
public Value emitValueCompareAndSwap(LIRKind accessKind, Value address, Value expectedValue, Value newValue) {
return emitCompareAndSwap(false, accessKind, address, expectedValue, newValue, null, null);
}
public void emitCompareAndSwapBranch(ValueKind<?> kind, AMD64AddressValue address, Value expectedValue, Value newValue, Condition condition, LabelRef trueLabel, LabelRef falseLabel,
double trueLabelProbability) {
assert kind.equals(expectedValue.getValueKind());
assert kind.equals(newValue.getValueKind());
assert condition == Condition.EQ || condition == Condition.NE;
AMD64Kind memKind = (AMD64Kind) kind.getPlatformKind();
RegisterValue raxValue = AMD64.rax.asValue(kind);
emitMove(raxValue, expectedValue);
append(new CompareAndSwapOp(memKind, raxValue, address, raxValue, asAllocatable(newValue)));
append(new BranchOp(condition, trueLabel, falseLabel, trueLabelProbability));
}
@Override
public Value emitAtomicReadAndAdd(Value address, ValueKind<?> kind, Value delta) {
Variable result = newVariable(kind);
AMD64AddressValue addressValue = asAddressValue(address);
append(new AMD64Move.AtomicReadAndAddOp((AMD64Kind) kind.getPlatformKind(), result, addressValue, asAllocatable(delta)));
return result;
}
@Override
public Value emitAtomicReadAndWrite(Value address, ValueKind<?> kind, Value newValue) {
Variable result = newVariable(kind);
AMD64AddressValue addressValue = asAddressValue(address);
append(new AMD64Move.AtomicReadAndWriteOp((AMD64Kind) kind.getPlatformKind(), result, addressValue, asAllocatable(newValue)));
return result;
}
@Override
public void emitNullCheck(Value address, LIRFrameState state) {
append(new AMD64Move.NullCheckOp(asAddressValue(address), state));
}
@Override
public void emitJump(LabelRef label) {
assert label != null;
append(new JumpOp(label));
}
@Override
public void emitCompareBranch(PlatformKind cmpKind, Value left, Value right, Condition cond, boolean unorderedIsTrue, LabelRef trueLabel, LabelRef falseLabel, double trueLabelProbability) {
Condition finalCondition = emitCompare(cmpKind, left, right, cond);
if (cmpKind == AMD64Kind.SINGLE || cmpKind == AMD64Kind.DOUBLE) {
append(new FloatBranchOp(finalCondition, unorderedIsTrue, trueLabel, falseLabel, trueLabelProbability));
} else {
append(new BranchOp(finalCondition, trueLabel, falseLabel, trueLabelProbability));
}
}
public void emitCompareBranchMemory(AMD64Kind cmpKind, Value left, AMD64AddressValue right, LIRFrameState state, Condition cond, boolean unorderedIsTrue, LabelRef trueLabel, LabelRef falseLabel,
double trueLabelProbability) {
boolean mirrored = emitCompareMemory(cmpKind, left, right, state);
Condition finalCondition = mirrored ? cond.mirror() : cond;
if (cmpKind.isXMM()) {
append(new FloatBranchOp(finalCondition, unorderedIsTrue, trueLabel, falseLabel, trueLabelProbability));
} else {
append(new BranchOp(finalCondition, trueLabel, falseLabel, trueLabelProbability));
}
}
@Override
public void emitOverflowCheckBranch(LabelRef overflow, LabelRef noOverflow, LIRKind cmpLIRKind, double overflowProbability) {
append(new BranchOp(ConditionFlag.Overflow, overflow, noOverflow, overflowProbability));
}
@Override
public void emitIntegerTestBranch(Value left, Value right, LabelRef trueDestination, LabelRef falseDestination, double trueDestinationProbability) {
emitIntegerTest(left, right);
append(new BranchOp(Condition.EQ, trueDestination, falseDestination, trueDestinationProbability));
}
@Override
public Variable emitConditionalMove(PlatformKind cmpKind, Value left, Value right, Condition cond, boolean unorderedIsTrue, Value trueValue, Value falseValue) {
