blob: 4c8e9b159fccbb8bce8c276d52ab88c79ca7236e [file] [log] [blame]
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.util.concurrent.locks.LockSupport;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Supplier;
/**
* A {@link Future} that may be explicitly completed (setting its
* value and status), and may be used as a {@link CompletionStage},
* supporting dependent functions and actions that trigger upon its
* completion.
*
* <p>When two or more threads attempt to
* {@link #complete complete},
* {@link #completeExceptionally completeExceptionally}, or
* {@link #cancel cancel}
* a CompletableFuture, only one of them succeeds.
*
* <p>In addition to these and related methods for directly
* manipulating status and results, CompletableFuture implements
* interface {@link CompletionStage} with the following policies: <ul>
*
* <li>Actions supplied for dependent completions of
* <em>non-async</em> methods may be performed by the thread that
* completes the current CompletableFuture, or by any other caller of
* a completion method.
*
* <li>All <em>async</em> methods without an explicit Executor
* argument are performed using the {@link ForkJoinPool#commonPool()}
* (unless it does not support a parallelism level of at least two, in
* which case, a new Thread is created to run each task). This may be
* overridden for non-static methods in subclasses by defining method
* {@link #defaultExecutor()}. To simplify monitoring, debugging,
* and tracking, all generated asynchronous tasks are instances of the
* marker interface {@link AsynchronousCompletionTask}. Operations
* with time-delays can use adapter methods defined in this class, for
* example: {@code supplyAsync(supplier, delayedExecutor(timeout,
* timeUnit))}. To support methods with delays and timeouts, this
* class maintains at most one daemon thread for triggering and
* cancelling actions, not for running them.
*
* <li>All CompletionStage methods are implemented independently of
* other public methods, so the behavior of one method is not impacted
* by overrides of others in subclasses.
*
* <li>All CompletionStage methods return CompletableFutures. To
* restrict usages to only those methods defined in interface
* CompletionStage, use method {@link #minimalCompletionStage}. Or to
* ensure only that clients do not themselves modify a future, use
* method {@link #copy}.
* </ul>
*
* <p>CompletableFuture also implements {@link Future} with the following
* policies: <ul>
*
* <li>Since (unlike {@link FutureTask}) this class has no direct
* control over the computation that causes it to be completed,
* cancellation is treated as just another form of exceptional
* completion. Method {@link #cancel cancel} has the same effect as
* {@code completeExceptionally(new CancellationException())}. Method
* {@link #isCompletedExceptionally} can be used to determine if a
* CompletableFuture completed in any exceptional fashion.
*
* <li>In case of exceptional completion with a CompletionException,
* methods {@link #get()} and {@link #get(long, TimeUnit)} throw an
* {@link ExecutionException} with the same cause as held in the
* corresponding CompletionException. To simplify usage in most
* contexts, this class also defines methods {@link #join()} and
* {@link #getNow} that instead throw the CompletionException directly
* in these cases.
* </ul>
*
* <p>Arguments used to pass a completion result (that is, for
* parameters of type {@code T}) for methods accepting them may be
* null, but passing a null value for any other parameter will result
* in a {@link NullPointerException} being thrown.
*
* <p>Subclasses of this class should normally override the "virtual
* constructor" method {@link #newIncompleteFuture}, which establishes
* the concrete type returned by CompletionStage methods. For example,
* here is a class that substitutes a different default Executor and
* disables the {@code obtrude} methods:
*
* <pre> {@code
* class MyCompletableFuture<T> extends CompletableFuture<T> {
* static final Executor myExecutor = ...;
* public MyCompletableFuture() { }
* public <U> CompletableFuture<U> newIncompleteFuture() {
* return new MyCompletableFuture<U>(); }
* public Executor defaultExecutor() {
* return myExecutor; }
* public void obtrudeValue(T value) {
* throw new UnsupportedOperationException(); }
* public void obtrudeException(Throwable ex) {
* throw new UnsupportedOperationException(); }
* }}</pre>
*
* @author Doug Lea
* @param <T> The result type returned by this future's {@code join}
* and {@code get} methods
* @since 1.8
*/
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
/*
* Overview:
*
* A CompletableFuture may have dependent completion actions,
* collected in a linked stack. It atomically completes by CASing
* a result field, and then pops off and runs those actions. This
* applies across normal vs exceptional outcomes, sync vs async
* actions, binary triggers, and various forms of completions.
*
* Non-nullness of volatile field "result" indicates done. It may
* be set directly if known to be thread-confined, else via CAS.
* An AltResult is used to box null as a result, as well as to
* hold exceptions. Using a single field makes completion simple
* to detect and trigger. Result encoding and decoding is
* straightforward but tedious and adds to the sprawl of trapping
* and associating exceptions with targets. Minor simplifications
* rely on (static) NIL (to box null results) being the only
* AltResult with a null exception field, so we don't usually need
* explicit comparisons. Even though some of the generics casts
* are unchecked (see SuppressWarnings annotations), they are
* placed to be appropriate even if checked.
*
* Dependent actions are represented by Completion objects linked
* as Treiber stacks headed by field "stack". There are Completion
* classes for each kind of action, grouped into:
* - single-input (UniCompletion),
* - two-input (BiCompletion),
* - projected (BiCompletions using exactly one of two inputs),
* - shared (CoCompletion, used by the second of two sources),
* - zero-input source actions,
* - Signallers that unblock waiters.
* Class Completion extends ForkJoinTask to enable async execution
* (adding no space overhead because we exploit its "tag" methods
* to maintain claims). It is also declared as Runnable to allow
* usage with arbitrary executors.
*
* Support for each kind of CompletionStage relies on a separate
* class, along with two CompletableFuture methods:
*
* * A Completion class with name X corresponding to function,
* prefaced with "Uni", "Bi", or "Or". Each class contains
* fields for source(s), actions, and dependent. They are
* boringly similar, differing from others only with respect to
* underlying functional forms. We do this so that users don't
* encounter layers of adapters in common usages.
*
* * Boolean CompletableFuture method x(...) (for example
* biApply) takes all of the arguments needed to check that an
* action is triggerable, and then either runs the action or
* arranges its async execution by executing its Completion
* argument, if present. The method returns true if known to be
* complete.
*
* * Completion method tryFire(int mode) invokes the associated x
* method with its held arguments, and on success cleans up.
* The mode argument allows tryFire to be called twice (SYNC,
* then ASYNC); the first to screen and trap exceptions while
* arranging to execute, and the second when called from a task.
* (A few classes are not used async so take slightly different
* forms.) The claim() callback suppresses function invocation
* if already claimed by another thread.
*
* * Some classes (for example UniApply) have separate handling
* code for when known to be thread-confined ("now" methods) and
* for when shared (in tryFire), for efficiency.
*
* * CompletableFuture method xStage(...) is called from a public
* stage method of CompletableFuture f. It screens user
* arguments and invokes and/or creates the stage object. If
* not async and already triggerable, the action is run
* immediately. Otherwise a Completion c is created, and
* submitted to the executor if triggerable, or pushed onto f's
* stack if not. Completion actions are started via c.tryFire.
* We recheck after pushing to a source future's stack to cover
* possible races if the source completes while pushing.
* Classes with two inputs (for example BiApply) deal with races
* across both while pushing actions. The second completion is
* a CoCompletion pointing to the first, shared so that at most
* one performs the action. The multiple-arity methods allOf
* does this pairwise to form trees of completions. Method
* anyOf is handled differently from allOf because completion of
* any source should trigger a cleanStack of other sources.
* Each AnyOf completion can reach others via a shared array.
*
* Note that the generic type parameters of methods vary according
* to whether "this" is a source, dependent, or completion.
*
* Method postComplete is called upon completion unless the target
* is guaranteed not to be observable (i.e., not yet returned or
* linked). Multiple threads can call postComplete, which
* atomically pops each dependent action, and tries to trigger it
* via method tryFire, in NESTED mode. Triggering can propagate
* recursively, so NESTED mode returns its completed dependent (if
* one exists) for further processing by its caller (see method
* postFire).
*
* Blocking methods get() and join() rely on Signaller Completions
* that wake up waiting threads. The mechanics are similar to
* Treiber stack wait-nodes used in FutureTask, Phaser, and
* SynchronousQueue. See their internal documentation for
* algorithmic details.
*
* Without precautions, CompletableFutures would be prone to
* garbage accumulation as chains of Completions build up, each
* pointing back to its sources. So we null out fields as soon as
* possible. The screening checks needed anyway harmlessly ignore
* null arguments that may have been obtained during races with
* threads nulling out fields. We also try to unlink non-isLive
* (fired or cancelled) Completions from stacks that might
* otherwise never be popped: Method cleanStack always unlinks non
* isLive completions from the head of stack; others may
* occasionally remain if racing with other cancellations or
* removals.
*
* Completion fields need not be declared as final or volatile
* because they are only visible to other threads upon safe
* publication.
*/
volatile Object result; // Either the result or boxed AltResult
volatile Completion stack; // Top of Treiber stack of dependent actions
final boolean internalComplete(Object r) { // CAS from null to r
return RESULT.compareAndSet(this, null, r);
}
/** Returns true if successfully pushed c onto stack. */
final boolean tryPushStack(Completion c) {
Completion h = stack;
NEXT.set(c, h); // CAS piggyback
return STACK.compareAndSet(this, h, c);
}
/** Unconditionally pushes c onto stack, retrying if necessary. */
final void pushStack(Completion c) {
do {} while (!tryPushStack(c));
}
/* ------------- Encoding and decoding outcomes -------------- */
static final class AltResult { // See above
final Throwable ex; // null only for NIL
AltResult(Throwable x) { this.ex = x; }
}
/** The encoding of the null value. */
static final AltResult NIL = new AltResult(null);
/** Completes with the null value, unless already completed. */
final boolean completeNull() {
return RESULT.compareAndSet(this, null, NIL);
}
/** Returns the encoding of the given non-exceptional value. */
final Object encodeValue(T t) {
return (t == null) ? NIL : t;
}
/** Completes with a non-exceptional result, unless already completed. */
final boolean completeValue(T t) {
return RESULT.compareAndSet(this, null, (t == null) ? NIL : t);
}
/**
* Returns the encoding of the given (non-null) exception as a
* wrapped CompletionException unless it is one already.
