blob: c825c97c437b0d62d9cc421b151037ffdf8936fd [file] [log] [blame]
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* FUNCTION
* Internal functions for mlib_ImageConv* on D64/F32 type and
* MLIB_EDGE_DST_NO_WRITE mask
*
*/
#include "mlib_image.h"
#include "mlib_ImageConv.h"
/***************************************************************/
/*
This define switches between functions of MLIB_DOUBLE and MLIB_FLOAT types:
Files mlib_ImageConv_D64nw.c and mlib_ImageConv_F32nw.c
*/
/* #define TYPE_DOUBLE */
/***************************************************************/
#ifdef TYPE_DOUBLE
#define CONV_FUNC(KERN) mlib_conv##KERN##nw_d64
#define DTYPE mlib_d64
#else
#define CONV_FUNC(KERN) mlib_conv##KERN##nw_f32
#define DTYPE mlib_f32
#endif /* TYPE_DOUBLE */
/***************************************************************/
#define GET_SRC_DST_PARAMETERS(type) \
mlib_s32 hgt = mlib_ImageGetHeight(src); \
mlib_s32 wid = mlib_ImageGetWidth(src); \
mlib_s32 sll = mlib_ImageGetStride(src) / sizeof(type); \
mlib_s32 dll = mlib_ImageGetStride(dst) / sizeof(type); \
type* adr_src = mlib_ImageGetData(src); \
type* adr_dst = mlib_ImageGetData(dst); \
mlib_s32 chan1 = mlib_ImageGetChannels(src)
/***************************************************************/
#define DEF_VARS(type) \
GET_SRC_DST_PARAMETERS(type); \
type *sl; \
type *dl, *dp = NULL; \
mlib_s32 i, j, c
/***************************************************************/
#define BUFF_SIZE 1600
#define CACHE_SIZE (64*1024)
static mlib_status mlib_ImageConv1xN(mlib_image *dst,
const mlib_image *src,
const DTYPE *k,
mlib_s32 n,
mlib_s32 dn,
mlib_s32 cmask)
{
DTYPE buff[BUFF_SIZE], *pbuff = buff;
const DTYPE *pk;
DTYPE k0, k1, k2, k3;
DTYPE p0, p1, p2, p3, p4;
DTYPE *sp, *sl_c, *dl_c, *sl0;
DEF_VARS(DTYPE);
mlib_s32 off, kh;
mlib_s32 l, hsize, max_hsize;
hgt -= (n - 1);
adr_dst += dn*dll;
max_hsize = (CACHE_SIZE/sizeof(DTYPE))/sll;
if (!max_hsize) max_hsize = 1;
if (max_hsize > BUFF_SIZE) {
pbuff = mlib_malloc(sizeof(DTYPE)*max_hsize);
}
sl_c = adr_src;
dl_c = adr_dst;
for (l = 0; l < hgt; l += hsize) {
hsize = hgt - l;
if (hsize > max_hsize) hsize = max_hsize;
for (c = 0; c < chan1; c++) {
if (!(cmask & (1 << (chan1 - 1 - c)))) continue;
sl = sl_c + c;
dl = dl_c + c;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = 0; j < hsize; j++) pbuff[j] = 0.0;
for (i = 0; i < wid; i++) {
sl0 = sl;
for (off = 0; off < (n - 4); off += 4) {
pk = k + off;
sp = sl0;
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
p2 = sp[0]; p3 = sp[sll]; p4 = sp[2*sll];
sp += 3*sll;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = 0; j < hsize; j += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = sp[0];
p4 = sp[sll];
pbuff[j ] += p0*k0 + p1*k1 + p2*k2 + p3*k3;
pbuff[j + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3;
sp += 2*sll;
}
sl0 += 4*sll;
}
pk = k + off;
sp = sl0;
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
p2 = sp[0]; p3 = sp[sll]; p4 = sp[2*sll];
dp = dl;
kh = n - off;
if (kh == 4) {