boolean isFloatComparison = cmpKind == AMD64Kind.SINGLE || cmpKind == AMD64Kind.DOUBLE;
Condition finalCondition = cond;
Value finalTrueValue = trueValue;
Value finalFalseValue = falseValue;
if (isFloatComparison) {
// eliminate the parity check in case of a float comparison
Value finalLeft = left;
Value finalRight = right;
if (unorderedIsTrue != AMD64ControlFlow.trueOnUnordered(finalCondition)) {
if (unorderedIsTrue == AMD64ControlFlow.trueOnUnordered(finalCondition.mirror())) {
finalCondition = finalCondition.mirror();
finalLeft = right;
finalRight = left;
} else if (finalCondition != Condition.EQ && finalCondition != Condition.NE) {
// negating EQ and NE does not make any sense as we would need to negate
// unorderedIsTrue as well (otherwise, we would no longer fulfill the Java
// NaN semantics)
assert unorderedIsTrue == AMD64ControlFlow.trueOnUnordered(finalCondition.negate());
finalCondition = finalCondition.negate();
finalTrueValue = falseValue;
finalFalseValue = trueValue;
}
}
emitRawCompare(cmpKind, finalLeft, finalRight);
} else {
finalCondition = emitCompare(cmpKind, left, right, cond);
}
boolean isParityCheckNecessary = isFloatComparison && unorderedIsTrue != AMD64ControlFlow.trueOnUnordered(finalCondition);
Variable result = newVariable(finalTrueValue.getValueKind());
if (!isParityCheckNecessary && isIntConstant(finalTrueValue, 1) && isIntConstant(finalFalseValue, 0)) {
if (isFloatComparison) {
append(new FloatCondSetOp(result, finalCondition));
} else {
append(new CondSetOp(result, finalCondition));
}
} else if (!isParityCheckNecessary && isIntConstant(finalTrueValue, 0) && isIntConstant(finalFalseValue, 1)) {
if (isFloatComparison) {
if (unorderedIsTrue == AMD64ControlFlow.trueOnUnordered(finalCondition.negate())) {
append(new FloatCondSetOp(result, finalCondition.negate()));
} else {
append(new FloatCondSetOp(result, finalCondition));
Variable negatedResult = newVariable(result.getValueKind());
append(new AMD64Binary.ConstOp(AMD64BinaryArithmetic.XOR, OperandSize.get(result.getPlatformKind()), negatedResult, result, 1));
result = negatedResult;
}
} else {
append(new CondSetOp(result, finalCondition.negate()));
}
} else if (isFloatComparison) {
append(new FloatCondMoveOp(result, finalCondition, unorderedIsTrue, load(finalTrueValue), load(finalFalseValue)));
} else {
append(new CondMoveOp(result, finalCondition, load(finalTrueValue), loadNonConst(finalFalseValue)));
}
return result;
}
@Override
public Variable emitIntegerTestMove(Value left, Value right, Value trueValue, Value falseValue) {
emitIntegerTest(left, right);
Variable result = newVariable(trueValue.getValueKind());
append(new CondMoveOp(result, Condition.EQ, load(trueValue), loadNonConst(falseValue)));
return result;
}
private void emitIntegerTest(Value a, Value b) {
assert ((AMD64Kind) a.getPlatformKind()).isInteger();
OperandSize size = a.getPlatformKind() == AMD64Kind.QWORD ? QWORD : DWORD;
if (isJavaConstant(b) && NumUtil.is32bit(asJavaConstant(b).asLong())) {
append(new AMD64BinaryConsumer.ConstOp(AMD64MIOp.TEST, size, asAllocatable(a), (int) asJavaConstant(b).asLong()));
} else if (isJavaConstant(a) && NumUtil.is32bit(asJavaConstant(a).asLong())) {
append(new AMD64BinaryConsumer.ConstOp(AMD64MIOp.TEST, size, asAllocatable(b), (int) asJavaConstant(a).asLong()));
} else if (isAllocatableValue(b)) {
append(new AMD64BinaryConsumer.Op(AMD64RMOp.TEST, size, asAllocatable(b), asAllocatable(a)));
} else {
append(new AMD64BinaryConsumer.Op(AMD64RMOp.TEST, size, asAllocatable(a), asAllocatable(b)));
}
}
/**
* This method emits the compare against memory instruction, and may reorder the operands. It
* returns true if it did so.
