blob: 1b448a1b7e432eebe80a18da88105a0377281559 [file] [log] [blame]
/*
* Copyright (c) 1996, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.zip;
import java.lang.ref.Cleaner.Cleanable;
import java.lang.ref.Reference;
import java.nio.ByteBuffer;
import java.nio.ReadOnlyBufferException;
import java.util.Objects;
import jdk.internal.ref.CleanerFactory;
import sun.nio.ch.DirectBuffer;
/**
* This class provides support for general purpose decompression using the
* popular ZLIB compression library. The ZLIB compression library was
* initially developed as part of the PNG graphics standard and is not
* protected by patents. It is fully described in the specifications at
* the <a href="package-summary.html#package.description">java.util.zip
* package description</a>.
* <p>
* This class inflates sequences of ZLIB compressed bytes. The input byte
* sequence is provided in either byte array or byte buffer, via one of the
* {@code setInput()} methods. The output byte sequence is written to the
* output byte array or byte buffer passed to the {@code deflate()} methods.
* <p>
* The following code fragment demonstrates a trivial compression
* and decompression of a string using {@code Deflater} and
* {@code Inflater}.
*
* <blockquote><pre>
* try {
* // Encode a String into bytes
* String inputString = "blahblahblah\u20AC\u20AC";
* byte[] input = inputString.getBytes("UTF-8");
*
* // Compress the bytes
* byte[] output = new byte[100];
* Deflater compresser = new Deflater();
* compresser.setInput(input);
* compresser.finish();
* int compressedDataLength = compresser.deflate(output);
*
* // Decompress the bytes
* Inflater decompresser = new Inflater();
* decompresser.setInput(output, 0, compressedDataLength);
* byte[] result = new byte[100];
* int resultLength = decompresser.inflate(result);
* decompresser.end();
*
* // Decode the bytes into a String
* String outputString = new String(result, 0, resultLength, "UTF-8");
* } catch (java.io.UnsupportedEncodingException ex) {
* // handle
* } catch (java.util.zip.DataFormatException ex) {
* // handle
* }
* </pre></blockquote>
*
* @apiNote
* To release resources used by this {@code Inflater}, the {@link #end()} method
* should be called explicitly. Subclasses are responsible for the cleanup of resources
* acquired by the subclass. Subclasses that override {@link #finalize()} in order
* to perform cleanup should be modified to use alternative cleanup mechanisms such
* as {@link java.lang.ref.Cleaner} and remove the overriding {@code finalize} method.
*
* @implSpec
* If this {@code Inflater} has been subclassed and the {@code end} method has been
* overridden, the {@code end} method will be called by the finalization when the
* inflater is unreachable. But the subclasses should not depend on this specific
* implementation; the finalization is not reliable and the {@code finalize} method
* is deprecated to be removed.
*
* @see Deflater
* @author David Connelly
* @since 1.1
*
*/
public class Inflater {
private final InflaterZStreamRef zsRef;
private ByteBuffer input = ZipUtils.defaultBuf;
private byte[] inputArray;
private int inputPos, inputLim;
private boolean finished;
private boolean needDict;
private long bytesRead;
private long bytesWritten;
/*
* These fields are used as an "out" parameter from JNI when a
* DataFormatException is thrown during the inflate operation.
*/
private int inputConsumed;
private int outputConsumed;
static {
ZipUtils.loadLibrary();
initIDs();
}
/**
* Creates a new decompressor. If the parameter 'nowrap' is true then
* the ZLIB header and checksum fields will not be used. This provides
* compatibility with the compression format used by both GZIP and PKZIP.
* <p>
* Note: When using the 'nowrap' option it is also necessary to provide
* an extra "dummy" byte as input. This is required by the ZLIB native
* library in order to support certain optimizations.
*
* @param nowrap if true then support GZIP compatible compression
*/
public Inflater(boolean nowrap) {
this.zsRef = InflaterZStreamRef.get(this, init(nowrap));
}
/**
* Creates a new decompressor.
*/
public Inflater() {
this(false);
}
/**
* Sets input data for decompression.
