blob: 5e5c4e73162654b206d246efcd6f44492aef37eb [file] [log] [blame]
/*
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.ref;
import java.lang.ref.Cleaner;
import java.lang.ref.Cleaner.Cleanable;
import java.lang.ref.ReferenceQueue;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Function;
import jdk.internal.misc.InnocuousThread;
/**
* CleanerImpl manages a set of object references and corresponding cleaning actions.
* CleanerImpl provides the functionality of {@link java.lang.ref.Cleaner}.
*/
public final class CleanerImpl implements Runnable {
/**
* An object to access the CleanerImpl from a Cleaner; set by Cleaner init.
*/
private static Function<Cleaner, CleanerImpl> cleanerImplAccess = null;
/**
* Heads of a CleanableList for each reference type.
*/
final PhantomCleanable<?> phantomCleanableList;
final WeakCleanable<?> weakCleanableList;
final SoftCleanable<?> softCleanableList;
// The ReferenceQueue of pending cleaning actions
final ReferenceQueue<Object> queue;
/**
* Called by Cleaner static initialization to provide the function
* to map from Cleaner to CleanerImpl.
* @param access a function to map from Cleaner to CleanerImpl
*/
public static void setCleanerImplAccess(Function<Cleaner, CleanerImpl> access) {
if (cleanerImplAccess == null) {
cleanerImplAccess = access;
} else {
throw new InternalError("cleanerImplAccess");
}
}
/**
* Called to get the CleanerImpl for a Cleaner.
* @param cleaner the cleaner
* @return the corresponding CleanerImpl
*/
static CleanerImpl getCleanerImpl(Cleaner cleaner) {
return cleanerImplAccess.apply(cleaner);
}
/**
* Constructor for CleanerImpl.
*/
public CleanerImpl() {
queue = new ReferenceQueue<>();
phantomCleanableList = new PhantomCleanableRef();
weakCleanableList = new WeakCleanableRef();
softCleanableList = new SoftCleanableRef();
}
/**
* Starts the Cleaner implementation.
* Ensure this is the CleanerImpl for the Cleaner.
* When started waits for Cleanables to be queued.
* @param cleaner the cleaner
* @param threadFactory the thread factory
*/
public void start(Cleaner cleaner, ThreadFactory threadFactory) {
if (getCleanerImpl(cleaner) != this) {
throw new AssertionError("wrong cleaner");
}
// schedule a nop cleaning action for the cleaner, so the associated thread
// will continue to run at least until the cleaner is reclaimable.
new CleanerCleanable(cleaner);
if (threadFactory == null) {
threadFactory = CleanerImpl.InnocuousThreadFactory.factory();
}
// now that there's at least one cleaning action, for the cleaner,
// we can start the associated thread, which runs until
// all cleaning actions have been run.
Thread thread = threadFactory.newThread(this);
thread.setDaemon(true);
thread.start();
}
/**
* Process queued Cleanables as long as the cleanable lists are not empty.
* A Cleanable is in one of the lists for each Object and for the Cleaner
* itself.
* Terminates when the Cleaner is no longer reachable and
* has been cleaned and there are no more Cleanable instances
* for which the object is reachable.
* <p>
* If the thread is a ManagedLocalsThread, the threadlocals
* are erased before each cleanup
*/
@Override
public void run() {
Thread t = Thread.currentThread();
InnocuousThread mlThread = (t instanceof InnocuousThread)
? (InnocuousThread) t
: null;
while (!phantomCleanableList.isListEmpty() ||
!weakCleanableList.isListEmpty() ||
!softCleanableList.isListEmpty()) {
if (mlThread != null) {
// Clear the thread locals
mlThread.eraseThreadLocals();
}
try {
// Wait for a Ref, with a timeout to avoid getting hung
// due to a race with clear/clean
Cleanable ref = (Cleanable) queue.remove(60 * 1000L);
if (ref != null) {
ref.clean();
}
} catch (Throwable e) {
// ignore exceptions from the cleanup action
// (including interruption of cleanup thread)
}
}
}
/**
* Perform cleaning on an unreachable PhantomReference.