*/
static AltResult encodeThrowable(Throwable x) {
return new AltResult((x instanceof CompletionException) ? x :
new CompletionException(x));
}
/** Completes with an exceptional result, unless already completed. */
final boolean completeThrowable(Throwable x) {
return RESULT.compareAndSet(this, null, encodeThrowable(x));
}
/**
* Returns the encoding of the given (non-null) exception as a
* wrapped CompletionException unless it is one already. May
* return the given Object r (which must have been the result of a
* source future) if it is equivalent, i.e. if this is a simple
* relay of an existing CompletionException.
*/
static Object encodeThrowable(Throwable x, Object r) {
if (!(x instanceof CompletionException))
x = new CompletionException(x);
else if (r instanceof AltResult && x == ((AltResult)r).ex)
return r;
return new AltResult(x);
}
/**
* Completes with the given (non-null) exceptional result as a
* wrapped CompletionException unless it is one already, unless
* already completed. May complete with the given Object r
* (which must have been the result of a source future) if it is
* equivalent, i.e. if this is a simple propagation of an
* existing CompletionException.
*/
final boolean completeThrowable(Throwable x, Object r) {
return RESULT.compareAndSet(this, null, encodeThrowable(x, r));
}
/**
* Returns the encoding of the given arguments: if the exception
* is non-null, encodes as AltResult. Otherwise uses the given
* value, boxed as NIL if null.
*/
Object encodeOutcome(T t, Throwable x) {
return (x == null) ? (t == null) ? NIL : t : encodeThrowable(x);
}
/**
* Returns the encoding of a copied outcome; if exceptional,
* rewraps as a CompletionException, else returns argument.
*/
static Object encodeRelay(Object r) {
Throwable x;
if (r instanceof AltResult
&& (x = ((AltResult)r).ex) != null
&& !(x instanceof CompletionException))
r = new AltResult(new CompletionException(x));
return r;
}
/**
* Completes with r or a copy of r, unless already completed.
* If exceptional, r is first coerced to a CompletionException.
*/
final boolean completeRelay(Object r) {
return RESULT.compareAndSet(this, null, encodeRelay(r));
}
/**
* Reports result using Future.get conventions.
*/
private static Object reportGet(Object r)
throws InterruptedException, ExecutionException {
if (r == null) // by convention below, null means interrupted
throw new InterruptedException();
if (r instanceof AltResult) {
Throwable x, cause;
if ((x = ((AltResult)r).ex) == null)
return null;
if (x instanceof CancellationException)
throw (CancellationException)x;
if ((x instanceof CompletionException) &&
(cause = x.getCause()) != null)
x = cause;
throw new ExecutionException(x);
}
return r;
}
/**
* Decodes outcome to return result or throw unchecked exception.
*/
private static Object reportJoin(Object r) {
if (r instanceof AltResult) {
Throwable x;
if ((x = ((AltResult)r).ex) == null)
return null;
if (x instanceof CancellationException)
throw (CancellationException)x;
if (x instanceof CompletionException)
throw (CompletionException)x;
throw new CompletionException(x);
}
return r;
}
/* ------------- Async task preliminaries -------------- */
/**
* A marker interface identifying asynchronous tasks produced by
* {@code async} methods. This may be useful for monitoring,
* debugging, and tracking asynchronous activities.
*
* @since 1.8
*/
public static interface AsynchronousCompletionTask {
}
private static final boolean USE_COMMON_POOL =
(ForkJoinPool.getCommonPoolParallelism() > 1);
/**
* Default executor -- ForkJoinPool.commonPool() unless it cannot
* support parallelism.
*/
private static final Executor ASYNC_POOL = USE_COMMON_POOL ?
ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();
/** Fallback if ForkJoinPool.commonPool() cannot support parallelism */
static final class ThreadPerTaskExecutor implements Executor {
public void execute(Runnable r) { new Thread(r).start(); }
}
/**
* Null-checks user executor argument, and translates uses of
* commonPool to ASYNC_POOL in case parallelism disabled.
*/
static Executor screenExecutor(Executor e) {
if (!USE_COMMON_POOL && e == ForkJoinPool.commonPool())
return ASYNC_POOL;
if (e == null) throw new NullPointerException();
return e;
}
// Modes for Completion.tryFire. Signedness matters.
static final int SYNC = 0;
static final int ASYNC = 1;
static final int NESTED = -1;
/* ------------- Base Completion classes and operations -------------- */
@SuppressWarnings("serial")
abstract static class Completion extends ForkJoinTask<Void>
implements Runnable, AsynchronousCompletionTask {
volatile Completion next; // Treiber stack link
/**
* Performs completion action if triggered, returning a
* dependent that may need propagation, if one exists.
*
* @param mode SYNC, ASYNC, or NESTED
*/
abstract CompletableFuture<?> tryFire(int mode);
/** Returns true if possibly still triggerable. Used by cleanStack. */
abstract boolean isLive();
public final void run() { tryFire(ASYNC); }
public final boolean exec() { tryFire(ASYNC); return false; }
public final Void getRawResult() { return null; }
public final void setRawResult(Void v) {}
}
/**
* Pops and tries to trigger all reachable dependents. Call only
* when known to be done.
*/
final void postComplete() {
/*
* On each step, variable f holds current dependents to pop
* and run. It is extended along only one path at a time,
* pushing others to avoid unbounded recursion.
*/
CompletableFuture<?> f = this; Completion h;
while ((h = f.stack) != null ||
(f != this && (h = (f = this).stack) != null)) {
CompletableFuture<?> d; Completion t;
if (STACK.compareAndSet(f, h, t = h.next)) {
if (t != null) {
if (f != this) {
pushStack(h);
continue;
}
NEXT.compareAndSet(h, t, null); // try to detach
}
f = (d = h.tryFire(NESTED)) == null ? this : d;
}
}
}
/** Traverses stack and unlinks one or more dead Completions, if found. */
final void cleanStack() {
Completion p = stack;
// ensure head of stack live
for (boolean unlinked = false;;) {
if (p == null)
return;
else if (p.isLive()) {
if (unlinked)
return;
else
break;
}
else if (STACK.weakCompareAndSet(this, p, (p = p.next)))
unlinked = true;
else
p = stack;
}
// try to unlink first non-live
for (Completion q = p.next; q != null;) {
Completion s = q.next;
if (q.isLive()) {
p = q;
q = s;
} else if (NEXT.weakCompareAndSet(p, q, s))
break;
else
q = p.next;
}
}
/* ------------- One-input Completions -------------- */
/** A Completion with a source, dependent, and executor. */
@SuppressWarnings("serial")
abstract static class UniCompletion<T,V> extends Completion {
Executor executor; // executor to use (null if none)
CompletableFuture<V> dep; // the dependent to complete
CompletableFuture<T> src; // source for action
UniCompletion(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src) {
this.executor = executor; this.dep = dep; this.src = src;
}
/**
* Returns true if action can be run. Call only when known to
* be triggerable. Uses FJ tag bit to ensure that only one
* thread claims ownership. If async, starts as task -- a
* later call to tryFire will run action.
*/
final boolean claim() {
Executor e = executor;
if (compareAndSetForkJoinTaskTag((short)0, (short)1)) {
if (e == null)
return true;
executor = null; // disable
e.execute(this);
}
return false;
}
final boolean isLive() { return dep != null; }
}
/**
* Pushes the given completion unless it completes while trying.
* Caller should first check that result is null.
*/
final void unipush(Completion c) {
if (c != null) {
while (!tryPushStack(c)) {
if (result != null) {
NEXT.set(c, null);
break;
}
}
if (result != null)
c.tryFire(SYNC);
}
}
/**
* Post-processing by dependent after successful UniCompletion tryFire.
* Tries to clean stack of source a, and then either runs postComplete
* or returns this to caller, depending on mode.
