blob: f173ad53f68631e3b355989226dbe9c953192dde [file] [log] [blame]
/*
* Copyright (c) 1996, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.zip;
import java.lang.ref.Cleaner.Cleanable;
import java.lang.ref.Reference;
import java.nio.ByteBuffer;
import java.nio.ReadOnlyBufferException;
import java.util.Objects;
import jdk.internal.ref.CleanerFactory;
import sun.nio.ch.DirectBuffer;
/**
* This class provides support for general purpose compression using the
* popular ZLIB compression library. The ZLIB compression library was
* initially developed as part of the PNG graphics standard and is not
* protected by patents. It is fully described in the specifications at
* the <a href="package-summary.html#package.description">java.util.zip
* package description</a>.
* <p>
* This class deflates sequences of bytes into ZLIB compressed data format.
* The input byte sequence is provided in either byte array or byte buffer,
* via one of the {@code setInput()} methods. The output byte sequence is
* written to the output byte array or byte buffer passed to the
* {@code deflate()} methods.
* <p>
* The following code fragment demonstrates a trivial compression
* and decompression of a string using {@code Deflater} and
* {@code Inflater}.
*
* <blockquote><pre>
* try {
* // Encode a String into bytes
* String inputString = "blahblahblah";
* byte[] input = inputString.getBytes("UTF-8");
*
* // Compress the bytes
* byte[] output = new byte[100];
* Deflater compresser = new Deflater();
* compresser.setInput(input);
* compresser.finish();
* int compressedDataLength = compresser.deflate(output);
* compresser.end();
*
* // Decompress the bytes
* Inflater decompresser = new Inflater();
* decompresser.setInput(output, 0, compressedDataLength);
* byte[] result = new byte[100];
* int resultLength = decompresser.inflate(result);
* decompresser.end();
*
* // Decode the bytes into a String
* String outputString = new String(result, 0, resultLength, "UTF-8");
* } catch (java.io.UnsupportedEncodingException ex) {
* // handle
* } catch (java.util.zip.DataFormatException ex) {
* // handle
* }
* </pre></blockquote>
*
* @apiNote
* To release resources used by this {@code Deflater}, the {@link #end()} method
* should be called explicitly. Subclasses are responsible for the cleanup of resources
* acquired by the subclass. Subclasses that override {@link #finalize()} in order
* to perform cleanup should be modified to use alternative cleanup mechanisms such
* as {@link java.lang.ref.Cleaner} and remove the overriding {@code finalize} method.
*
* @implSpec
* If this {@code Deflater} has been subclassed and the {@code end} method has been
* overridden, the {@code end} method will be called by the finalization when the
* deflater is unreachable. But the subclasses should not depend on this specific
* implementation; the finalization is not reliable and the {@code finalize} method
* is deprecated to be removed.
*
* @see Inflater
* @author David Connelly
* @since 1.1
*/
public class Deflater {
private final DeflaterZStreamRef zsRef;
private ByteBuffer input = ZipUtils.defaultBuf;
private byte[] inputArray;
private int inputPos, inputLim;
private int level, strategy;
private boolean setParams;
private boolean finish, finished;
private long bytesRead;
private long bytesWritten;
/**
* Compression method for the deflate algorithm (the only one currently
* supported).
*/
public static final int DEFLATED = 8;
/**
* Compression level for no compression.
*/
public static final int NO_COMPRESSION = 0;
/**
* Compression level for fastest compression.
*/
public static final int BEST_SPEED = 1;
/**
* Compression level for best compression.
*/
public static final int BEST_COMPRESSION = 9;
/**
* Default compression level.
*/
public static final int DEFAULT_COMPRESSION = -1;
/**
* Compression strategy best used for data consisting mostly of small
* values with a somewhat random distribution. Forces more Huffman coding
* and less string matching.
*/
public static final int FILTERED = 1;
/**
* Compression strategy for Huffman coding only.
*/
public static final int HUFFMAN_ONLY = 2;
/**
* Default compression strategy.
*/
public static final int DEFAULT_STRATEGY = 0;
/**
* Compression flush mode used to achieve best compression result.
*
* @see Deflater#deflate(byte[], int, int, int)
* @since 1.7
*/
public static final int NO_FLUSH = 0;
/**
* Compression flush mode used to flush out all pending output; may
* degrade compression for some compression algorithms.