sp += 3*sll;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = 0; j <= (hsize - 2); j += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = sp[0];
p4 = sp[sll];
dp[0 ] = p0*k0 + p1*k1 + p2*k2 + p3*k3 + pbuff[j];
dp[dll] = p1*k0 + p2*k1 + p3*k2 + p4*k3 + pbuff[j + 1];
pbuff[j] = 0;
pbuff[j + 1] = 0;
sp += 2*sll;
dp += 2*dll;
}
if (j < hsize) {
p0 = p2; p1 = p3; p2 = p4;
p3 = sp[0];
dp[0] = p0*k0 + p1*k1 + p2*k2 + p3*k3 + pbuff[j];
pbuff[j] = 0;
}
} else if (kh == 3) {
sp += 2*sll;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = 0; j <= (hsize - 2); j += 2) {
p0 = p2; p1 = p3;
p2 = sp[0];
p3 = sp[sll];
dp[0 ] = p0*k0 + p1*k1 + p2*k2 + pbuff[j];
dp[dll] = p1*k0 + p2*k1 + p3*k2 + pbuff[j + 1];
pbuff[j] = 0;
pbuff[j + 1] = 0;
sp += 2*sll;
dp += 2*dll;
}
if (j < hsize) {
p0 = p2; p1 = p3;
p2 = sp[0];
dp[0] = p0*k0 + p1*k1 + p2*k2 + pbuff[j];
pbuff[j] = 0;
}
} else if (kh == 2) {
sp += sll;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = 0; j <= (hsize - 2); j += 2) {
p0 = p2;
p1 = sp[0];
p2 = sp[sll];
dp[0 ] = p0*k0 + p1*k1 + pbuff[j];
dp[dll] = p1*k0 + p2*k1 + pbuff[j + 1];
pbuff[j] = 0;
pbuff[j + 1] = 0;
sp += 2*sll;
dp += 2*dll;
}
if (j < hsize) {
p0 = p2;
p1 = sp[0];
dp[0] = p0*k0 + p1*k1 + pbuff[j];
pbuff[j] = 0;
}
} else /* if (kh == 1) */ {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (j = 0; j < hsize; j++) {
p0 = sp[0];
dp[0] = p0*k0 + pbuff[j];
pbuff[j] = 0;
sp += sll;
dp += dll;
}
}
sl += chan1;
dl += chan1;
}
}
sl_c += max_hsize*sll;
dl_c += max_hsize*dll;
}
if (pbuff != buff) mlib_free(pbuff);
return MLIB_SUCCESS;
}
/***************************************************************/
#define MAX_KER 7
#define MAX_NM 81
mlib_status CONV_FUNC(MxN)(mlib_image *dst,
const mlib_image *src,
const mlib_d64 *ker,
mlib_s32 m,
mlib_s32 n,
mlib_s32 dm,
mlib_s32 dn,
mlib_s32 cmask)
{
DTYPE k0, k1, k2, k3, k4, k5, k6, *sp;
DTYPE p0, p1, p2, p3, p4, p5, p6, p7;
mlib_s32 l, off, kw;
DEF_VARS(DTYPE);
mlib_s32 chan2 = chan1 + chan1;
mlib_s32 chan3 = chan1 + chan2;
#ifdef TYPE_DOUBLE
const mlib_d64 *k = ker;
#else
mlib_f32 k_arr[MAX_NM], *k = k_arr;
if (n*m > MAX_NM) {
k = mlib_malloc(n*m*sizeof(mlib_f32));
if (k == NULL) return MLIB_FAILURE;
}
for (i = 0; i < n*m; i++) k[i] = (mlib_f32)ker[i];
#endif /* TYPE_DOUBLE */
if (m == 1) return mlib_ImageConv1xN(dst, src, k, n, dn, cmask);
wid -= (m - 1);
hgt -= (n - 1);
adr_dst += dn*dll + dm*chan1;
for (c = 0; c < chan1; c++) {
if (!(cmask & (1 << (chan1 - 1 - c)))) continue;
sl = adr_src + c;
dl = adr_dst + c;
for (j = 0; j < hgt; j++) {
const DTYPE *pk = k;
for (l = 0; l < n; l++) {
DTYPE *sp0 = sl + l*sll;
for (off = 0; off < m; off += kw, pk += kw, sp0 += chan1) {
kw = m - off;
if (kw > 2*MAX_KER) kw = MAX_KER; else
if (kw > MAX_KER) kw = kw/2;
p2 = sp0[0]; p3 = sp0[chan1]; p4 = sp0[chan2];
sp0 += chan3;
p5 = sp0[0]; p6 = sp0[chan1]; p7 = sp0[chan2];
k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3];
k4 = pk[4]; k5 = pk[5]; k6 = pk[6];
dp = dl;
if (kw == 7) {
sp = sp0 += chan3;
if (pk == k) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = sp[- chan1]; p6 = sp[0]; p7 = sp[chan1];