*
* @param b the right operand of the comparison
* @return true if the left and right operands were switched, false otherwise
*/
private boolean emitCompareMemory(AMD64Kind cmpKind, Value a, AMD64AddressValue b, LIRFrameState state) {
OperandSize size;
switch (cmpKind) {
case BYTE:
size = OperandSize.BYTE;
break;
case WORD:
size = OperandSize.WORD;
break;
case DWORD:
size = OperandSize.DWORD;
break;
case QWORD:
size = OperandSize.QWORD;
break;
case SINGLE:
append(new AMD64BinaryConsumer.MemoryRMOp(SSEOp.UCOMIS, PS, asAllocatable(a), b, state));
return false;
case DOUBLE:
append(new AMD64BinaryConsumer.MemoryRMOp(SSEOp.UCOMIS, PD, asAllocatable(a), b, state));
return false;
default:
throw GraalError.shouldNotReachHere("unexpected kind: " + cmpKind);
}
if (isConstantValue(a)) {
return emitCompareMemoryConOp(size, asConstantValue(a), b, state);
} else {
return emitCompareRegMemoryOp(size, asAllocatable(a), b, state);
}
}
protected boolean emitCompareMemoryConOp(OperandSize size, ConstantValue a, AMD64AddressValue b, LIRFrameState state) {
if (JavaConstant.isNull(a.getConstant())) {
append(new AMD64BinaryConsumer.MemoryConstOp(CMP, size, b, 0, state));
return true;
} else if (a.getConstant() instanceof VMConstant && size == DWORD) {
VMConstant vc = (VMConstant) a.getConstant();
append(new AMD64BinaryConsumer.MemoryVMConstOp(CMP.getMIOpcode(size, false), b, vc, state));
return true;
} else {
long value = a.getJavaConstant().asLong();
if (NumUtil.is32bit(value)) {
append(new AMD64BinaryConsumer.MemoryConstOp(CMP, size, b, (int) value, state));
return true;
} else {
return emitCompareRegMemoryOp(size, asAllocatable(a), b, state);
}
}
}
private boolean emitCompareRegMemoryOp(OperandSize size, AllocatableValue a, AMD64AddressValue b, LIRFrameState state) {
AMD64RMOp op = CMP.getRMOpcode(size);
append(new AMD64BinaryConsumer.MemoryRMOp(op, size, a, b, state));
return false;
}
/**
* This method emits the compare instruction, and may reorder the operands. It returns true if
* it did so.
*
* @param a the left operand of the comparison
* @param b the right operand of the comparison
* @param cond the condition of the comparison
* @return true if the left and right operands were switched, false otherwise
*/
private Condition emitCompare(PlatformKind cmpKind, Value a, Value b, Condition cond) {
if (LIRValueUtil.isVariable(b)) {
emitRawCompare(cmpKind, b, a);
return cond.mirror();
} else {
emitRawCompare(cmpKind, a, b);
return cond;
}
}
private void emitRawCompare(PlatformKind cmpKind, Value left, Value right) {
((AMD64ArithmeticLIRGeneratorTool) arithmeticLIRGen).emitCompareOp((AMD64Kind) cmpKind, load(left), loadNonConst(right));
}
@Override
public void emitMembar(int barriers) {
int necessaryBarriers = target().arch.requiredBarriers(barriers);
if (target().isMP && necessaryBarriers != 0) {
append(new MembarOp(necessaryBarriers));
}
}
public abstract void emitCCall(long address, CallingConvention nativeCallingConvention, Value[] args, int numberOfFloatingPointArguments);
@Override
protected void emitForeignCallOp(ForeignCallLinkage linkage, Value result, Value[] arguments, Value[] temps, LIRFrameState info) {
long maxOffset = linkage.getMaxCallTargetOffset();
if (maxOffset != (int) maxOffset && !GeneratePIC.getValue(getResult().getLIR().getOptions())) {
append(new AMD64Call.DirectFarForeignCallOp(linkage, result, arguments, temps, info));
} else {