*
* @see Deflater#deflate(byte[], int, int, int)
* @since 1.7
*/
public static final int SYNC_FLUSH = 2;
/**
* Compression flush mode used to flush out all pending output and
* reset the deflater. Using this mode too often can seriously degrade
* compression.
*
* @see Deflater#deflate(byte[], int, int, int)
* @since 1.7
*/
public static final int FULL_FLUSH = 3;
/**
* Flush mode to use at the end of output. Can only be provided by the
* user by way of {@link #finish()}.
*/
private static final int FINISH = 4;
static {
ZipUtils.loadLibrary();
}
/**
* Creates a new compressor using the specified compression level.
* If 'nowrap' is true then the ZLIB header and checksum fields will
* not be used in order to support the compression format used in
* both GZIP and PKZIP.
* @param level the compression level (0-9)
* @param nowrap if true then use GZIP compatible compression
*/
public Deflater(int level, boolean nowrap) {
this.level = level;
this.strategy = DEFAULT_STRATEGY;
this.zsRef = DeflaterZStreamRef.get(this,
init(level, DEFAULT_STRATEGY, nowrap));
}
/**
* Creates a new compressor using the specified compression level.
* Compressed data will be generated in ZLIB format.
* @param level the compression level (0-9)
*/
public Deflater(int level) {
this(level, false);
}
/**
* Creates a new compressor with the default compression level.
* Compressed data will be generated in ZLIB format.
*/
public Deflater() {
this(DEFAULT_COMPRESSION, false);
}
/**
* Sets input data for compression.
* <p>
* One of the {@code setInput()} methods should be called whenever
* {@code needsInput()} returns true indicating that more input data
* is required.
* <p>
* @param input the input data bytes
* @param off the start offset of the data
* @param len the length of the data
* @see Deflater#needsInput
*/
public void setInput(byte[] input, int off, int len) {
if (off < 0 || len < 0 || off > input.length - len) {
throw new ArrayIndexOutOfBoundsException();
}
synchronized (zsRef) {
this.input = null;
this.inputArray = input;
this.inputPos = off;
this.inputLim = off + len;
}
}
/**
* Sets input data for compression.
* <p>
* One of the {@code setInput()} methods should be called whenever
* {@code needsInput()} returns true indicating that more input data
* is required.
* <p>
* @param input the input data bytes
* @see Deflater#needsInput
*/
public void setInput(byte[] input) {
setInput(input, 0, input.length);
}
/**
* Sets input data for compression.
* <p>
* One of the {@code setInput()} methods should be called whenever
* {@code needsInput()} returns true indicating that more input data
* is required.
* <p>
* The given buffer's position will be advanced as deflate
* operations are performed, up to the buffer's limit.
* The input buffer may be modified (refilled) between deflate
* operations; doing so is equivalent to creating a new buffer
* and setting it with this method.
* <p>
* Modifying the input buffer's contents, position, or limit
* concurrently with an deflate operation will result in
* undefined behavior, which may include incorrect operation
* results or operation failure.
*
* @param input the input data bytes
* @see Deflater#needsInput
* @since 11
*/
public void setInput(ByteBuffer input) {
Objects.requireNonNull(input);
synchronized (zsRef) {
this.input = input;
this.inputArray = null;
}
}
/**
* Sets preset dictionary for compression. A preset dictionary is used
* when the history buffer can be predetermined. When the data is later
* uncompressed with Inflater.inflate(), Inflater.getAdler() can be called
* in order to get the Adler-32 value of the dictionary required for
* decompression.
* @param dictionary the dictionary data bytes
* @param off the start offset of the data
* @param len the length of the data
* @see Inflater#inflate
* @see Inflater#getAdler
*/
public void setDictionary(byte[] dictionary, int off, int len) {
if (off < 0 || len < 0 || off > dictionary.length - len) {
throw new ArrayIndexOutOfBoundsException();
}
synchronized (zsRef) {
ensureOpen();
setDictionary(zsRef.address(), dictionary, off, len);
}
}
/**
* Sets preset dictionary for compression. A preset dictionary is used
* when the history buffer can be predetermined. When the data is later
* uncompressed with Inflater.inflate(), Inflater.getAdler() can be called
* in order to get the Adler-32 value of the dictionary required for
* decompression.