* <p>
* One of the {@code setInput()} methods should be called whenever
* {@code needsInput()} returns true indicating that more input data
* is required.
*
* @param input the input data bytes
* @param off the start offset of the input data
* @param len the length of the input data
* @see Inflater#needsInput
*/
public void setInput(byte[] input, int off, int len) {
if (off < 0 || len < 0 || off > input.length - len) {
throw new ArrayIndexOutOfBoundsException();
}
synchronized (zsRef) {
this.input = null;
this.inputArray = input;
this.inputPos = off;
this.inputLim = off + len;
}
}
/**
* Sets input data for decompression.
* <p>
* One of the {@code setInput()} methods should be called whenever
* {@code needsInput()} returns true indicating that more input data
* is required.
*
* @param input the input data bytes
* @see Inflater#needsInput
*/
public void setInput(byte[] input) {
setInput(input, 0, input.length);
}
/**
* Sets input data for decompression.
* <p>
* One of the {@code setInput()} methods should be called whenever
* {@code needsInput()} returns true indicating that more input data
* is required.
* <p>
* The given buffer's position will be advanced as inflate
* operations are performed, up to the buffer's limit.
* The input buffer may be modified (refilled) between inflate
* operations; doing so is equivalent to creating a new buffer
* and setting it with this method.
* <p>
* Modifying the input buffer's contents, position, or limit
* concurrently with an inflate operation will result in
* undefined behavior, which may include incorrect operation
* results or operation failure.
*
* @param input the input data bytes
* @see Inflater#needsInput
* @since 11
*/
public void setInput(ByteBuffer input) {
Objects.requireNonNull(input);
synchronized (zsRef) {
this.input = input;
this.inputArray = null;
}
}
/**
* Sets the preset dictionary to the given array of bytes. Should be
* called when inflate() returns 0 and needsDictionary() returns true
* indicating that a preset dictionary is required. The method getAdler()
* can be used to get the Adler-32 value of the dictionary needed.
* @param dictionary the dictionary data bytes
* @param off the start offset of the data
* @param len the length of the data
* @see Inflater#needsDictionary
* @see Inflater#getAdler
*/
public void setDictionary(byte[] dictionary, int off, int len) {
if (off < 0 || len < 0 || off > dictionary.length - len) {
throw new ArrayIndexOutOfBoundsException();
}
synchronized (zsRef) {
ensureOpen();
setDictionary(zsRef.address(), dictionary, off, len);
needDict = false;
}
}
/**
* Sets the preset dictionary to the given array of bytes. Should be
* called when inflate() returns 0 and needsDictionary() returns true
* indicating that a preset dictionary is required. The method getAdler()
* can be used to get the Adler-32 value of the dictionary needed.
* @param dictionary the dictionary data bytes
* @see Inflater#needsDictionary
* @see Inflater#getAdler
*/
public void setDictionary(byte[] dictionary) {
setDictionary(dictionary, 0, dictionary.length);
}
/**
* Sets the preset dictionary to the bytes in the given buffer. Should be
* called when inflate() returns 0 and needsDictionary() returns true
* indicating that a preset dictionary is required. The method getAdler()
* can be used to get the Adler-32 value of the dictionary needed.
* <p>
* The bytes in given byte buffer will be fully consumed by this method. On
* return, its position will equal its limit.
*
* @param dictionary the dictionary data bytes
* @see Inflater#needsDictionary
* @see Inflater#getAdler
* @since 11
*/
public void setDictionary(ByteBuffer dictionary) {
synchronized (zsRef) {
int position = dictionary.position();
int remaining = Math.max(dictionary.limit() - position, 0);
ensureOpen();
if (dictionary.isDirect()) {
long address = ((DirectBuffer) dictionary).address();
try {
setDictionaryBuffer(zsRef.address(), address + position, remaining);
} finally {
Reference.reachabilityFence(dictionary);
}
} else {
byte[] array = ZipUtils.getBufferArray(dictionary);
int offset = ZipUtils.getBufferOffset(dictionary);
setDictionary(zsRef.address(), array, offset + position, remaining);
}
dictionary.position(position + remaining);
needDict = false;
}
}
/**
* Returns the total number of bytes remaining in the input buffer.