*/
final CompletableFuture<T> postFire(CompletableFuture<?> a, int mode) {
if (a != null && a.stack != null) {
Object r;
if ((r = a.result) == null)
a.cleanStack();
if (mode >= 0 && (r != null || a.result != null))
a.postComplete();
}
if (result != null && stack != null) {
if (mode < 0)
return this;
else
postComplete();
}
return null;
}
@SuppressWarnings("serial")
static final class UniApply<T,V> extends UniCompletion<T,V> {
Function<? super T,? extends V> fn;
UniApply(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src,
Function<? super T,? extends V> fn) {
super(executor, dep, src); this.fn = fn;
}
final CompletableFuture<V> tryFire(int mode) {
CompletableFuture<V> d; CompletableFuture<T> a;
Object r; Throwable x; Function<? super T,? extends V> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null)
return null;
tryComplete: if (d.result == null) {
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.completeThrowable(x, r);
break tryComplete;
}
r = null;
}
try {
if (mode <= 0 && !claim())
return null;
else {
@SuppressWarnings("unchecked") T t = (T) r;
d.completeValue(f.apply(t));
}
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
private <V> CompletableFuture<V> uniApplyStage(
Executor e, Function<? super T,? extends V> f) {
if (f == null) throw new NullPointerException();
Object r;
if ((r = result) != null)
return uniApplyNow(r, e, f);
CompletableFuture<V> d = newIncompleteFuture();
unipush(new UniApply<T,V>(e, d, this, f));
return d;
}
private <V> CompletableFuture<V> uniApplyNow(
Object r, Executor e, Function<? super T,? extends V> f) {
Throwable x;
CompletableFuture<V> d = newIncompleteFuture();
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.result = encodeThrowable(x, r);
return d;
}
r = null;
}
try {
if (e != null) {
e.execute(new UniApply<T,V>(null, d, this, f));
} else {
@SuppressWarnings("unchecked") T t = (T) r;
d.result = d.encodeValue(f.apply(t));
}
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
@SuppressWarnings("serial")
static final class UniAccept<T> extends UniCompletion<T,Void> {
Consumer<? super T> fn;
UniAccept(Executor executor, CompletableFuture<Void> dep,
CompletableFuture<T> src, Consumer<? super T> fn) {
super(executor, dep, src); this.fn = fn;
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d; CompletableFuture<T> a;
Object r; Throwable x; Consumer<? super T> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null)
return null;
tryComplete: if (d.result == null) {
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.completeThrowable(x, r);
break tryComplete;
}
r = null;
}
try {
if (mode <= 0 && !claim())
return null;
else {
@SuppressWarnings("unchecked") T t = (T) r;
f.accept(t);
d.completeNull();
}
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
private CompletableFuture<Void> uniAcceptStage(Executor e,
Consumer<? super T> f) {
if (f == null) throw new NullPointerException();
Object r;
if ((r = result) != null)
return uniAcceptNow(r, e, f);
CompletableFuture<Void> d = newIncompleteFuture();
unipush(new UniAccept<T>(e, d, this, f));
return d;
}
private CompletableFuture<Void> uniAcceptNow(
Object r, Executor e, Consumer<? super T> f) {
Throwable x;
CompletableFuture<Void> d = newIncompleteFuture();
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.result = encodeThrowable(x, r);
return d;
}
r = null;
}
try {
if (e != null) {
e.execute(new UniAccept<T>(null, d, this, f));
} else {
@SuppressWarnings("unchecked") T t = (T) r;
f.accept(t);
d.result = NIL;
}
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
@SuppressWarnings("serial")
static final class UniRun<T> extends UniCompletion<T,Void> {
Runnable fn;
UniRun(Executor executor, CompletableFuture<Void> dep,
CompletableFuture<T> src, Runnable fn) {
super(executor, dep, src); this.fn = fn;
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d; CompletableFuture<T> a;
Object r; Throwable x; Runnable f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null)
return null;
if (d.result == null) {
if (r instanceof AltResult && (x = ((AltResult)r).ex) != null)
d.completeThrowable(x, r);
else
try {
if (mode <= 0 && !claim())
return null;
else {
f.run();
d.completeNull();
}
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
private CompletableFuture<Void> uniRunStage(Executor e, Runnable f) {
if (f == null) throw new NullPointerException();
Object r;
if ((r = result) != null)
return uniRunNow(r, e, f);
CompletableFuture<Void> d = newIncompleteFuture();
unipush(new UniRun<T>(e, d, this, f));
return d;
}
private CompletableFuture<Void> uniRunNow(Object r, Executor e, Runnable f) {
Throwable x;
CompletableFuture<Void> d = newIncompleteFuture();
if (r instanceof AltResult && (x = ((AltResult)r).ex) != null)
d.result = encodeThrowable(x, r);
else
try {
if (e != null) {
e.execute(new UniRun<T>(null, d, this, f));
} else {
f.run();
d.result = NIL;
}
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
@SuppressWarnings("serial")
static final class UniWhenComplete<T> extends UniCompletion<T,T> {
BiConsumer<? super T, ? super Throwable> fn;
UniWhenComplete(Executor executor, CompletableFuture<T> dep,
CompletableFuture<T> src,
BiConsumer<? super T, ? super Throwable> fn) {
super(executor, dep, src); this.fn = fn;
}
final CompletableFuture<T> tryFire(int mode) {
CompletableFuture<T> d; CompletableFuture<T> a;
Object r; BiConsumer<? super T, ? super Throwable> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null
|| !d.uniWhenComplete(r, f, mode > 0 ? null : this))
return null;
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
final boolean uniWhenComplete(Object r,
BiConsumer<? super T,? super Throwable> f,
UniWhenComplete<T> c) {
T t; Throwable x = null;
if (result == null) {
try {
if (c != null && !c.claim())
return false;
if (r instanceof AltResult) {
x = ((AltResult)r).ex;
t = null;
} else {
@SuppressWarnings("unchecked") T tr = (T) r;
t = tr;
}
f.accept(t, x);
if (x == null) {
internalComplete(r);
return true;
}
} catch (Throwable ex) {
if (x == null)
x = ex;
else if (x != ex)
x.addSuppressed(ex);
}
completeThrowable(x, r);
}
return true;
}
private CompletableFuture<T> uniWhenCompleteStage(
Executor e, BiConsumer<? super T, ? super Throwable> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<T> d = newIncompleteFuture();
Object r;
if ((r = result) == null)
unipush(new UniWhenComplete<T>(e, d, this, f));
else if (e == null)
d.uniWhenComplete(r, f, null);
else {
try {
e.execute(new UniWhenComplete<T>(null, d, this, f));
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
}
return d;
}
@SuppressWarnings("serial")
static final class UniHandle<T,V> extends UniCompletion<T,V> {
BiFunction<? super T, Throwable, ? extends V> fn;
UniHandle(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src,
BiFunction<? super T, Throwable, ? extends V> fn) {
super(executor, dep, src); this.fn = fn;
}
final CompletableFuture<V> tryFire(int mode) {
CompletableFuture<V> d; CompletableFuture<T> a;
Object r; BiFunction<? super T, Throwable, ? extends V> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null
|| !d.uniHandle(r, f, mode > 0 ? null : this))
return null;
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
final <S> boolean uniHandle(Object r,
BiFunction<? super S, Throwable, ? extends T> f,
UniHandle<S,T> c) {
S s; Throwable x;
if (result == null) {
try {
if (c != null && !c.claim())
return false;
if (r instanceof AltResult) {
x = ((AltResult)r).ex;
s = null;
} else {
x = null;
@SuppressWarnings("unchecked") S ss = (S) r;
s = ss;
}
completeValue(f.apply(s, x));
} catch (Throwable ex) {
completeThrowable(ex);
}
}
return true;
}
private <V> CompletableFuture<V> uniHandleStage(
Executor e, BiFunction<? super T, Throwable, ? extends V> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<V> d = newIncompleteFuture();
Object r;
if ((r = result) == null)
unipush(new UniHandle<T,V>(e, d, this, f));
else if (e == null)
d.uniHandle(r, f, null);
else {
try {
e.execute(new UniHandle<T,V>(null, d, this, f));
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
}
return d;
}
@SuppressWarnings("serial")
static final class UniExceptionally<T> extends UniCompletion<T,T> {
Function<? super Throwable, ? extends T> fn;
UniExceptionally(CompletableFuture<T> dep, CompletableFuture<T> src,
Function<? super Throwable, ? extends T> fn) {
super(null, dep, src); this.fn = fn;
}
final CompletableFuture<T> tryFire(int mode) { // never ASYNC
// assert mode != ASYNC;
CompletableFuture<T> d; CompletableFuture<T> a;
Object r; Function<? super Throwable, ? extends T> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null
|| !d.uniExceptionally(r, f, this))
return null;
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
final boolean uniExceptionally(Object r,
Function<? super Throwable, ? extends T> f,
UniExceptionally<T> c) {
Throwable x;
if (result == null) {
try {
if (r instanceof AltResult && (x = ((AltResult)r).ex) != null) {
if (c != null && !c.claim())
return false;
completeValue(f.apply(x));
} else
internalComplete(r);
} catch (Throwable ex) {
completeThrowable(ex);
}
}
return true;
}
private CompletableFuture<T> uniExceptionallyStage(
Function<Throwable, ? extends T> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<T> d = newIncompleteFuture();
Object r;
if ((r = result) == null)
unipush(new UniExceptionally<T>(d, this, f));
else
d.uniExceptionally(r, f, null);
return d;
}
@SuppressWarnings("serial")
static final class UniRelay<U, T extends U> extends UniCompletion<T,U> {
UniRelay(CompletableFuture<U> dep, CompletableFuture<T> src) {
super(null, dep, src);
}
final CompletableFuture<U> tryFire(int mode) {
CompletableFuture<U> d; CompletableFuture<T> a; Object r;
if ((d = dep) == null
|| (a = src) == null || (r = a.result) == null)
return null;
if (d.result == null)
d.completeRelay(r);
src = null; dep = null;
return d.postFire(a, mode);
}
}
private static <U, T extends U> CompletableFuture<U> uniCopyStage(
CompletableFuture<T> src) {
Object r;
CompletableFuture<U> d = src.newIncompleteFuture();
if ((r = src.result) != null)
d.result = encodeRelay(r);
else
src.unipush(new UniRelay<U,T>(d, src));
return d;
}
private MinimalStage<T> uniAsMinimalStage() {
Object r;
if ((r = result) != null)
return new MinimalStage<T>(encodeRelay(r));
MinimalStage<T> d = new MinimalStage<T>();
unipush(new UniRelay<T,T>(d, this));
return d;
}
@SuppressWarnings("serial")
static final class UniCompose<T,V> extends UniCompletion<T,V> {
Function<? super T, ? extends CompletionStage<V>> fn;
UniCompose(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src,
Function<? super T, ? extends CompletionStage<V>> fn) {
super(executor, dep, src); this.fn = fn;
}
final CompletableFuture<V> tryFire(int mode) {
CompletableFuture<V> d; CompletableFuture<T> a;
Function<? super T, ? extends CompletionStage<V>> f;
Object r; Throwable x;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null)
return null;
tryComplete: if (d.result == null) {
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.completeThrowable(x, r);
break tryComplete;
}
r = null;
}
try {
if (mode <= 0 && !claim())
return null;
@SuppressWarnings("unchecked") T t = (T) r;
CompletableFuture<V> g = f.apply(t).toCompletableFuture();
if ((r = g.result) != null)
d.completeRelay(r);
else {
g.unipush(new UniRelay<V,V>(d, g));
if (d.result == null)
return null;
}
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; fn = null;
return d.postFire(a, mode);
}
}
private <V> CompletableFuture<V> uniComposeStage(
Executor e, Function<? super T, ? extends CompletionStage<V>> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<V> d = newIncompleteFuture();
Object r, s; Throwable x;
if ((r = result) == null)
unipush(new UniCompose<T,V>(e, d, this, f));
else if (e == null) {
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.result = encodeThrowable(x, r);
return d;
}
r = null;
}
try {
@SuppressWarnings("unchecked") T t = (T) r;
CompletableFuture<V> g = f.apply(t).toCompletableFuture();
if ((s = g.result) != null)
d.result = encodeRelay(s);
else {
g.unipush(new UniRelay<V,V>(d, g));
}
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
}
else
try {
e.execute(new UniCompose<T,V>(null, d, this, f));
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
/* ------------- Two-input Completions -------------- */
/** A Completion for an action with two sources */
@SuppressWarnings("serial")
abstract static class BiCompletion<T,U,V> extends UniCompletion<T,V> {
CompletableFuture<U> snd; // second source for action
BiCompletion(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src, CompletableFuture<U> snd) {
super(executor, dep, src); this.snd = snd;
}
}
/** A Completion delegating to a BiCompletion */
@SuppressWarnings("serial")
static final class CoCompletion extends Completion {
BiCompletion<?,?,?> base;
CoCompletion(BiCompletion<?,?,?> base) { this.base = base; }
final CompletableFuture<?> tryFire(int mode) {
BiCompletion<?,?,?> c; CompletableFuture<?> d;
if ((c = base) == null || (d = c.tryFire(mode)) == null)
return null;
base = null; // detach
return d;
}
final boolean isLive() {
BiCompletion<?,?,?> c;
return (c = base) != null
// && c.isLive()
&& c.dep != null;
}
}
/**
* Pushes completion to this and b unless both done.