* @param dictionary the dictionary data bytes
* @see Inflater#inflate
* @see Inflater#getAdler
*/
public void setDictionary(byte[] dictionary) {
setDictionary(dictionary, 0, dictionary.length);
}
/**
* Sets preset dictionary for compression. A preset dictionary is used
* when the history buffer can be predetermined. When the data is later
* uncompressed with Inflater.inflate(), Inflater.getAdler() can be called
* in order to get the Adler-32 value of the dictionary required for
* decompression.
* <p>
* The bytes in given byte buffer will be fully consumed by this method. On
* return, its position will equal its limit.
*
* @param dictionary the dictionary data bytes
* @see Inflater#inflate
* @see Inflater#getAdler
*/
public void setDictionary(ByteBuffer dictionary) {
synchronized (zsRef) {
int position = dictionary.position();
int remaining = Math.max(dictionary.limit() - position, 0);
ensureOpen();
if (dictionary.isDirect()) {
long address = ((DirectBuffer) dictionary).address();
try {
setDictionaryBuffer(zsRef.address(), address + position, remaining);
} finally {
Reference.reachabilityFence(dictionary);
}
} else {
byte[] array = ZipUtils.getBufferArray(dictionary);
int offset = ZipUtils.getBufferOffset(dictionary);
setDictionary(zsRef.address(), array, offset + position, remaining);
}
dictionary.position(position + remaining);
}
}
/**
* Sets the compression strategy to the specified value.
*
* <p> If the compression strategy is changed, the next invocation
* of {@code deflate} will compress the input available so far with
* the old strategy (and may be flushed); the new strategy will take
* effect only after that invocation.
*
* @param strategy the new compression strategy
* @exception IllegalArgumentException if the compression strategy is
* invalid
*/
public void setStrategy(int strategy) {
switch (strategy) {
case DEFAULT_STRATEGY:
case FILTERED:
case HUFFMAN_ONLY:
break;
default:
throw new IllegalArgumentException();
}
synchronized (zsRef) {
if (this.strategy != strategy) {
this.strategy = strategy;
setParams = true;
}
}
}
/**
* Sets the compression level to the specified value.
*
* <p> If the compression level is changed, the next invocation
* of {@code deflate} will compress the input available so far
* with the old level (and may be flushed); the new level will
* take effect only after that invocation.
*
* @param level the new compression level (0-9)
* @exception IllegalArgumentException if the compression level is invalid
*/
public void setLevel(int level) {
if ((level < 0 || level > 9) && level != DEFAULT_COMPRESSION) {
throw new IllegalArgumentException("invalid compression level");
}
synchronized (zsRef) {
if (this.level != level) {
this.level = level;
setParams = true;
}
}
}
/**
* Returns true if no data remains in the input buffer. This can
* be used to determine if one of the {@code setInput()} methods should be
* called in order to provide more input.
*
* @return true if the input data buffer is empty and setInput()
* should be called in order to provide more input
*/
public boolean needsInput() {
synchronized (zsRef) {
ByteBuffer input = this.input;
return input == null ? inputLim == inputPos : ! input.hasRemaining();
}
}
/**
* When called, indicates that compression should end with the current
* contents of the input buffer.
*/
public void finish() {
synchronized (zsRef) {
finish = true;
}
}
/**
* Returns true if the end of the compressed data output stream has
* been reached.
* @return true if the end of the compressed data output stream has
* been reached
*/
public boolean finished() {
synchronized (zsRef) {
return finished;
}
}
/**
* Compresses the input data and fills specified buffer with compressed
* data. Returns actual number of bytes of compressed data. A return value
* of 0 indicates that {@link #needsInput() needsInput} should be called
* in order to determine if more input data is required.
*
* <p>This method uses {@link #NO_FLUSH} as its compression flush mode.
* An invocation of this method of the form {@code deflater.deflate(b, off, len)}
* yields the same result as the invocation of
* {@code deflater.deflate(b, off, len, Deflater.NO_FLUSH)}.