dp[0 ] = p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6;
dp[chan1] = p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6;
sp += chan2;
dp += chan2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = sp[- chan1]; p6 = sp[0]; p7 = sp[chan1];
dp[0 ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6;
dp[chan1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 6) {
sp = sp0 += chan2;
if (pk == k) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = sp[0]; p6 = sp[chan1];
dp[0 ] = p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5;
dp[chan1] = p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5;
sp += chan2;
dp += chan2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6;
p5 = sp[0]; p6 = sp[chan1];
dp[0 ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5;
dp[chan1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 5) {
sp = sp0 += chan1;
if (pk == k) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5;
p4 = sp[0]; p5 = sp[chan1];
dp[0 ] = p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4;
dp[chan1] = p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4;
sp += chan2;
dp += chan2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4; p3 = p5;
p4 = sp[0]; p5 = sp[chan1];
dp[0 ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4;
dp[chan1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 4) {
sp = sp0;
if (pk == k) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = sp[0]; p4 = sp[chan1];
dp[0 ] = p0*k0 + p1*k1 + p2*k2 + p3*k3;
dp[chan1] = p1*k0 + p2*k1 + p3*k2 + p4*k3;
sp += chan2;
dp += chan2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3; p2 = p4;
p3 = sp[0]; p4 = sp[chan1];
dp[0 ] += p0*k0 + p1*k1 + p2*k2 + p3*k3;
dp[chan1] += p1*k0 + p2*k1 + p3*k2 + p4*k3;
sp += chan2;
dp += chan2;
}
}
} else if (kw == 3) {
sp = sp0 -= chan1;
if (pk == k) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3;
p2 = sp[0]; p3 = sp[chan1];
dp[0 ] = p0*k0 + p1*k1 + p2*k2;
dp[chan1] = p1*k0 + p2*k1 + p3*k2;
sp += chan2;
dp += chan2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2; p1 = p3;
p2 = sp[0]; p3 = sp[chan1];
dp[0 ] += p0*k0 + p1*k1 + p2*k2;
dp[chan1] += p1*k0 + p2*k1 + p3*k2;
sp += chan2;
dp += chan2;
}
}
} else { /* kw == 2 */
sp = sp0 -= chan2;
if (pk == k) {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2;
p1 = sp[0]; p2 = sp[chan1];
dp[0 ] = p0*k0 + p1*k1;
dp[chan1] = p1*k0 + p2*k1;
sp += chan2;
dp += chan2;
}
} else {
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i <= (wid - 2); i += 2) {
p0 = p2;
p1 = sp[0]; p2 = sp[chan1];
dp[0 ] += p0*k0 + p1*k1;
dp[chan1] += p1*k0 + p2*k1;
sp += chan2;
dp += chan2;
}
}
}
}
}
/* last pixels */
if (wid & 1) {
DTYPE *sp0 = sl + i*chan1, s = 0;
const DTYPE *pk = k;
mlib_s32 x;
for (l = 0; l < n; l++) {
DTYPE *sp = sp0 + l*sll;
for (x = 0; x < m; x++) s += sp[x*chan1] * (*pk++);
}
dp[0] = s;
}
/* next line */
sl += sll;
dl += dll;
}
}
#ifndef TYPE_DOUBLE
if (k != k_arr) mlib_free(k);
#endif /* TYPE_DOUBLE */
return MLIB_SUCCESS;
}
/***************************************************************/