* Caller should first check that either result or b.result is null.
*/
final void bipush(CompletableFuture<?> b, BiCompletion<?,?,?> c) {
if (c != null) {
while (result == null) {
if (tryPushStack(c)) {
if (b.result == null)
b.unipush(new CoCompletion(c));
else if (result != null)
c.tryFire(SYNC);
return;
}
}
b.unipush(c);
}
}
/** Post-processing after successful BiCompletion tryFire. */
final CompletableFuture<T> postFire(CompletableFuture<?> a,
CompletableFuture<?> b, int mode) {
if (b != null && b.stack != null) { // clean second source
Object r;
if ((r = b.result) == null)
b.cleanStack();
if (mode >= 0 && (r != null || b.result != null))
b.postComplete();
}
return postFire(a, mode);
}
@SuppressWarnings("serial")
static final class BiApply<T,U,V> extends BiCompletion<T,U,V> {
BiFunction<? super T,? super U,? extends V> fn;
BiApply(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src, CompletableFuture<U> snd,
BiFunction<? super T,? super U,? extends V> fn) {
super(executor, dep, src, snd); this.fn = fn;
}
final CompletableFuture<V> tryFire(int mode) {
CompletableFuture<V> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r, s; BiFunction<? super T,? super U,? extends V> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null
|| (b = snd) == null || (s = b.result) == null
|| !d.biApply(r, s, f, mode > 0 ? null : this))
return null;
dep = null; src = null; snd = null; fn = null;
return d.postFire(a, b, mode);
}
}
final <R,S> boolean biApply(Object r, Object s,
BiFunction<? super R,? super S,? extends T> f,
BiApply<R,S,T> c) {
Throwable x;
tryComplete: if (result == null) {
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
completeThrowable(x, r);
break tryComplete;
}
r = null;
}
if (s instanceof AltResult) {
if ((x = ((AltResult)s).ex) != null) {
completeThrowable(x, s);
break tryComplete;
}
s = null;
}
try {
if (c != null && !c.claim())
return false;
@SuppressWarnings("unchecked") R rr = (R) r;
@SuppressWarnings("unchecked") S ss = (S) s;
completeValue(f.apply(rr, ss));
} catch (Throwable ex) {
completeThrowable(ex);
}
}
return true;
}
private <U,V> CompletableFuture<V> biApplyStage(
Executor e, CompletionStage<U> o,
BiFunction<? super T,? super U,? extends V> f) {
CompletableFuture<U> b; Object r, s;
if (f == null || (b = o.toCompletableFuture()) == null)
throw new NullPointerException();
CompletableFuture<V> d = newIncompleteFuture();
if ((r = result) == null || (s = b.result) == null)
bipush(b, new BiApply<T,U,V>(e, d, this, b, f));
else if (e == null)
d.biApply(r, s, f, null);
else
try {
e.execute(new BiApply<T,U,V>(null, d, this, b, f));
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
@SuppressWarnings("serial")
static final class BiAccept<T,U> extends BiCompletion<T,U,Void> {
BiConsumer<? super T,? super U> fn;
BiAccept(Executor executor, CompletableFuture<Void> dep,
CompletableFuture<T> src, CompletableFuture<U> snd,
BiConsumer<? super T,? super U> fn) {
super(executor, dep, src, snd); this.fn = fn;
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r, s; BiConsumer<? super T,? super U> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null
|| (b = snd) == null || (s = b.result) == null
|| !d.biAccept(r, s, f, mode > 0 ? null : this))
return null;
dep = null; src = null; snd = null; fn = null;
return d.postFire(a, b, mode);
}
}
final <R,S> boolean biAccept(Object r, Object s,
BiConsumer<? super R,? super S> f,
BiAccept<R,S> c) {
Throwable x;
tryComplete: if (result == null) {
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
completeThrowable(x, r);
break tryComplete;
}
r = null;
}
if (s instanceof AltResult) {
if ((x = ((AltResult)s).ex) != null) {
completeThrowable(x, s);
break tryComplete;
}
s = null;
}
try {
if (c != null && !c.claim())
return false;
@SuppressWarnings("unchecked") R rr = (R) r;
@SuppressWarnings("unchecked") S ss = (S) s;
f.accept(rr, ss);
completeNull();
} catch (Throwable ex) {
completeThrowable(ex);
}
}
return true;
}
private <U> CompletableFuture<Void> biAcceptStage(
Executor e, CompletionStage<U> o,
BiConsumer<? super T,? super U> f) {
CompletableFuture<U> b; Object r, s;
if (f == null || (b = o.toCompletableFuture()) == null)
throw new NullPointerException();
CompletableFuture<Void> d = newIncompleteFuture();
if ((r = result) == null || (s = b.result) == null)
bipush(b, new BiAccept<T,U>(e, d, this, b, f));
else if (e == null)
d.biAccept(r, s, f, null);
else
try {
e.execute(new BiAccept<T,U>(null, d, this, b, f));
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
@SuppressWarnings("serial")
static final class BiRun<T,U> extends BiCompletion<T,U,Void> {
Runnable fn;
BiRun(Executor executor, CompletableFuture<Void> dep,
CompletableFuture<T> src, CompletableFuture<U> snd,
Runnable fn) {
super(executor, dep, src, snd); this.fn = fn;
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r, s; Runnable f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (r = a.result) == null
|| (b = snd) == null || (s = b.result) == null
|| !d.biRun(r, s, f, mode > 0 ? null : this))
return null;
dep = null; src = null; snd = null; fn = null;
return d.postFire(a, b, mode);
}
}
final boolean biRun(Object r, Object s, Runnable f, BiRun<?,?> c) {
Throwable x; Object z;
if (result == null) {
if ((r instanceof AltResult
&& (x = ((AltResult)(z = r)).ex) != null) ||
(s instanceof AltResult
&& (x = ((AltResult)(z = s)).ex) != null))
completeThrowable(x, z);
else
try {
if (c != null && !c.claim())
return false;
f.run();
completeNull();
} catch (Throwable ex) {
completeThrowable(ex);
}
}
return true;
}
private CompletableFuture<Void> biRunStage(Executor e, CompletionStage<?> o,
Runnable f) {
CompletableFuture<?> b; Object r, s;
if (f == null || (b = o.toCompletableFuture()) == null)
throw new NullPointerException();
CompletableFuture<Void> d = newIncompleteFuture();
if ((r = result) == null || (s = b.result) == null)
bipush(b, new BiRun<>(e, d, this, b, f));
else if (e == null)
d.biRun(r, s, f, null);
else
try {
e.execute(new BiRun<>(null, d, this, b, f));
} catch (Throwable ex) {
d.result = encodeThrowable(ex);
}
return d;
}
@SuppressWarnings("serial")
static final class BiRelay<T,U> extends BiCompletion<T,U,Void> { // for And
BiRelay(CompletableFuture<Void> dep,
CompletableFuture<T> src, CompletableFuture<U> snd) {
super(null, dep, src, snd);
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r, s, z; Throwable x;
if ((d = dep) == null
|| (a = src) == null || (r = a.result) == null
|| (b = snd) == null || (s = b.result) == null)
return null;
if (d.result == null) {
if ((r instanceof AltResult
&& (x = ((AltResult)(z = r)).ex) != null) ||
(s instanceof AltResult
&& (x = ((AltResult)(z = s)).ex) != null))
d.completeThrowable(x, z);
else
d.completeNull();
}
src = null; snd = null; dep = null;
return d.postFire(a, b, mode);
}
}
/** Recursively constructs a tree of completions. */
static CompletableFuture<Void> andTree(CompletableFuture<?>[] cfs,
int lo, int hi) {
CompletableFuture<Void> d = new CompletableFuture<Void>();
if (lo > hi) // empty
d.result = NIL;
else {
CompletableFuture<?> a, b; Object r, s, z; Throwable x;
int mid = (lo + hi) >>> 1;
if ((a = (lo == mid ? cfs[lo] :
andTree(cfs, lo, mid))) == null ||
(b = (lo == hi ? a : (hi == mid+1) ? cfs[hi] :
andTree(cfs, mid+1, hi))) == null)
throw new NullPointerException();
if ((r = a.result) == null || (s = b.result) == null)
a.bipush(b, new BiRelay<>(d, a, b));
else if ((r instanceof AltResult
&& (x = ((AltResult)(z = r)).ex) != null) ||
(s instanceof AltResult
&& (x = ((AltResult)(z = s)).ex) != null))
d.result = encodeThrowable(x, z);
else
d.result = NIL;
}
return d;
}
/* ------------- Projected (Ored) BiCompletions -------------- */
/**
* Pushes completion to this and b unless either done.
* Caller should first check that result and b.result are both null.