*
* @param output the buffer for the compressed data
* @param off the start offset of the data
* @param len the maximum number of bytes of compressed data
* @return the actual number of bytes of compressed data written to the
* output buffer
*/
public int deflate(byte[] output, int off, int len) {
return deflate(output, off, len, NO_FLUSH);
}
/**
* Compresses the input data and fills specified buffer with compressed
* data. Returns actual number of bytes of compressed data. A return value
* of 0 indicates that {@link #needsInput() needsInput} should be called
* in order to determine if more input data is required.
*
* <p>This method uses {@link #NO_FLUSH} as its compression flush mode.
* An invocation of this method of the form {@code deflater.deflate(b)}
* yields the same result as the invocation of
* {@code deflater.deflate(b, 0, b.length, Deflater.NO_FLUSH)}.
*
* @param output the buffer for the compressed data
* @return the actual number of bytes of compressed data written to the
* output buffer
*/
public int deflate(byte[] output) {
return deflate(output, 0, output.length, NO_FLUSH);
}
/**
* Compresses the input data and fills specified buffer with compressed
* data. Returns actual number of bytes of compressed data. A return value
* of 0 indicates that {@link #needsInput() needsInput} should be called
* in order to determine if more input data is required.
*
* <p>This method uses {@link #NO_FLUSH} as its compression flush mode.
* An invocation of this method of the form {@code deflater.deflate(output)}
* yields the same result as the invocation of
* {@code deflater.deflate(output, Deflater.NO_FLUSH)}.
*
* @param output the buffer for the compressed data
* @return the actual number of bytes of compressed data written to the
* output buffer
* @since 11
*/
public int deflate(ByteBuffer output) {
return deflate(output, NO_FLUSH);
}
/**
* Compresses the input data and fills the specified buffer with compressed
* data. Returns actual number of bytes of data compressed.
*
* <p>Compression flush mode is one of the following three modes:
*
* <ul>
* <li>{@link #NO_FLUSH}: allows the deflater to decide how much data
* to accumulate, before producing output, in order to achieve the best
* compression (should be used in normal use scenario). A return value
* of 0 in this flush mode indicates that {@link #needsInput()} should
* be called in order to determine if more input data is required.
*
* <li>{@link #SYNC_FLUSH}: all pending output in the deflater is flushed,
* to the specified output buffer, so that an inflater that works on
* compressed data can get all input data available so far (In particular
* the {@link #needsInput()} returns {@code true} after this invocation
* if enough output space is provided). Flushing with {@link #SYNC_FLUSH}
* may degrade compression for some compression algorithms and so it
* should be used only when necessary.
*
* <li>{@link #FULL_FLUSH}: all pending output is flushed out as with
* {@link #SYNC_FLUSH}. The compression state is reset so that the inflater
* that works on the compressed output data can restart from this point
* if previous compressed data has been damaged or if random access is
* desired. Using {@link #FULL_FLUSH} too often can seriously degrade
* compression.
* </ul>
*
* <p>In the case of {@link #FULL_FLUSH} or {@link #SYNC_FLUSH}, if
* the return value is {@code len}, the space available in output
* buffer {@code b}, this method should be invoked again with the same
* {@code flush} parameter and more output space. Make sure that
* {@code len} is greater than 6 to avoid flush marker (5 bytes) being
* repeatedly output to the output buffer every time this method is
* invoked.
*
* <p>If the {@link #setInput(ByteBuffer)} method was called to provide a buffer
* for input, the input buffer's position will be advanced by the number of bytes
* consumed by this operation.