* This can be used to find out what bytes still remain in the input
* buffer after decompression has finished.
* @return the total number of bytes remaining in the input buffer
*/
public int getRemaining() {
synchronized (zsRef) {
ByteBuffer input = this.input;
return input == null ? inputLim - inputPos : input.remaining();
}
}
/**
* Returns true if no data remains in the input buffer. This can
* be used to determine if one of the {@code setInput()} methods should be
* called in order to provide more input.
*
* @return true if no data remains in the input buffer
*/
public boolean needsInput() {
synchronized (zsRef) {
ByteBuffer input = this.input;
return input == null ? inputLim == inputPos : ! input.hasRemaining();
}
}
/**
* Returns true if a preset dictionary is needed for decompression.
* @return true if a preset dictionary is needed for decompression
* @see Inflater#setDictionary
*/
public boolean needsDictionary() {
synchronized (zsRef) {
return needDict;
}
}
/**
* Returns true if the end of the compressed data stream has been
* reached.
* @return true if the end of the compressed data stream has been
* reached
*/
public boolean finished() {
synchronized (zsRef) {
return finished;
}
}
/**
* Uncompresses bytes into specified buffer. Returns actual number
* of bytes uncompressed. A return value of 0 indicates that
* needsInput() or needsDictionary() should be called in order to
* determine if more input data or a preset dictionary is required.
* In the latter case, getAdler() can be used to get the Adler-32
* value of the dictionary required.
* <p>
* If the {@link #setInput(ByteBuffer)} method was called to provide a buffer
* for input, the input buffer's position will be advanced by the number of bytes
* consumed by this operation, even in the event that a {@link DataFormatException}
* is thrown.
* <p>
* The {@linkplain #getRemaining() remaining byte count} will be reduced by
* the number of consumed input bytes. If the {@link #setInput(ByteBuffer)}
* method was called to provide a buffer for input, the input buffer's position
* will be advanced the number of consumed bytes.
* <p>
* These byte totals, as well as
* the {@linkplain #getBytesRead() total bytes read}
* and the {@linkplain #getBytesWritten() total bytes written}
* values, will be updated even in the event that a {@link DataFormatException}
* is thrown to reflect the amount of data consumed and produced before the
* exception occurred.
*
* @param output the buffer for the uncompressed data
* @param off the start offset of the data
* @param len the maximum number of uncompressed bytes
* @return the actual number of uncompressed bytes
* @throws DataFormatException if the compressed data format is invalid
* @see Inflater#needsInput
* @see Inflater#needsDictionary
*/
public int inflate(byte[] output, int off, int len)
throws DataFormatException
{
if (off < 0 || len < 0 || off > output.length - len) {
throw new ArrayIndexOutOfBoundsException();
}
synchronized (zsRef) {
ensureOpen();
ByteBuffer input = this.input;
long result;
int inputPos;
try {
if (input == null) {
inputPos = this.inputPos;
try {
result = inflateBytesBytes(zsRef.address(),
inputArray, inputPos, inputLim - inputPos,
output, off, len);
} catch (DataFormatException e) {
this.inputPos = inputPos + inputConsumed;
throw e;
}
} else {
inputPos = input.position();
try {
int inputRem = Math.max(input.limit() - inputPos, 0);
if (input.isDirect()) {
try {
long inputAddress = ((DirectBuffer) input).address();
result = inflateBufferBytes(zsRef.address(),
inputAddress + inputPos, inputRem,
output, off, len);
} finally {
Reference.reachabilityFence(input);
}
} else {
byte[] inputArray = ZipUtils.getBufferArray(input);
int inputOffset = ZipUtils.getBufferOffset(input);
result = inflateBytesBytes(zsRef.address(),
inputArray, inputOffset + inputPos, inputRem,
output, off, len);
}
} catch (DataFormatException e) {
input.position(inputPos + inputConsumed);
throw e;
}
}
} catch (DataFormatException e) {
bytesRead += inputConsumed;
inputConsumed = 0;
int written = outputConsumed;
bytesWritten += written;
outputConsumed = 0;
throw e;
}
int read = (int) (result & 0x7fff_ffffL);
int written = (int) (result >>> 31 & 0x7fff_ffffL);
if ((result >>> 62 & 1) != 0) {
finished = true;
}
if ((result >>> 63 & 1) != 0) {
needDict = true;
}
if (input != null) {
input.position(inputPos + read);
} else {
this.inputPos = inputPos + read;
}
bytesWritten += written;
bytesRead += read;
return written;
}
}
/**
* Uncompresses bytes into specified buffer. Returns actual number
* of bytes uncompressed. A return value of 0 indicates that
* needsInput() or needsDictionary() should be called in order to
* determine if more input data or a preset dictionary is required.