*/
public static final class PhantomCleanableRef extends PhantomCleanable<Object> {
private final Runnable action;
/**
* Constructor for a phantom cleanable reference.
* @param obj the object to monitor
* @param cleaner the cleaner
* @param action the action Runnable
*/
public PhantomCleanableRef(Object obj, Cleaner cleaner, Runnable action) {
super(obj, cleaner);
this.action = action;
}
/**
* Constructor used only for root of phantom cleanable list.
*/
PhantomCleanableRef() {
super();
this.action = null;
}
@Override
protected void performCleanup() {
action.run();
}
/**
* Prevent access to referent even when it is still alive.
*
* @throws UnsupportedOperationException always
*/
@Override
public Object get() {
throw new UnsupportedOperationException("get");
}
/**
* Direct clearing of the referent is not supported.
*
* @throws UnsupportedOperationException always
*/
@Override
public void clear() {
throw new UnsupportedOperationException("clear");
}
}
/**
* Perform cleaning on an unreachable WeakReference.
*/
public static final class WeakCleanableRef extends WeakCleanable<Object> {
private final Runnable action;
/**
* Constructor for a weak cleanable reference.
* @param obj the object to monitor
* @param cleaner the cleaner
* @param action the action Runnable
*/
WeakCleanableRef(Object obj, Cleaner cleaner, Runnable action) {
super(obj, cleaner);
this.action = action;
}
/**
* Constructor used only for root of weak cleanable list.
*/
WeakCleanableRef() {
super();
this.action = null;
}
@Override
protected void performCleanup() {
action.run();
}
/**
* Prevent access to referent even when it is still alive.
*
* @throws UnsupportedOperationException always
*/
@Override
public Object get() {
throw new UnsupportedOperationException("get");
}
/**
* Direct clearing of the referent is not supported.
*
* @throws UnsupportedOperationException always
*/
@Override
public void clear() {
throw new UnsupportedOperationException("clear");
}
}
/**
* Perform cleaning on an unreachable SoftReference.
*/
public static final class SoftCleanableRef extends SoftCleanable<Object> {
private final Runnable action;
/**
* Constructor for a soft cleanable reference.
* @param obj the object to monitor
* @param cleaner the cleaner
* @param action the action Runnable
*/
SoftCleanableRef(Object obj, Cleaner cleaner, Runnable action) {
super(obj, cleaner);
this.action = action;
}
/**
* Constructor used only for root of soft cleanable list.
*/
SoftCleanableRef() {
super();
this.action = null;
}
@Override
protected void performCleanup() {
action.run();
}
/**
* Prevent access to referent even when it is still alive.
*
* @throws UnsupportedOperationException always
*/
@Override
public Object get() {
throw new UnsupportedOperationException("get");
}
/**
* Direct clearing of the referent is not supported.
*
* @throws UnsupportedOperationException always
*/
@Override
public void clear() {
throw new UnsupportedOperationException("clear");
}
}
/**
* A ThreadFactory for InnocuousThreads.
* The factory is a singleton.
*/
static final class InnocuousThreadFactory implements ThreadFactory {
final static ThreadFactory factory = new InnocuousThreadFactory();
static ThreadFactory factory() {
return factory;
}
final AtomicInteger cleanerThreadNumber = new AtomicInteger();
public Thread newThread(Runnable r) {
return AccessController.doPrivileged(new PrivilegedAction<>() {
@Override
public Thread run() {
Thread t = InnocuousThread.newThread(r);
t.setPriority(Thread.MAX_PRIORITY - 2);
t.setName("Cleaner-" + cleanerThreadNumber.getAndIncrement());
return t;
}
});
}
}
/**
* A PhantomCleanable implementation for tracking the Cleaner itself.
*/
static final class CleanerCleanable extends PhantomCleanable<Cleaner> {
CleanerCleanable(Cleaner cleaner) {
super(cleaner, cleaner);
}
@Override
protected void performCleanup() {
// no action
}
}
}