*
* @param output the buffer for the compressed data
* @param off the start offset of the data
* @param len the maximum number of bytes of compressed data
* @param flush the compression flush mode
* @return the actual number of bytes of compressed data written to
* the output buffer
*
* @throws IllegalArgumentException if the flush mode is invalid
* @since 1.7
*/
public int deflate(byte[] output, int off, int len, int flush) {
if (off < 0 || len < 0 || off > output.length - len) {
throw new ArrayIndexOutOfBoundsException();
}
if (flush != NO_FLUSH && flush != SYNC_FLUSH && flush != FULL_FLUSH) {
throw new IllegalArgumentException();
}
synchronized (zsRef) {
ensureOpen();
ByteBuffer input = this.input;
if (finish) {
// disregard given flush mode in this case
flush = FINISH;
}
int params;
if (setParams) {
// bit 0: true to set params
// bit 1-2: strategy (0, 1, or 2)
// bit 3-31: level (0..9 or -1)
params = 1 | strategy << 1 | level << 3;
} else {
params = 0;
}
int inputPos;
long result;
if (input == null) {
inputPos = this.inputPos;
result = deflateBytesBytes(zsRef.address(),
inputArray, inputPos, inputLim - inputPos,
output, off, len,
flush, params);
} else {
inputPos = input.position();
int inputRem = Math.max(input.limit() - inputPos, 0);
if (input.isDirect()) {
try {
long inputAddress = ((DirectBuffer) input).address();
result = deflateBufferBytes(zsRef.address(),
inputAddress + inputPos, inputRem,
output, off, len,
flush, params);
} finally {
Reference.reachabilityFence(input);
}
} else {
byte[] inputArray = ZipUtils.getBufferArray(input);
int inputOffset = ZipUtils.getBufferOffset(input);
result = deflateBytesBytes(zsRef.address(),
inputArray, inputOffset + inputPos, inputRem,
output, off, len,
flush, params);
}
}
int read = (int) (result & 0x7fff_ffffL);
int written = (int) (result >>> 31 & 0x7fff_ffffL);
if ((result >>> 62 & 1) != 0) {
finished = true;
}
if (params != 0 && (result >>> 63 & 1) == 0) {
setParams = false;
}
if (input != null) {
input.position(inputPos + read);
} else {
this.inputPos = inputPos + read;
}
bytesWritten += written;
bytesRead += read;
return written;
}
}
/**
* Compresses the input data and fills the specified buffer with compressed
* data. Returns actual number of bytes of data compressed.
*
* <p>Compression flush mode is one of the following three modes:
*
* <ul>
* <li>{@link #NO_FLUSH}: allows the deflater to decide how much data
* to accumulate, before producing output, in order to achieve the best
* compression (should be used in normal use scenario). A return value
* of 0 in this flush mode indicates that {@link #needsInput()} should
* be called in order to determine if more input data is required.
*
* <li>{@link #SYNC_FLUSH}: all pending output in the deflater is flushed,
* to the specified output buffer, so that an inflater that works on
* compressed data can get all input data available so far (In particular
* the {@link #needsInput()} returns {@code true} after this invocation
* if enough output space is provided). Flushing with {@link #SYNC_FLUSH}
* may degrade compression for some compression algorithms and so it
* should be used only when necessary.
*
* <li>{@link #FULL_FLUSH}: all pending output is flushed out as with
* {@link #SYNC_FLUSH}. The compression state is reset so that the inflater
* that works on the compressed output data can restart from this point
* if previous compressed data has been damaged or if random access is
* desired. Using {@link #FULL_FLUSH} too often can seriously degrade
* compression.
* </ul>
*
* <p>In the case of {@link #FULL_FLUSH} or {@link #SYNC_FLUSH}, if
* the return value is equal to the {@linkplain ByteBuffer#remaining() remaining space}
* of the buffer, this method should be invoked again with the same
* {@code flush} parameter and more output space. Make sure that
* the buffer has at least 6 bytes of remaining space to avoid the
* flush marker (5 bytes) being repeatedly output to the output buffer
* every time this method is invoked.
*
* <p>On success, the position of the given {@code output} byte buffer will be
* advanced by as many bytes as were produced by the operation, which is equal
* to the number returned by this method.
*
* <p>If the {@link #setInput(ByteBuffer)} method was called to provide a buffer
* for input, the input buffer's position will be advanced by the number of bytes
* consumed by this operation.
