blob: d2ea10b394c17397ae1cde99507b09fa12724c81 [file] [log] [blame]
/*
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/compiledMethod.inline.hpp"
#include "code/compiledIC.hpp"
#include "code/icBuffer.hpp"
#include "code/nmethod.hpp"
#include "code/pcDesc.hpp"
#include "code/scopeDesc.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/oopMap.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/gcLocker.hpp"
#include "interpreter/bytecode.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayOop.inline.hpp"
#include "opto/ad.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/graphKit.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "runtime/atomic.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/vframe.hpp"
#include "runtime/vframeArray.hpp"
#include "runtime/vframe_hp.hpp"
#include "utilities/copy.hpp"
#include "utilities/preserveException.hpp"
// For debugging purposes:
// To force FullGCALot inside a runtime function, add the following two lines
//
// Universe::release_fullgc_alot_dummy();
// MarkSweep::invoke(0, "Debugging");
//
// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
// Compiled code entry points
address OptoRuntime::_new_instance_Java = NULL;
address OptoRuntime::_new_array_Java = NULL;
address OptoRuntime::_new_array_nozero_Java = NULL;
address OptoRuntime::_multianewarray2_Java = NULL;
address OptoRuntime::_multianewarray3_Java = NULL;
address OptoRuntime::_multianewarray4_Java = NULL;
address OptoRuntime::_multianewarray5_Java = NULL;
address OptoRuntime::_multianewarrayN_Java = NULL;
address OptoRuntime::_vtable_must_compile_Java = NULL;
address OptoRuntime::_complete_monitor_locking_Java = NULL;
address OptoRuntime::_monitor_notify_Java = NULL;
address OptoRuntime::_monitor_notifyAll_Java = NULL;
address OptoRuntime::_rethrow_Java = NULL;
address OptoRuntime::_slow_arraycopy_Java = NULL;
address OptoRuntime::_register_finalizer_Java = NULL;
ExceptionBlob* OptoRuntime::_exception_blob;
// This should be called in an assertion at the start of OptoRuntime routines
// which are entered from compiled code (all of them)
#ifdef ASSERT
static bool check_compiled_frame(JavaThread* thread) {
assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
RegisterMap map(thread, false);
frame caller = thread->last_frame().sender(&map);
assert(caller.is_compiled_frame(), "not being called from compiled like code");
return true;
}
#endif // ASSERT
#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
if (var == NULL) { return false; }
bool OptoRuntime::generate(ciEnv* env) {
generate_exception_blob();
// Note: tls: Means fetching the return oop out of the thread-local storage
//
// variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
// -------------------------------------------------------------------------------------------------------------------------------
gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false);
gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false);
gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
return true;
}
#undef gen
// Helper method to do generation of RunTimeStub's
address OptoRuntime::generate_stub( ciEnv* env,
TypeFunc_generator gen, address C_function,
const char *name, int is_fancy_jump,
bool pass_tls,
bool save_argument_registers,
bool return_pc) {
// Matching the default directive, we currently have no method to match.
DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
ResourceMark rm;
Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
DirectivesStack::release(directive);
return C.stub_entry_point();
}
const char* OptoRuntime::stub_name(address entry) {
#ifndef PRODUCT
CodeBlob* cb = CodeCache::find_blob(entry);
RuntimeStub* rs =(RuntimeStub *)cb;
assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
return rs->name();
#else
// Fast implementation for product mode (maybe it should be inlined too)
return "runtime stub";
#endif
}
//=============================================================================
// Opto compiler runtime routines
//=============================================================================
//=============================allocation======================================
// We failed the fast-path allocation. Now we need to do a scavenge or GC
// and try allocation again.