append(new AMD64Call.DirectNearForeignCallOp(linkage, result, arguments, temps, info));
}
}
@Override
public Variable emitByteSwap(Value input) {
Variable result = newVariable(LIRKind.combine(input));
append(new AMD64ByteSwapOp(result, input));
return result;
}
@Override
public Variable emitArrayCompareTo(JavaKind kind1, JavaKind kind2, Value array1, Value array2, Value length1, Value length2) {
LIRKind resultKind = LIRKind.value(AMD64Kind.DWORD);
RegisterValue raxRes = AMD64.rax.asValue(resultKind);
RegisterValue cnt1 = AMD64.rcx.asValue(length1.getValueKind());
RegisterValue cnt2 = AMD64.rdx.asValue(length2.getValueKind());
emitMove(cnt1, length1);
emitMove(cnt2, length2);
append(new AMD64ArrayCompareToOp(this, kind1, kind2, raxRes, array1, array2, cnt1, cnt2));
Variable result = newVariable(resultKind);
emitMove(result, raxRes);
return result;
}
@Override
public Variable emitArrayEquals(JavaKind kind, Value array1, Value array2, Value length) {
Variable result = newVariable(LIRKind.value(AMD64Kind.DWORD));
append(new AMD64ArrayEqualsOp(this, kind, result, array1, array2, asAllocatable(length)));
return result;
}
/**
* Return a conservative estimate of the page size for use by the String.indexOf intrinsic.
*/
protected int getVMPageSize() {
return 4096;
}
@Override
public Variable emitStringIndexOf(Value source, Value sourceCount, Value target, Value targetCount, int constantTargetCount) {
Variable result = newVariable(LIRKind.value(AMD64Kind.DWORD));
RegisterValue cnt1 = AMD64.rdx.asValue(sourceCount.getValueKind());
emitMove(cnt1, sourceCount);
RegisterValue cnt2 = AMD64.rax.asValue(targetCount.getValueKind());
emitMove(cnt2, targetCount);
append(new AMD64StringIndexOfOp(this, result, source, target, cnt1, cnt2, AMD64.rcx.asValue(), AMD64.xmm0.asValue(), constantTargetCount, getVMPageSize()));
return result;
}
@Override
public void emitReturn(JavaKind kind, Value input) {
AllocatableValue operand = Value.ILLEGAL;
if (input != null) {
operand = resultOperandFor(kind, input.getValueKind());
emitMove(operand, input);
}
append(new ReturnOp(operand));
}
protected StrategySwitchOp createStrategySwitchOp(SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Variable key, AllocatableValue temp) {
return new StrategySwitchOp(strategy, keyTargets, defaultTarget, key, temp);
}
@Override
public void emitStrategySwitch(SwitchStrategy strategy, Variable key, LabelRef[] keyTargets, LabelRef defaultTarget) {
// a temp is needed for loading object constants
boolean needsTemp = !LIRKind.isValue(key);
append(createStrategySwitchOp(strategy, keyTargets, defaultTarget, key, needsTemp ? newVariable(key.getValueKind()) : Value.ILLEGAL));
}
@Override
protected void emitTableSwitch(int lowKey, LabelRef defaultTarget, LabelRef[] targets, Value key) {
append(new TableSwitchOp(lowKey, defaultTarget, targets, key, newVariable(LIRKind.value(target().arch.getWordKind())), newVariable(key.getValueKind())));
}
@Override
public void emitPause() {
append(new AMD64PauseOp());
}
@Override
public SaveRegistersOp createZapRegisters(Register[] zappedRegisters, JavaConstant[] zapValues) {
return new AMD64ZapRegistersOp(zappedRegisters, zapValues);
}
@Override
public LIRInstruction createZapArgumentSpace(StackSlot[] zappedStack, JavaConstant[] zapValues) {
return new AMD64ZapStackOp(zappedStack, zapValues);
}
public void emitLFence() {
append(new AMD64LFenceOp());
}
}