*
* @param output the buffer for the compressed data
* @param flush the compression flush mode
* @return the actual number of bytes of compressed data written to
* the output buffer
*
* @throws IllegalArgumentException if the flush mode is invalid
* @since 11
*/
public int deflate(ByteBuffer output, int flush) {
if (output.isReadOnly()) {
throw new ReadOnlyBufferException();
}
if (flush != NO_FLUSH && flush != SYNC_FLUSH && flush != FULL_FLUSH) {
throw new IllegalArgumentException();
}
synchronized (zsRef) {
ensureOpen();
ByteBuffer input = this.input;
if (finish) {
// disregard given flush mode in this case
flush = FINISH;
}
int params;
if (setParams) {
// bit 0: true to set params
// bit 1-2: strategy (0, 1, or 2)
// bit 3-31: level (0..9 or -1)
params = 1 | strategy << 1 | level << 3;
} else {
params = 0;
}
int outputPos = output.position();
int outputRem = Math.max(output.limit() - outputPos, 0);
int inputPos;
long result;
if (input == null) {
inputPos = this.inputPos;
if (output.isDirect()) {
long outputAddress = ((DirectBuffer) output).address();
try {
result = deflateBytesBuffer(zsRef.address(),
inputArray, inputPos, inputLim - inputPos,
outputAddress + outputPos, outputRem,
flush, params);
} finally {
Reference.reachabilityFence(output);
}
} else {
byte[] outputArray = ZipUtils.getBufferArray(output);
int outputOffset = ZipUtils.getBufferOffset(output);
result = deflateBytesBytes(zsRef.address(),
inputArray, inputPos, inputLim - inputPos,
outputArray, outputOffset + outputPos, outputRem,
flush, params);
}
} else {
inputPos = input.position();
int inputRem = Math.max(input.limit() - inputPos, 0);
if (input.isDirect()) {
long inputAddress = ((DirectBuffer) input).address();
try {
if (output.isDirect()) {
long outputAddress = outputPos + ((DirectBuffer) output).address();
try {
result = deflateBufferBuffer(zsRef.address(),
inputAddress + inputPos, inputRem,
outputAddress, outputRem,
flush, params);
} finally {
Reference.reachabilityFence(output);
}
} else {
byte[] outputArray = ZipUtils.getBufferArray(output);
int outputOffset = ZipUtils.getBufferOffset(output);
result = deflateBufferBytes(zsRef.address(),
inputAddress + inputPos, inputRem,
outputArray, outputOffset + outputPos, outputRem,
flush, params);
}
} finally {
Reference.reachabilityFence(input);
}
} else {
byte[] inputArray = ZipUtils.getBufferArray(input);
int inputOffset = ZipUtils.getBufferOffset(input);
if (output.isDirect()) {
long outputAddress = ((DirectBuffer) output).address();
try {
result = deflateBytesBuffer(zsRef.address(),
inputArray, inputOffset + inputPos, inputRem,
outputAddress + outputPos, outputRem,
flush, params);
} finally {
Reference.reachabilityFence(output);
}
} else {
byte[] outputArray = ZipUtils.getBufferArray(output);
int outputOffset = ZipUtils.getBufferOffset(output);
result = deflateBytesBytes(zsRef.address(),
inputArray, inputOffset + inputPos, inputRem,
outputArray, outputOffset + outputPos, outputRem,
flush, params);
}
}
}
int read = (int) (result & 0x7fff_ffffL);
int written = (int) (result >>> 31 & 0x7fff_ffffL);
if ((result >>> 62 & 1) != 0) {
finished = true;
}
if (params != 0 && (result >>> 63 & 1) == 0) {
setParams = false;
}
if (input != null) {
input.position(inputPos + read);
} else {
this.inputPos = inputPos + read;
}
output.position(outputPos + written);
bytesWritten += written;
bytesRead += read;
return written;
}
}
/**
* Returns the ADLER-32 value of the uncompressed data.
* @return the ADLER-32 value of the uncompressed data
*/
public int getAdler() {
synchronized (zsRef) {
ensureOpen();
return getAdler(zsRef.address());
}
}
/**
* Returns the total number of uncompressed bytes input so far.
*
* <p>Since the number of bytes may be greater than
* Integer.MAX_VALUE, the {@link #getBytesRead()} method is now
* the preferred means of obtaining this information.</p>
*
* @return the total number of uncompressed bytes input so far
*/
public int getTotalIn() {
return (int) getBytesRead();
}
/**
* Returns the total number of uncompressed bytes input so far.
*
* @return the total (non-negative) number of uncompressed bytes input so far
* @since 1.5
*/
public long getBytesRead() {
synchronized (zsRef) {
ensureOpen();
return bytesRead;
}
}
/**
* Returns the total number of compressed bytes output so far.
*
* <p>Since the number of bytes may be greater than
* Integer.MAX_VALUE, the {@link #getBytesWritten()} method is now
* the preferred means of obtaining this information.</p>
*
* @return the total number of compressed bytes output so far
*/
public int getTotalOut() {
return (int) getBytesWritten();
}
/**
* Returns the total number of compressed bytes output so far.