*/
final void orpush(CompletableFuture<?> b, BiCompletion<?,?,?> c) {
if (c != null) {
while (!tryPushStack(c)) {
if (result != null) {
NEXT.set(c, null);
break;
}
}
if (result != null)
c.tryFire(SYNC);
else
b.unipush(new CoCompletion(c));
}
}
@SuppressWarnings("serial")
static final class OrApply<T,U extends T,V> extends BiCompletion<T,U,V> {
Function<? super T,? extends V> fn;
OrApply(Executor executor, CompletableFuture<V> dep,
CompletableFuture<T> src, CompletableFuture<U> snd,
Function<? super T,? extends V> fn) {
super(executor, dep, src, snd); this.fn = fn;
}
final CompletableFuture<V> tryFire(int mode) {
CompletableFuture<V> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r; Throwable x; Function<? super T,? extends V> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (b = snd) == null
|| ((r = a.result) == null && (r = b.result) == null))
return null;
tryComplete: if (d.result == null) {
try {
if (mode <= 0 && !claim())
return null;
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.completeThrowable(x, r);
break tryComplete;
}
r = null;
}
@SuppressWarnings("unchecked") T t = (T) r;
d.completeValue(f.apply(t));
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; snd = null; fn = null;
return d.postFire(a, b, mode);
}
}
private <U extends T,V> CompletableFuture<V> orApplyStage(
Executor e, CompletionStage<U> o, Function<? super T, ? extends V> f) {
CompletableFuture<U> b;
if (f == null || (b = o.toCompletableFuture()) == null)
throw new NullPointerException();
Object r; CompletableFuture<? extends T> z;
if ((r = (z = this).result) != null ||
(r = (z = b).result) != null)
return z.uniApplyNow(r, e, f);
CompletableFuture<V> d = newIncompleteFuture();
orpush(b, new OrApply<T,U,V>(e, d, this, b, f));
return d;
}
@SuppressWarnings("serial")
static final class OrAccept<T,U extends T> extends BiCompletion<T,U,Void> {
Consumer<? super T> fn;
OrAccept(Executor executor, CompletableFuture<Void> dep,
CompletableFuture<T> src, CompletableFuture<U> snd,
Consumer<? super T> fn) {
super(executor, dep, src, snd); this.fn = fn;
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r; Throwable x; Consumer<? super T> f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (b = snd) == null
|| ((r = a.result) == null && (r = b.result) == null))
return null;
tryComplete: if (d.result == null) {
try {
if (mode <= 0 && !claim())
return null;
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
d.completeThrowable(x, r);
break tryComplete;
}
r = null;
}
@SuppressWarnings("unchecked") T t = (T) r;
f.accept(t);
d.completeNull();
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; snd = null; fn = null;
return d.postFire(a, b, mode);
}
}
private <U extends T> CompletableFuture<Void> orAcceptStage(
Executor e, CompletionStage<U> o, Consumer<? super T> f) {
CompletableFuture<U> b;
if (f == null || (b = o.toCompletableFuture()) == null)
throw new NullPointerException();
Object r; CompletableFuture<? extends T> z;
if ((r = (z = this).result) != null ||
(r = (z = b).result) != null)
return z.uniAcceptNow(r, e, f);
CompletableFuture<Void> d = newIncompleteFuture();
orpush(b, new OrAccept<T,U>(e, d, this, b, f));
return d;
}
@SuppressWarnings("serial")
static final class OrRun<T,U> extends BiCompletion<T,U,Void> {
Runnable fn;
OrRun(Executor executor, CompletableFuture<Void> dep,
CompletableFuture<T> src, CompletableFuture<U> snd,
Runnable fn) {
super(executor, dep, src, snd); this.fn = fn;
}
final CompletableFuture<Void> tryFire(int mode) {
CompletableFuture<Void> d;
CompletableFuture<T> a;
CompletableFuture<U> b;
Object r; Throwable x; Runnable f;
if ((d = dep) == null || (f = fn) == null
|| (a = src) == null || (b = snd) == null
|| ((r = a.result) == null && (r = b.result) == null))
return null;
if (d.result == null) {
try {
if (mode <= 0 && !claim())
return null;
else if (r instanceof AltResult
&& (x = ((AltResult)r).ex) != null)
d.completeThrowable(x, r);
else {
f.run();
d.completeNull();
}
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
dep = null; src = null; snd = null; fn = null;
return d.postFire(a, b, mode);
}
}
private CompletableFuture<Void> orRunStage(Executor e, CompletionStage<?> o,
Runnable f) {
CompletableFuture<?> b;
if (f == null || (b = o.toCompletableFuture()) == null)
throw new NullPointerException();
Object r; CompletableFuture<?> z;
if ((r = (z = this).result) != null ||
(r = (z = b).result) != null)
return z.uniRunNow(r, e, f);
CompletableFuture<Void> d = newIncompleteFuture();
orpush(b, new OrRun<>(e, d, this, b, f));
return d;
}
/** Completion for an anyOf input future. */
@SuppressWarnings("serial")
static class AnyOf extends Completion {
CompletableFuture<Object> dep; CompletableFuture<?> src;
CompletableFuture<?>[] srcs;
AnyOf(CompletableFuture<Object> dep, CompletableFuture<?> src,
CompletableFuture<?>[] srcs) {
this.dep = dep; this.src = src; this.srcs = srcs;
}
final CompletableFuture<Object> tryFire(int mode) {
// assert mode != ASYNC;
CompletableFuture<Object> d; CompletableFuture<?> a;
CompletableFuture<?>[] as;
Object r;
if ((d = dep) == null
|| (a = src) == null || (r = a.result) == null
|| (as = srcs) == null)
return null;
dep = null; src = null; srcs = null;
if (d.completeRelay(r)) {
for (CompletableFuture<?> b : as)
if (b != a)
b.cleanStack();
if (mode < 0)
return d;
else
d.postComplete();
}
return null;
}
final boolean isLive() {
CompletableFuture<Object> d;
return (d = dep) != null && d.result == null;
}
}
/* ------------- Zero-input Async forms -------------- */
@SuppressWarnings("serial")
static final class AsyncSupply<T> extends ForkJoinTask<Void>
implements Runnable, AsynchronousCompletionTask {
CompletableFuture<T> dep; Supplier<? extends T> fn;
AsyncSupply(CompletableFuture<T> dep, Supplier<? extends T> fn) {
this.dep = dep; this.fn = fn;
}
public final Void getRawResult() { return null; }
public final void setRawResult(Void v) {}
public final boolean exec() { run(); return false; }
public void run() {
CompletableFuture<T> d; Supplier<? extends T> f;
if ((d = dep) != null && (f = fn) != null) {
dep = null; fn = null;
if (d.result == null) {
try {
d.completeValue(f.get());
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
d.postComplete();
}
}
}
static <U> CompletableFuture<U> asyncSupplyStage(Executor e,
Supplier<U> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<U> d = new CompletableFuture<U>();
e.execute(new AsyncSupply<U>(d, f));
return d;
}
@SuppressWarnings("serial")
static final class AsyncRun extends ForkJoinTask<Void>
implements Runnable, AsynchronousCompletionTask {
CompletableFuture<Void> dep; Runnable fn;
AsyncRun(CompletableFuture<Void> dep, Runnable fn) {
this.dep = dep; this.fn = fn;
}
public final Void getRawResult() { return null; }
public final void setRawResult(Void v) {}
public final boolean exec() { run(); return false; }
public void run() {
CompletableFuture<Void> d; Runnable f;
if ((d = dep) != null && (f = fn) != null) {
dep = null; fn = null;
if (d.result == null) {
try {
f.run();
d.completeNull();
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
d.postComplete();
}
}
}
static CompletableFuture<Void> asyncRunStage(Executor e, Runnable f) {
if (f == null) throw new NullPointerException();
CompletableFuture<Void> d = new CompletableFuture<Void>();
e.execute(new AsyncRun(d, f));
return d;
}
/* ------------- Signallers -------------- */
/**
* Completion for recording and releasing a waiting thread. This
* class implements ManagedBlocker to avoid starvation when
* blocking actions pile up in ForkJoinPools.
*/
@SuppressWarnings("serial")
static final class Signaller extends Completion
implements ForkJoinPool.ManagedBlocker {
long nanos; // remaining wait time if timed
final long deadline; // non-zero if timed
final boolean interruptible;
boolean interrupted;
volatile Thread thread;
Signaller(boolean interruptible, long nanos, long deadline) {
this.thread = Thread.currentThread();
this.interruptible = interruptible;
this.nanos = nanos;
this.deadline = deadline;
}
final CompletableFuture<?> tryFire(int ignore) {
Thread w; // no need to atomically claim
if ((w = thread) != null) {
thread = null;
LockSupport.unpark(w);
}
return null;
}
public boolean isReleasable() {
if (Thread.interrupted())
interrupted = true;
return ((interrupted && interruptible) ||
(deadline != 0L &&
(nanos <= 0L ||
(nanos = deadline - System.nanoTime()) <= 0L)) ||
thread == null);
}
public boolean block() {
while (!isReleasable()) {
if (deadline == 0L)
LockSupport.park(this);
else
LockSupport.parkNanos(this, nanos);
}
return true;
}
final boolean isLive() { return thread != null; }
}
/**
* Returns raw result after waiting, or null if interruptible and
* interrupted.
*/
private Object waitingGet(boolean interruptible) {
Signaller q = null;
boolean queued = false;
Object r;
while ((r = result) == null) {
if (q == null) {
q = new Signaller(interruptible, 0L, 0L);
if (Thread.currentThread() instanceof ForkJoinWorkerThread)
ForkJoinPool.helpAsyncBlocker(defaultExecutor(), q);
}
else if (!queued)
queued = tryPushStack(q);
else {
try {
ForkJoinPool.managedBlock(q);
} catch (InterruptedException ie) { // currently cannot happen
q.interrupted = true;
}
if (q.interrupted && interruptible)
break;
}
}
if (q != null && queued) {
q.thread = null;
if (!interruptible && q.interrupted)
Thread.currentThread().interrupt();
if (r == null)
cleanStack();
}
if (r != null || (r = result) != null)
postComplete();
return r;
}
/**
* Returns raw result after waiting, or null if interrupted, or
* throws TimeoutException on timeout.