* In the latter case, getAdler() can be used to get the Adler-32
* value of the dictionary required.
* <p>
* The {@linkplain #getRemaining() remaining byte count} will be reduced by
* the number of consumed input bytes. If the {@link #setInput(ByteBuffer)}
* method was called to provide a buffer for input, the input buffer's position
* will be advanced the number of consumed bytes.
* <p>
* These byte totals, as well as
* the {@linkplain #getBytesRead() total bytes read}
* and the {@linkplain #getBytesWritten() total bytes written}
* values, will be updated even in the event that a {@link DataFormatException}
* is thrown to reflect the amount of data consumed and produced before the
* exception occurred.
*
* @param output the buffer for the uncompressed data
* @return the actual number of uncompressed bytes
* @throws DataFormatException if the compressed data format is invalid
* @see Inflater#needsInput
* @see Inflater#needsDictionary
*/
public int inflate(byte[] output) throws DataFormatException {
return inflate(output, 0, output.length);
}
/**
* Uncompresses bytes into specified buffer. Returns actual number
* of bytes uncompressed. A return value of 0 indicates that
* needsInput() or needsDictionary() should be called in order to
* determine if more input data or a preset dictionary is required.
* In the latter case, getAdler() can be used to get the Adler-32
* value of the dictionary required.
* <p>
* On success, the position of the given {@code output} byte buffer will be
* advanced by as many bytes as were produced by the operation, which is equal
* to the number returned by this method. Note that the position of the
* {@code output} buffer will be advanced even in the event that a
* {@link DataFormatException} is thrown.
* <p>
* The {@linkplain #getRemaining() remaining byte count} will be reduced by
* the number of consumed input bytes. If the {@link #setInput(ByteBuffer)}
* method was called to provide a buffer for input, the input buffer's position
* will be advanced the number of consumed bytes.
* <p>
* These byte totals, as well as
* the {@linkplain #getBytesRead() total bytes read}
* and the {@linkplain #getBytesWritten() total bytes written}
* values, will be updated even in the event that a {@link DataFormatException}
* is thrown to reflect the amount of data consumed and produced before the
* exception occurred.
*
* @param output the buffer for the uncompressed data
* @return the actual number of uncompressed bytes
* @throws DataFormatException if the compressed data format is invalid
* @throws ReadOnlyBufferException if the given output buffer is read-only
* @see Inflater#needsInput
* @see Inflater#needsDictionary
* @since 11
*/
public int inflate(ByteBuffer output) throws DataFormatException {
if (output.isReadOnly()) {
throw new ReadOnlyBufferException();
}
synchronized (zsRef) {
ensureOpen();
ByteBuffer input = this.input;
long result;
int inputPos;
int outputPos = output.position();
int outputRem = Math.max(output.limit() - outputPos, 0);
try {
if (input == null) {
inputPos = this.inputPos;
try {
if (output.isDirect()) {
long outputAddress = ((DirectBuffer) output).address();
try {
result = inflateBytesBuffer(zsRef.address(),
inputArray, inputPos, inputLim - inputPos,
outputAddress + outputPos, outputRem);
} finally {
Reference.reachabilityFence(output);
}
} else {
byte[] outputArray = ZipUtils.getBufferArray(output);
int outputOffset = ZipUtils.getBufferOffset(output);
result = inflateBytesBytes(zsRef.address(),
inputArray, inputPos, inputLim - inputPos,
outputArray, outputOffset + outputPos, outputRem);
}
} catch (DataFormatException e) {
this.inputPos = inputPos + inputConsumed;