*
* @return the total (non-negative) number of compressed bytes output so far
* @since 1.5
*/
public long getBytesWritten() {
synchronized (zsRef) {
ensureOpen();
return bytesWritten;
}
}
/**
* Resets deflater so that a new set of input data can be processed.
* Keeps current compression level and strategy settings.
*/
public void reset() {
synchronized (zsRef) {
ensureOpen();
reset(zsRef.address());
finish = false;
finished = false;
input = ZipUtils.defaultBuf;
inputArray = null;
bytesRead = bytesWritten = 0;
}
}
/**
* Closes the compressor and discards any unprocessed input.
*
* This method should be called when the compressor is no longer
* being used. Once this method is called, the behavior of the
* Deflater object is undefined.
*/
public void end() {
synchronized (zsRef) {
zsRef.clean();
input = ZipUtils.defaultBuf;
}
}
/**
* Closes the compressor when garbage is collected.
*
* @deprecated The {@code finalize} method has been deprecated and will be
* removed. It is implemented as a no-op. Subclasses that override
* {@code finalize} in order to perform cleanup should be modified to use
* alternative cleanup mechanisms and to remove the overriding {@code finalize}
* method. The recommended cleanup for compressor is to explicitly call
* {@code end} method when it is no longer in use. If the {@code end} is
* not invoked explicitly the resource of the compressor will be released
* when the instance becomes unreachable.
*/
@Deprecated(since="9", forRemoval=true)
protected void finalize() {}
private void ensureOpen() {
assert Thread.holdsLock(zsRef);
if (zsRef.address() == 0)
throw new NullPointerException("Deflater has been closed");
}
private static native long init(int level, int strategy, boolean nowrap);
private static native void setDictionary(long addr, byte[] b, int off,
int len);
private static native void setDictionaryBuffer(long addr, long bufAddress, int len);
private native long deflateBytesBytes(long addr,
byte[] inputArray, int inputOff, int inputLen,
byte[] outputArray, int outputOff, int outputLen,
int flush, int params);
private native long deflateBytesBuffer(long addr,
byte[] inputArray, int inputOff, int inputLen,
long outputAddress, int outputLen,
int flush, int params);
private native long deflateBufferBytes(long addr,
long inputAddress, int inputLen,
byte[] outputArray, int outputOff, int outputLen,
int flush, int params);
private native long deflateBufferBuffer(long addr,
long inputAddress, int inputLen,
long outputAddress, int outputLen,
int flush, int params);
private static native int getAdler(long addr);
private static native void reset(long addr);
private static native void end(long addr);
/**
* A reference to the native zlib's z_stream structure. It also
* serves as the "cleaner" to clean up the native resource when
* the Deflater is ended, closed or cleaned.
*/
static class DeflaterZStreamRef implements Runnable {
private long address;
private final Cleanable cleanable;
private DeflaterZStreamRef(Deflater owner, long addr) {
this.cleanable = (owner != null) ? CleanerFactory.cleaner().register(owner, this) : null;
this.address = addr;
}
long address() {
return address;
}
void clean() {
cleanable.clean();
}
public synchronized void run() {
long addr = address;
address = 0;
if (addr != 0) {
end(addr);
}
}
/*
* If {@code Deflater} has been subclassed and the {@code end} method is
* overridden, uses {@code finalizer} mechanism for resource cleanup. So
* {@code end} method can be called when the {@code Deflater} is unreachable.
* This mechanism will be removed when the {@code finalize} method is
* removed from {@code Deflater}.
*/
static DeflaterZStreamRef get(Deflater owner, long addr) {
Class<?> clz = owner.getClass();
while (clz != Deflater.class) {
try {
clz.getDeclaredMethod("end");
return new FinalizableZStreamRef(owner, addr);
} catch (NoSuchMethodException nsme) {}
clz = clz.getSuperclass();
}
return new DeflaterZStreamRef(owner, addr);
}
private static class FinalizableZStreamRef extends DeflaterZStreamRef {
final Deflater owner;
FinalizableZStreamRef (Deflater owner, long addr) {
super(null, addr);
this.owner = owner;
}
@Override
void clean() {
run();
}
@Override
@SuppressWarnings("deprecation")
protected void finalize() {
owner.end();
}
}
}
}