*/
private Object timedGet(long nanos) throws TimeoutException {
if (Thread.interrupted())
return null;
if (nanos > 0L) {
long d = System.nanoTime() + nanos;
long deadline = (d == 0L) ? 1L : d; // avoid 0
Signaller q = null;
boolean queued = false;
Object r;
while ((r = result) == null) { // similar to untimed
if (q == null) {
q = new Signaller(true, nanos, deadline);
if (Thread.currentThread() instanceof ForkJoinWorkerThread)
ForkJoinPool.helpAsyncBlocker(defaultExecutor(), q);
}
else if (!queued)
queued = tryPushStack(q);
else if (q.nanos <= 0L)
break;
else {
try {
ForkJoinPool.managedBlock(q);
} catch (InterruptedException ie) {
q.interrupted = true;
}
if (q.interrupted)
break;
}
}
if (q != null && queued) {
q.thread = null;
if (r == null)
cleanStack();
}
if (r != null || (r = result) != null)
postComplete();
if (r != null || (q != null && q.interrupted))
return r;
}
throw new TimeoutException();
}
/* ------------- public methods -------------- */
/**
* Creates a new incomplete CompletableFuture.
*/
public CompletableFuture() {
}
/**
* Creates a new complete CompletableFuture with given encoded result.
*/
CompletableFuture(Object r) {
this.result = r;
}
/**
* Returns a new CompletableFuture that is asynchronously completed
* by a task running in the {@link ForkJoinPool#commonPool()} with
* the value obtained by calling the given Supplier.
*
* @param supplier a function returning the value to be used
* to complete the returned CompletableFuture
* @param <U> the function's return type
* @return the new CompletableFuture
*/
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
return asyncSupplyStage(ASYNC_POOL, supplier);
}
/**
* Returns a new CompletableFuture that is asynchronously completed
* by a task running in the given executor with the value obtained
* by calling the given Supplier.
*
* @param supplier a function returning the value to be used
* to complete the returned CompletableFuture
* @param executor the executor to use for asynchronous execution
* @param <U> the function's return type
* @return the new CompletableFuture
*/
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,
Executor executor) {
return asyncSupplyStage(screenExecutor(executor), supplier);
}
/**
* Returns a new CompletableFuture that is asynchronously completed
* by a task running in the {@link ForkJoinPool#commonPool()} after
* it runs the given action.
*
* @param runnable the action to run before completing the
* returned CompletableFuture
* @return the new CompletableFuture
*/
public static CompletableFuture<Void> runAsync(Runnable runnable) {
return asyncRunStage(ASYNC_POOL, runnable);
}
/**
* Returns a new CompletableFuture that is asynchronously completed
* by a task running in the given executor after it runs the given
* action.
*
* @param runnable the action to run before completing the
* returned CompletableFuture
* @param executor the executor to use for asynchronous execution
* @return the new CompletableFuture
*/
public static CompletableFuture<Void> runAsync(Runnable runnable,
Executor executor) {
return asyncRunStage(screenExecutor(executor), runnable);
}
/**
* Returns a new CompletableFuture that is already completed with
* the given value.
*
* @param value the value
* @param <U> the type of the value
* @return the completed CompletableFuture
*/
public static <U> CompletableFuture<U> completedFuture(U value) {
return new CompletableFuture<U>((value == null) ? NIL : value);
}
/**
* Returns {@code true} if completed in any fashion: normally,
* exceptionally, or via cancellation.
*
* @return {@code true} if completed
*/
public boolean isDone() {
return result != null;
}
/**
* Waits if necessary for this future to complete, and then
* returns its result.
*
* @return the result value
* @throws CancellationException if this future was cancelled
* @throws ExecutionException if this future completed exceptionally
* @throws InterruptedException if the current thread was interrupted
* while waiting
*/
@SuppressWarnings("unchecked")
public T get() throws InterruptedException, ExecutionException {
Object r;
if ((r = result) == null)
r = waitingGet(true);
return (T) reportGet(r);
}
/**
* Waits if necessary for at most the given time for this future
* to complete, and then returns its result, if available.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return the result value
* @throws CancellationException if this future was cancelled
* @throws ExecutionException if this future completed exceptionally
* @throws InterruptedException if the current thread was interrupted
* while waiting
* @throws TimeoutException if the wait timed out
*/
@SuppressWarnings("unchecked")
public T get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
long nanos = unit.toNanos(timeout);
Object r;
if ((r = result) == null)
r = timedGet(nanos);
return (T) reportGet(r);
}
/**
* Returns the result value when complete, or throws an
* (unchecked) exception if completed exceptionally. To better
* conform with the use of common functional forms, if a
* computation involved in the completion of this
* CompletableFuture threw an exception, this method throws an
* (unchecked) {@link CompletionException} with the underlying
* exception as its cause.
*
* @return the result value
* @throws CancellationException if the computation was cancelled
* @throws CompletionException if this future completed
* exceptionally or a completion computation threw an exception
*/
@SuppressWarnings("unchecked")
public T join() {
Object r;
if ((r = result) == null)
r = waitingGet(false);
return (T) reportJoin(r);
}
/**
* Returns the result value (or throws any encountered exception)
* if completed, else returns the given valueIfAbsent.
*
* @param valueIfAbsent the value to return if not completed
* @return the result value, if completed, else the given valueIfAbsent
* @throws CancellationException if the computation was cancelled
* @throws CompletionException if this future completed
* exceptionally or a completion computation threw an exception
*/
@SuppressWarnings("unchecked")
public T getNow(T valueIfAbsent) {
Object r;
return ((r = result) == null) ? valueIfAbsent : (T) reportJoin(r);
}
/**
* If not already completed, sets the value returned by {@link
* #get()} and related methods to the given value.
*
* @param value the result value
* @return {@code true} if this invocation caused this CompletableFuture
* to transition to a completed state, else {@code false}
*/
public boolean complete(T value) {
boolean triggered = completeValue(value);
postComplete();
return triggered;
}
/**
* If not already completed, causes invocations of {@link #get()}
* and related methods to throw the given exception.
*
* @param ex the exception
* @return {@code true} if this invocation caused this CompletableFuture
* to transition to a completed state, else {@code false}
*/
public boolean completeExceptionally(Throwable ex) {
if (ex == null) throw new NullPointerException();
boolean triggered = internalComplete(new AltResult(ex));
postComplete();
return triggered;
}
public <U> CompletableFuture<U> thenApply(
Function<? super T,? extends U> fn) {
return uniApplyStage(null, fn);
}
public <U> CompletableFuture<U> thenApplyAsync(
Function<? super T,? extends U> fn) {
return uniApplyStage(defaultExecutor(), fn);
}
public <U> CompletableFuture<U> thenApplyAsync(
Function<? super T,? extends U> fn, Executor executor) {
return uniApplyStage(screenExecutor(executor), fn);
}
public CompletableFuture<Void> thenAccept(Consumer<? super T> action) {
return uniAcceptStage(null, action);
}
public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action) {
return uniAcceptStage(defaultExecutor(), action);
}
public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action,
Executor executor) {
return uniAcceptStage(screenExecutor(executor), action);
}
public CompletableFuture<Void> thenRun(Runnable action) {
return uniRunStage(null, action);
}
public CompletableFuture<Void> thenRunAsync(Runnable action) {
return uniRunStage(defaultExecutor(), action);
}
public CompletableFuture<Void> thenRunAsync(Runnable action,
Executor executor) {
return uniRunStage(screenExecutor(executor), action);
}
public <U,V> CompletableFuture<V> thenCombine(
CompletionStage<? extends U> other,
BiFunction<? super T,? super U,? extends V> fn) {
return biApplyStage(null, other, fn);
}
public <U,V> CompletableFuture<V> thenCombineAsync(
CompletionStage<? extends U> other,
BiFunction<? super T,? super U,? extends V> fn) {
return biApplyStage(defaultExecutor(), other, fn);
}
public <U,V> CompletableFuture<V> thenCombineAsync(
CompletionStage<? extends U> other,
BiFunction<? super T,? super U,? extends V> fn, Executor executor) {
return biApplyStage(screenExecutor(executor), other, fn);
}
public <U> CompletableFuture<Void> thenAcceptBoth(
CompletionStage<? extends U> other,
BiConsumer<? super T, ? super U> action) {
return biAcceptStage(null, other, action);
}
public <U> CompletableFuture<Void> thenAcceptBothAsync(
CompletionStage<? extends U> other,
BiConsumer<? super T, ? super U> action) {
return biAcceptStage(defaultExecutor(), other, action);
}
public <U> CompletableFuture<Void> thenAcceptBothAsync(
CompletionStage<? extends U> other,
BiConsumer<? super T, ? super U> action, Executor executor) {
return biAcceptStage(screenExecutor(executor), other, action);
}
public CompletableFuture<Void> runAfterBoth(CompletionStage<?> other,
Runnable action) {
return biRunStage(null, other, action);
}
public CompletableFuture<Void> runAfterBothAsync(CompletionStage<?> other,
Runnable action) {
return biRunStage(defaultExecutor(), other, action);
}
public CompletableFuture<Void> runAfterBothAsync(CompletionStage<?> other,
Runnable action,
Executor executor) {
return biRunStage(screenExecutor(executor), other, action);
}
public <U> CompletableFuture<U> applyToEither(
CompletionStage<? extends T> other, Function<? super T, U> fn) {
return orApplyStage(null, other, fn);
}
public <U> CompletableFuture<U> applyToEitherAsync(
CompletionStage<? extends T> other, Function<? super T, U> fn) {
return orApplyStage(defaultExecutor(), other, fn);
}
public <U> CompletableFuture<U> applyToEitherAsync(
CompletionStage<? extends T> other, Function<? super T, U> fn,
Executor executor) {
return orApplyStage(screenExecutor(executor), other, fn);
}
public CompletableFuture<Void> acceptEither(
CompletionStage<? extends T> other, Consumer<? super T> action) {
return orAcceptStage(null, other, action);
}
public CompletableFuture<Void> acceptEitherAsync(
CompletionStage<? extends T> other, Consumer<? super T> action) {
return orAcceptStage(defaultExecutor(), other, action);
}
public CompletableFuture<Void> acceptEitherAsync(
CompletionStage<? extends T> other, Consumer<? super T> action,
Executor executor) {
return orAcceptStage(screenExecutor(executor), other, action);
}
public CompletableFuture<Void> runAfterEither(CompletionStage<?> other,
Runnable action) {
return orRunStage(null, other, action);
}
public CompletableFuture<Void> runAfterEitherAsync(CompletionStage<?> other,
Runnable action) {
return orRunStage(defaultExecutor(), other, action);
}
public CompletableFuture<Void> runAfterEitherAsync(CompletionStage<?> other,
Runnable action,
Executor executor) {
return orRunStage(screenExecutor(executor), other, action);
}
public <U> CompletableFuture<U> thenCompose(
Function<? super T, ? extends CompletionStage<U>> fn) {
return uniComposeStage(null, fn);
}
public <U> CompletableFuture<U> thenComposeAsync(
Function<? super T, ? extends CompletionStage<U>> fn) {
return uniComposeStage(defaultExecutor(), fn);
}
public <U> CompletableFuture<U> thenComposeAsync(
Function<? super T, ? extends CompletionStage<U>> fn,
Executor executor) {
return uniComposeStage(screenExecutor(executor), fn);
}
public CompletableFuture<T> whenComplete(
BiConsumer<? super T, ? super Throwable> action) {
return uniWhenCompleteStage(null, action);
}
public CompletableFuture<T> whenCompleteAsync(
BiConsumer<? super T, ? super Throwable> action) {
return uniWhenCompleteStage(defaultExecutor(), action);
}
public CompletableFuture<T> whenCompleteAsync(
BiConsumer<? super T, ? super Throwable> action, Executor executor) {
return uniWhenCompleteStage(screenExecutor(executor), action);
}
public <U> CompletableFuture<U> handle(
BiFunction<? super T, Throwable, ? extends U> fn) {
return uniHandleStage(null, fn);
}
public <U> CompletableFuture<U> handleAsync(
BiFunction<? super T, Throwable, ? extends U> fn) {
return uniHandleStage(defaultExecutor(), fn);
}
public <U> CompletableFuture<U> handleAsync(
BiFunction<? super T, Throwable, ? extends U> fn, Executor executor) {
return uniHandleStage(screenExecutor(executor), fn);
}
/**
* Returns this CompletableFuture.