throw e;
}
} else {
inputPos = input.position();
int inputRem = Math.max(input.limit() - inputPos, 0);
try {
if (input.isDirect()) {
long inputAddress = ((DirectBuffer) input).address();
try {
if (output.isDirect()) {
long outputAddress = ((DirectBuffer) output).address();
try {
result = inflateBufferBuffer(zsRef.address(),
inputAddress + inputPos, inputRem,
outputAddress + outputPos, outputRem);
} finally {
Reference.reachabilityFence(output);
}
} else {
byte[] outputArray = ZipUtils.getBufferArray(output);
int outputOffset = ZipUtils.getBufferOffset(output);
result = inflateBufferBytes(zsRef.address(),
inputAddress + inputPos, inputRem,
outputArray, outputOffset + outputPos, outputRem);
}
} finally {
Reference.reachabilityFence(input);
}
} else {
byte[] inputArray = ZipUtils.getBufferArray(input);
int inputOffset = ZipUtils.getBufferOffset(input);
if (output.isDirect()) {
long outputAddress = ((DirectBuffer) output).address();
try {
result = inflateBytesBuffer(zsRef.address(),
inputArray, inputOffset + inputPos, inputRem,
outputAddress + outputPos, outputRem);
} finally {
Reference.reachabilityFence(output);
}
} else {
byte[] outputArray = ZipUtils.getBufferArray(output);
int outputOffset = ZipUtils.getBufferOffset(output);
result = inflateBytesBytes(zsRef.address(),
inputArray, inputOffset + inputPos, inputRem,
outputArray, outputOffset + outputPos, outputRem);
}
}
} catch (DataFormatException e) {
input.position(inputPos + inputConsumed);
throw e;
}
}
} catch (DataFormatException e) {
bytesRead += inputConsumed;
inputConsumed = 0;
int written = outputConsumed;
output.position(outputPos + written);
bytesWritten += written;
outputConsumed = 0;
throw e;
}
int read = (int) (result & 0x7fff_ffffL);
int written = (int) (result >>> 31 & 0x7fff_ffffL);
if ((result >>> 62 & 1) != 0) {
finished = true;
}
if ((result >>> 63 & 1) != 0) {
needDict = true;
}
if (input != null) {
input.position(inputPos + read);
} else {
this.inputPos = inputPos + read;
}
// Note: this method call also serves to keep the byteBuffer ref alive
output.position(outputPos + written);
bytesWritten += written;
bytesRead += read;
return written;
}
}
/**
* Returns the ADLER-32 value of the uncompressed data.
* @return the ADLER-32 value of the uncompressed data
*/
public int getAdler() {
synchronized (zsRef) {
ensureOpen();
return getAdler(zsRef.address());
}
}
/**
* Returns the total number of compressed bytes input so far.
*
* <p>Since the number of bytes may be greater than
* Integer.MAX_VALUE, the {@link #getBytesRead()} method is now
* the preferred means of obtaining this information.</p>
*
* @return the total number of compressed bytes input so far
*/
public int getTotalIn() {
return (int) getBytesRead();
}
/**
* Returns the total number of compressed bytes input so far.
*
* @return the total (non-negative) number of compressed bytes input so far
* @since 1.5
*/
public long getBytesRead() {
synchronized (zsRef) {
ensureOpen();
return bytesRead;
}
}
/**
* Returns the total number of uncompressed bytes output so far.
*
* <p>Since the number of bytes may be greater than
* Integer.MAX_VALUE, the {@link #getBytesWritten()} method is now
* the preferred means of obtaining this information.</p>
*
* @return the total number of uncompressed bytes output so far
*/
public int getTotalOut() {
return (int) getBytesWritten();
}
/**
* Returns the total number of uncompressed bytes output so far.
*
* @return the total (non-negative) number of uncompressed bytes output so far
* @since 1.5
*/
public long getBytesWritten() {
synchronized (zsRef) {
ensureOpen();
return bytesWritten;
}
}
/**
* Resets inflater so that a new set of input data can be processed.