*
* @return this CompletableFuture
*/
public CompletableFuture<T> toCompletableFuture() {
return this;
}
// not in interface CompletionStage
/**
* Returns a new CompletableFuture that is completed when this
* CompletableFuture completes, with the result of the given
* function of the exception triggering this CompletableFuture's
* completion when it completes exceptionally; otherwise, if this
* CompletableFuture completes normally, then the returned
* CompletableFuture also completes normally with the same value.
* Note: More flexible versions of this functionality are
* available using methods {@code whenComplete} and {@code handle}.
*
* @param fn the function to use to compute the value of the
* returned CompletableFuture if this CompletableFuture completed
* exceptionally
* @return the new CompletableFuture
*/
public CompletableFuture<T> exceptionally(
Function<Throwable, ? extends T> fn) {
return uniExceptionallyStage(fn);
}
/* ------------- Arbitrary-arity constructions -------------- */
/**
* Returns a new CompletableFuture that is completed when all of
* the given CompletableFutures complete. If any of the given
* CompletableFutures complete exceptionally, then the returned
* CompletableFuture also does so, with a CompletionException
* holding this exception as its cause. Otherwise, the results,
* if any, of the given CompletableFutures are not reflected in
* the returned CompletableFuture, but may be obtained by
* inspecting them individually. If no CompletableFutures are
* provided, returns a CompletableFuture completed with the value
* {@code null}.
*
* <p>Among the applications of this method is to await completion
* of a set of independent CompletableFutures before continuing a
* program, as in: {@code CompletableFuture.allOf(c1, c2,
* c3).join();}.
*
* @param cfs the CompletableFutures
* @return a new CompletableFuture that is completed when all of the
* given CompletableFutures complete
* @throws NullPointerException if the array or any of its elements are
* {@code null}
*/
public static CompletableFuture<Void> allOf(CompletableFuture<?>... cfs) {
return andTree(cfs, 0, cfs.length - 1);
}
/**
* Returns a new CompletableFuture that is completed when any of
* the given CompletableFutures complete, with the same result.
* Otherwise, if it completed exceptionally, the returned
* CompletableFuture also does so, with a CompletionException
* holding this exception as its cause. If no CompletableFutures
* are provided, returns an incomplete CompletableFuture.
*
* @param cfs the CompletableFutures
* @return a new CompletableFuture that is completed with the
* result or exception of any of the given CompletableFutures when
* one completes
* @throws NullPointerException if the array or any of its elements are
* {@code null}
*/
public static CompletableFuture<Object> anyOf(CompletableFuture<?>... cfs) {
int n; Object r;
if ((n = cfs.length) <= 1)
return (n == 0)
? new CompletableFuture<Object>()
: uniCopyStage(cfs[0]);
for (CompletableFuture<?> cf : cfs)
if ((r = cf.result) != null)
return new CompletableFuture<Object>(encodeRelay(r));
cfs = cfs.clone();
CompletableFuture<Object> d = new CompletableFuture<>();
for (CompletableFuture<?> cf : cfs)
cf.unipush(new AnyOf(d, cf, cfs));
// If d was completed while we were adding completions, we should
// clean the stack of any sources that may have had completions
// pushed on their stack after d was completed.
if (d.result != null)
for (int i = 0, len = cfs.length; i < len; i++)
if (cfs[i].result != null)
for (i++; i < len; i++)
if (cfs[i].result == null)
cfs[i].cleanStack();
return d;
}
/* ------------- Control and status methods -------------- */
/**
* If not already completed, completes this CompletableFuture with
* a {@link CancellationException}. Dependent CompletableFutures
* that have not already completed will also complete
* exceptionally, with a {@link CompletionException} caused by
* this {@code CancellationException}.
*
* @param mayInterruptIfRunning this value has no effect in this
* implementation because interrupts are not used to control
* processing.
*
* @return {@code true} if this task is now cancelled
*/
public boolean cancel(boolean mayInterruptIfRunning) {
boolean cancelled = (result == null) &&
internalComplete(new AltResult(new CancellationException()));
postComplete();
return cancelled || isCancelled();
}
/**
* Returns {@code true} if this CompletableFuture was cancelled
* before it completed normally.
*
* @return {@code true} if this CompletableFuture was cancelled
* before it completed normally
*/
public boolean isCancelled() {
Object r;
return ((r = result) instanceof AltResult) &&
(((AltResult)r).ex instanceof CancellationException);
}
/**
* Returns {@code true} if this CompletableFuture completed
* exceptionally, in any way. Possible causes include
* cancellation, explicit invocation of {@code
* completeExceptionally}, and abrupt termination of a
* CompletionStage action.
*
* @return {@code true} if this CompletableFuture completed
* exceptionally
*/
public boolean isCompletedExceptionally() {
Object r;
return ((r = result) instanceof AltResult) && r != NIL;
}
/**
* Forcibly sets or resets the value subsequently returned by
* method {@link #get()} and related methods, whether or not
* already completed. This method is designed for use only in
* error recovery actions, and even in such situations may result
* in ongoing dependent completions using established versus
* overwritten outcomes.
*
* @param value the completion value
*/
public void obtrudeValue(T value) {
result = (value == null) ? NIL : value;
postComplete();
}
/**
* Forcibly causes subsequent invocations of method {@link #get()}
* and related methods to throw the given exception, whether or
* not already completed. This method is designed for use only in
* error recovery actions, and even in such situations may result
* in ongoing dependent completions using established versus
* overwritten outcomes.
*
* @param ex the exception
* @throws NullPointerException if the exception is null
*/
public void obtrudeException(Throwable ex) {
if (ex == null) throw new NullPointerException();
result = new AltResult(ex);
postComplete();
}
/**
* Returns the estimated number of CompletableFutures whose
* completions are awaiting completion of this CompletableFuture.
* This method is designed for use in monitoring system state, not
* for synchronization control.
*
* @return the number of dependent CompletableFutures
*/
public int getNumberOfDependents() {
int count = 0;
for (Completion p = stack; p != null; p = p.next)
++count;
return count;
}
/**
* Returns a string identifying this CompletableFuture, as well as
* its completion state. The state, in brackets, contains the
* String {@code "Completed Normally"} or the String {@code
* "Completed Exceptionally"}, or the String {@code "Not
* completed"} followed by the number of CompletableFutures
* dependent upon its completion, if any.
*
* @return a string identifying this CompletableFuture, as well as its state
*/
public String toString() {
Object r = result;
int count = 0; // avoid call to getNumberOfDependents in case disabled
for (Completion p = stack; p != null; p = p.next)
++count;
return super.toString() +
((r == null)
? ((count == 0)
? "[Not completed]"
: "[Not completed, " + count + " dependents]")
: (((r instanceof AltResult) && ((AltResult)r).ex != null)
? "[Completed exceptionally: " + ((AltResult)r).ex + "]"
: "[Completed normally]"));
}
// jdk9 additions
/**
* Returns a new incomplete CompletableFuture of the type to be
* returned by a CompletionStage method. Subclasses should
* normally override this method to return an instance of the same
* class as this CompletableFuture. The default implementation
* returns an instance of class CompletableFuture.
*
* @param <U> the type of the value
* @return a new CompletableFuture
* @since 9
*/
public <U> CompletableFuture<U> newIncompleteFuture() {
return new CompletableFuture<U>();
}
/**
* Returns the default Executor used for async methods that do not
* specify an Executor. This class uses the {@link
* ForkJoinPool#commonPool()} if it supports more than one
* parallel thread, or else an Executor using one thread per async
* task. This method may be overridden in subclasses to return
* an Executor that provides at least one independent thread.
*
* @return the executor
* @since 9
*/
public Executor defaultExecutor() {
return ASYNC_POOL;
}
/**
* Returns a new CompletableFuture that is completed normally with
* the same value as this CompletableFuture when it completes
* normally. If this CompletableFuture completes exceptionally,
* then the returned CompletableFuture completes exceptionally
* with a CompletionException with this exception as cause. The
* behavior is equivalent to {@code thenApply(x -> x)}. This
* method may be useful as a form of "defensive copying", to
* prevent clients from completing, while still being able to
* arrange dependent actions.
*
* @return the new CompletableFuture
* @since 9
*/
public CompletableFuture<T> copy() {
return uniCopyStage(this);
}
/**
* Returns a new CompletionStage that is completed normally with
* the same value as this CompletableFuture when it completes
* normally, and cannot be independently completed or otherwise
* used in ways not defined by the methods of interface {@link
* CompletionStage}. If this CompletableFuture completes
* exceptionally, then the returned CompletionStage completes
* exceptionally with a CompletionException with this exception as
* cause.
*
* <p>Unless overridden by a subclass, a new non-minimal
* CompletableFuture with all methods available can be obtained from
* a minimal CompletionStage via {@link #toCompletableFuture()}.
* For example, completion of a minimal stage can be awaited by
*
* <pre> {@code minimalStage.toCompletableFuture().join(); }</pre>
*
* @return the new CompletionStage
* @since 9
*/
public CompletionStage<T> minimalCompletionStage() {
return uniAsMinimalStage();
}
/**
* Completes this CompletableFuture with the result of
* the given Supplier function invoked from an asynchronous
* task using the given executor.
*
* @param supplier a function returning the value to be used
* to complete this CompletableFuture
* @param executor the executor to use for asynchronous execution
* @return this CompletableFuture
* @since 9
*/
public CompletableFuture<T> completeAsync(Supplier<? extends T> supplier,
Executor executor) {
if (supplier == null || executor == null)
throw new NullPointerException();
executor.execute(new AsyncSupply<T>(this, supplier));
return this;
}
/**
* Completes this CompletableFuture with the result of the given
* Supplier function invoked from an asynchronous task using the
* default executor.
*
* @param supplier a function returning the value to be used
* to complete this CompletableFuture
* @return this CompletableFuture
* @since 9
*/
public CompletableFuture<T> completeAsync(Supplier<? extends T> supplier) {
return completeAsync(supplier, defaultExecutor());
}
/**
* Exceptionally completes this CompletableFuture with
* a {@link TimeoutException} if not otherwise completed
* before the given timeout.
*
* @param timeout how long to wait before completing exceptionally
* with a TimeoutException, in units of {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code timeout} parameter
* @return this CompletableFuture
* @since 9
*/
public CompletableFuture<T> orTimeout(long timeout, TimeUnit unit) {
if (unit == null)
throw new NullPointerException();
if (result == null)
whenComplete(new Canceller(Delayer.delay(new Timeout(this),
timeout, unit)));
return this;
}
/**
* Completes this CompletableFuture with the given value if not
* otherwise completed before the given timeout.
*
* @param value the value to use upon timeout
* @param timeout how long to wait before completing normally
* with the given value, in units of {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code timeout} parameter
* @return this CompletableFuture
* @since 9
*/
public CompletableFuture<T> completeOnTimeout(T value, long timeout,
TimeUnit unit) {
if (unit == null)
throw new NullPointerException();
if (result == null)
whenComplete(new Canceller(Delayer.delay(
new DelayedCompleter<T>(this, value),
timeout, unit)));
return this;
}
/**
* Returns a new Executor that submits a task to the given base
* executor after the given delay (or no delay if non-positive).
* Each delay commences upon invocation of the returned executor's
* {@code execute} method.
*
* @param delay how long to delay, in units of {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code delay} parameter
* @param executor the base executor
* @return the new delayed executor
* @since 9
*/
public static Executor delayedExecutor(long delay, TimeUnit unit,
Executor executor) {
if (unit == null || executor == null)
throw new NullPointerException();
return new DelayedExecutor(delay, unit, executor);
}
/**
* Returns a new Executor that submits a task to the default
* executor after the given delay (or no delay if non-positive).
* Each delay commences upon invocation of the returned executor's
* {@code execute} method.
*
* @param delay how long to delay, in units of {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code delay} parameter
* @return the new delayed executor
* @since 9
*/
public static Executor delayedExecutor(long delay, TimeUnit unit) {
if (unit == null)
throw new NullPointerException();
return new DelayedExecutor(delay, unit, ASYNC_POOL);
}
/**
* Returns a new CompletionStage that is already completed with
* the given value and supports only those methods in
* interface {@link CompletionStage}.
*
* @param value the value
* @param <U> the type of the value
* @return the completed CompletionStage
* @since 9
*/
public static <U> CompletionStage<U> completedStage(U value) {
return new MinimalStage<U>((value == null) ? NIL : value);
}
/**
* Returns a new CompletableFuture that is already completed
* exceptionally with the given exception.
*
* @param ex the exception
* @param <U> the type of the value
* @return the exceptionally completed CompletableFuture
* @since 9
*/
public static <U> CompletableFuture<U> failedFuture(Throwable ex) {
if (ex == null) throw new NullPointerException();
return new CompletableFuture<U>(new AltResult(ex));
}
/**
* Returns a new CompletionStage that is already completed
* exceptionally with the given exception and supports only those
* methods in interface {@link CompletionStage}.
*
* @param ex the exception
* @param <U> the type of the value
* @return the exceptionally completed CompletionStage
* @since 9
*/
public static <U> CompletionStage<U> failedStage(Throwable ex) {
if (ex == null) throw new NullPointerException();
return new MinimalStage<U>(new AltResult(ex));
}
/**
* Singleton delay scheduler, used only for starting and
* cancelling tasks.
*/
static final class Delayer {
static ScheduledFuture<?> delay(Runnable command, long delay,
TimeUnit unit) {
return delayer.schedule(command, delay, unit);
}
static final class DaemonThreadFactory implements ThreadFactory {
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
t.setName("CompletableFutureDelayScheduler");
return t;
}
}
static final ScheduledThreadPoolExecutor delayer;
static {
(delayer = new ScheduledThreadPoolExecutor(
1, new DaemonThreadFactory())).
setRemoveOnCancelPolicy(true);
}
}
// Little class-ified lambdas to better support monitoring
static final class DelayedExecutor implements Executor {
final long delay;
final TimeUnit unit;
final Executor executor;
DelayedExecutor(long delay, TimeUnit unit, Executor executor) {
this.delay = delay; this.unit = unit; this.executor = executor;
}
public void execute(Runnable r) {
Delayer.delay(new TaskSubmitter(executor, r), delay, unit);
}
}
/** Action to submit user task */
static final class TaskSubmitter implements Runnable {
final Executor executor;
final Runnable action;
TaskSubmitter(Executor executor, Runnable action) {
this.executor = executor;
this.action = action;
}
public void run() { executor.execute(action); }
}
/** Action to completeExceptionally on timeout */
static final class Timeout implements Runnable {
final CompletableFuture<?> f;
Timeout(CompletableFuture<?> f) { this.f = f; }
public void run() {
if (f != null && !f.isDone())
f.completeExceptionally(new TimeoutException());
}
}
/** Action to complete on timeout */
static final class DelayedCompleter<U> implements Runnable {
final CompletableFuture<U> f;
final U u;
DelayedCompleter(CompletableFuture<U> f, U u) { this.f = f; this.u = u; }
public void run() {
if (f != null)
f.complete(u);
}
}
/** Action to cancel unneeded timeouts */
static final class Canceller implements BiConsumer<Object, Throwable> {
final Future<?> f;
Canceller(Future<?> f) { this.f = f; }
public void accept(Object ignore, Throwable ex) {
if (ex == null && f != null && !f.isDone())
f.cancel(false);
}
}
/**
* A subclass that just throws UOE for most non-CompletionStage methods.
*/
static final class MinimalStage<T> extends CompletableFuture<T> {
MinimalStage() { }
MinimalStage(Object r) { super(r); }
@Override public <U> CompletableFuture<U> newIncompleteFuture() {
return new MinimalStage<U>(); }
@Override public T get() {
throw new UnsupportedOperationException(); }
@Override public T get(long timeout, TimeUnit unit) {
throw new UnsupportedOperationException(); }
@Override public T getNow(T valueIfAbsent) {
throw new UnsupportedOperationException(); }
@Override public T join() {
throw new UnsupportedOperationException(); }
@Override public boolean complete(T value) {
throw new UnsupportedOperationException(); }
@Override public boolean completeExceptionally(Throwable ex) {
throw new UnsupportedOperationException(); }
@Override public boolean cancel(boolean mayInterruptIfRunning) {
throw new UnsupportedOperationException(); }
@Override public void obtrudeValue(T value) {
throw new UnsupportedOperationException(); }
@Override public void obtrudeException(Throwable ex) {
throw new UnsupportedOperationException(); }
@Override public boolean isDone() {
throw new UnsupportedOperationException(); }
@Override public boolean isCancelled() {
throw new UnsupportedOperationException(); }
@Override public boolean isCompletedExceptionally() {
throw new UnsupportedOperationException(); }
@Override public int getNumberOfDependents() {
throw new UnsupportedOperationException(); }
@Override public CompletableFuture<T> completeAsync
(Supplier<? extends T> supplier, Executor executor) {
throw new UnsupportedOperationException(); }
@Override public CompletableFuture<T> completeAsync
(Supplier<? extends T> supplier) {
throw new UnsupportedOperationException(); }
@Override public CompletableFuture<T> orTimeout
(long timeout, TimeUnit unit) {
throw new UnsupportedOperationException(); }
@Override public CompletableFuture<T> completeOnTimeout
(T value, long timeout, TimeUnit unit) {
throw new UnsupportedOperationException(); }
@Override public CompletableFuture<T> toCompletableFuture() {
Object r;
if ((r = result) != null)
return new CompletableFuture<T>(encodeRelay(r));
else {
CompletableFuture<T> d = new CompletableFuture<>();
unipush(new UniRelay<T,T>(d, this));
return d;
}
}
}
// VarHandle mechanics
private static final VarHandle RESULT;
private static final VarHandle STACK;
private static final VarHandle NEXT;
static {
try {
MethodHandles.Lookup l = MethodHandles.lookup();
RESULT = l.findVarHandle(CompletableFuture.class, "result", Object.class);
STACK = l.findVarHandle(CompletableFuture.class, "stack", Completion.class);
NEXT = l.findVarHandle(Completion.class, "next", Completion.class);
} catch (ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
}
// Reduce the risk of rare disastrous classloading in first call to
// LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
Class<?> ensureLoaded = LockSupport.class;
}
}