*/
public void reset() {
synchronized (zsRef) {
ensureOpen();
reset(zsRef.address());
input = ZipUtils.defaultBuf;
inputArray = null;
finished = false;
needDict = false;
bytesRead = bytesWritten = 0;
}
}
/**
* Closes the decompressor and discards any unprocessed input.
*
* This method should be called when the decompressor is no longer
* being used. Once this method is called, the behavior of the
* Inflater object is undefined.
*/
public void end() {
synchronized (zsRef) {
zsRef.clean();
input = ZipUtils.defaultBuf;
inputArray = null;
}
}
/**
* Closes the decompressor when garbage is collected.
*
* @implSpec
* If this {@code Inflater} has been subclassed and the {@code end} method
* has been overridden, the {@code end} method will be called when the
* inflater is unreachable.
*
* @deprecated The {@code finalize} method has been deprecated and will be
* removed. It is implemented as a no-op. Subclasses that override
* {@code finalize} in order to perform cleanup should be modified to use
* alternative cleanup mechanisms and remove the overriding {@code finalize}
* method. The recommended cleanup for compressor is to explicitly call
* {@code end} method when it is no longer in use. If the {@code end} is
* not invoked explicitly the resource of the compressor will be released
* when the instance becomes unreachable,
*/
@Deprecated(since="9", forRemoval=true)
protected void finalize() {}
private void ensureOpen () {
assert Thread.holdsLock(zsRef);
if (zsRef.address() == 0)
throw new NullPointerException("Inflater has been closed");
}
private static native void initIDs();
private static native long init(boolean nowrap);
private static native void setDictionary(long addr, byte[] b, int off,
int len);
private static native void setDictionaryBuffer(long addr, long bufAddress, int len);
private native long inflateBytesBytes(long addr,
byte[] inputArray, int inputOff, int inputLen,
byte[] outputArray, int outputOff, int outputLen) throws DataFormatException;
private native long inflateBytesBuffer(long addr,
byte[] inputArray, int inputOff, int inputLen,
long outputAddress, int outputLen) throws DataFormatException;
private native long inflateBufferBytes(long addr,
long inputAddress, int inputLen,
byte[] outputArray, int outputOff, int outputLen) throws DataFormatException;
private native long inflateBufferBuffer(long addr,
long inputAddress, int inputLen,
long outputAddress, int outputLen) throws DataFormatException;
private static native int getAdler(long addr);
private static native void reset(long addr);
private static native void end(long addr);
/**
* A reference to the native zlib's z_stream structure. It also
* serves as the "cleaner" to clean up the native resource when
* the Inflater is ended, closed or cleaned.
*/
static class InflaterZStreamRef implements Runnable {
private long address;
private final Cleanable cleanable;
private InflaterZStreamRef(Inflater owner, long addr) {
this.cleanable = (owner != null) ? CleanerFactory.cleaner().register(owner, this) : null;
this.address = addr;
}
long address() {
return address;
}
void clean() {
cleanable.clean();
}
public synchronized void run() {
long addr = address;
address = 0;
if (addr != 0) {
end(addr);
}
}
/*
* If {@code Inflater} has been subclassed and the {@code end} method is
* overridden, uses {@code finalizer} mechanism for resource cleanup. So
* {@code end} method can be called when the {@code Inflater} is unreachable.
* This mechanism will be removed when the {@code finalize} method is
* removed from {@code Inflater}.
*/
static InflaterZStreamRef get(Inflater owner, long addr) {
Class<?> clz = owner.getClass();
while (clz != Inflater.class) {
try {
clz.getDeclaredMethod("end");
return new FinalizableZStreamRef(owner, addr);
} catch (NoSuchMethodException nsme) {}
clz = clz.getSuperclass();
}
return new InflaterZStreamRef(owner, addr);
}
private static class FinalizableZStreamRef extends InflaterZStreamRef {
final Inflater owner;
FinalizableZStreamRef(Inflater owner, long addr) {
super(null, addr);
this.owner = owner;
}
@Override
void clean() {
run();
}
@Override
@SuppressWarnings("deprecation")
protected void finalize() {
owner.end();
}
}
}
}