// object allocation
JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
JRT_BLOCK;
#ifndef PRODUCT
SharedRuntime::_new_instance_ctr++; // new instance requires GC
#endif
assert(check_compiled_frame(thread), "incorrect caller");
// These checks are cheap to make and support reflective allocation.
int lh = klass->layout_helper();
if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
klass->check_valid_for_instantiation(false, THREAD);
if (!HAS_PENDING_EXCEPTION) {
InstanceKlass::cast(klass)->initialize(THREAD);
}
}
if (!HAS_PENDING_EXCEPTION) {
// Scavenge and allocate an instance.
Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
thread->set_vm_result(result);
// Pass oops back through thread local storage. Our apparent type to Java
// is that we return an oop, but we can block on exit from this routine and
// a GC can trash the oop in C's return register. The generated stub will
// fetch the oop from TLS after any possible GC.
}
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
JRT_BLOCK_END;
// inform GC that we won't do card marks for initializing writes.
SharedRuntime::on_slowpath_allocation_exit(thread);
JRT_END
// array allocation
JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
JRT_BLOCK;
#ifndef PRODUCT
SharedRuntime::_new_array_ctr++; // new array requires GC
#endif
assert(check_compiled_frame(thread), "incorrect caller");
// Scavenge and allocate an instance.
oop result;
if (array_type->is_typeArray_klass()) {
// The oopFactory likes to work with the element type.
// (We could bypass the oopFactory, since it doesn't add much value.)
BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
result = oopFactory::new_typeArray(elem_type, len, THREAD);
} else {
// Although the oopFactory likes to work with the elem_type,
// the compiler prefers the array_type, since it must already have
// that latter value in hand for the fast path.
Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
result = oopFactory::new_objArray(elem_type, len, THREAD);
}
// Pass oops back through thread local storage. Our apparent type to Java
// is that we return an oop, but we can block on exit from this routine and
// a GC can trash the oop in C's return register. The generated stub will
// fetch the oop from TLS after any possible GC.
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(result);
JRT_BLOCK_END;
// inform GC that we won't do card marks for initializing writes.
SharedRuntime::on_slowpath_allocation_exit(thread);
JRT_END
// array allocation without zeroing
JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
JRT_BLOCK;
#ifndef PRODUCT
SharedRuntime::_new_array_ctr++; // new array requires GC
#endif
assert(check_compiled_frame(thread), "incorrect caller");
// Scavenge and allocate an instance.
oop result;
assert(array_type->is_typeArray_klass(), "should be called only for type array");
// The oopFactory likes to work with the element type.
BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
// Pass oops back through thread local storage. Our apparent type to Java
// is that we return an oop, but we can block on exit from this routine and
// a GC can trash the oop in C's return register. The generated stub will
// fetch the oop from TLS after any possible GC.
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(result);
JRT_BLOCK_END;
// inform GC that we won't do card marks for initializing writes.
SharedRuntime::on_slowpath_allocation_exit(thread);
oop result = thread->vm_result();
if ((len > 0) && (result != NULL) &&
is_deoptimized_caller_frame(thread)) {
// Zero array here if the caller is deoptimized.
int size = ((typeArrayOop)result)->object_size();
BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
const size_t hs = arrayOopDesc::header_size(elem_type);
// Align to next 8 bytes to avoid trashing arrays's length.
const size_t aligned_hs = align_object_offset(hs);
HeapWord* obj = (HeapWord*)result;
if (aligned_hs > hs) {
Copy::zero_to_words(obj+hs, aligned_hs-hs);
}
// Optimized zeroing.
Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
}
JRT_END
// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
// multianewarray for 2 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
#ifndef PRODUCT
SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
#endif
assert(check_compiled_frame(thread), "incorrect caller");
assert(elem_type->is_klass(), "not a class");
jint dims[2];
dims[0] = len1;
dims[1] = len2;
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(obj);
JRT_END
// multianewarray for 3 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
#ifndef PRODUCT
SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
#endif
assert(check_compiled_frame(thread), "incorrect caller");
assert(elem_type->is_klass(), "not a class");
jint dims[3];
dims[0] = len1;
dims[1] = len2;
dims[2] = len3;
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(obj);
JRT_END
// multianewarray for 4 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
#ifndef PRODUCT
SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
#endif
assert(check_compiled_frame(thread), "incorrect caller");
assert(elem_type->is_klass(), "not a class");
jint dims[4];
dims[0] = len1;
dims[1] = len2;
dims[2] = len3;
dims[3] = len4;
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(obj);
JRT_END
// multianewarray for 5 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
#ifndef PRODUCT
SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
#endif
assert(check_compiled_frame(thread), "incorrect caller");
assert(elem_type->is_klass(), "not a class");
jint dims[5];
dims[0] = len1;
dims[1] = len2;
dims[2] = len3;
dims[3] = len4;
dims[4] = len5;
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
assert(check_compiled_frame(thread), "incorrect caller");
assert(elem_type->is_klass(), "not a class");
assert(oop(dims)->is_typeArray(), "not an array");
ResourceMark rm;
jint len = dims->length();
assert(len > 0, "Dimensions array should contain data");
jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
c_dims, len);
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
thread->set_vm_result(obj);
JRT_END
JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
// Very few notify/notifyAll operations find any threads on the waitset, so
// the dominant fast-path is to simply return.
// Relatedly, it's critical that notify/notifyAll be fast in order to
// reduce lock hold times.
if (!SafepointSynchronize::is_synchronizing()) {
if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
return;
}
}
// This is the case the fast-path above isn't provisioned to handle.
// The fast-path is designed to handle frequently arising cases in an efficient manner.
// (The fast-path is just a degenerate variant of the slow-path).
// Perform the dreaded state transition and pass control into the slow-path.
JRT_BLOCK;
Handle h_obj(THREAD, obj);
ObjectSynchronizer::notify(h_obj, CHECK);
JRT_BLOCK_END;
JRT_END
JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
if (!SafepointSynchronize::is_synchronizing() ) {
if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
return;
}
}
// This is the case the fast-path above isn't provisioned to handle.
// The fast-path is designed to handle frequently arising cases in an efficient manner.
// (The fast-path is just a degenerate variant of the slow-path).
// Perform the dreaded state transition and pass control into the slow-path.
JRT_BLOCK;
Handle h_obj(THREAD, obj);
ObjectSynchronizer::notifyall(h_obj, CHECK);
JRT_BLOCK_END;
JRT_END
const TypeFunc *OptoRuntime::new_instance_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::athrow_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::new_array_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
// create input type (domain)
const int nargs = ndim + 1;
const Type **fields = TypeTuple::fields(nargs);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
for( int i = 1; i < nargs; i++ )
fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::multianewarray2_Type() {
return multianewarray_Type(2);
}
const TypeFunc *OptoRuntime::multianewarray3_Type() {
return multianewarray_Type(3);
}
const TypeFunc *OptoRuntime::multianewarray4_Type() {
return multianewarray_Type(4);
}
const TypeFunc *OptoRuntime::multianewarray5_Type() {
return multianewarray_Type(5);
}
const TypeFunc *OptoRuntime::multianewarrayN_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::uncommon_trap_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
return TypeFunc::make(domain, range);
}
//-----------------------------------------------------------------------------
// Monitor Handling
const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
return TypeFunc::make(domain,range);
}
//-----------------------------------------------------------------------------
const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(3);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::monitor_notify_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::flush_windows_Type() {
// create input type (domain)
const Type** fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
// create result type
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::l2f_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeLong::LONG;
fields[TypeFunc::Parms+1] = Type::HALF;
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = Type::FLOAT;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::modf_Type() {
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = Type::FLOAT;
fields[TypeFunc::Parms+1] = Type::FLOAT;
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = Type::FLOAT;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc *OptoRuntime::Math_D_D_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
// Symbol* name of class to be loaded
fields[TypeFunc::Parms+0] = Type::DOUBLE;
fields[TypeFunc::Parms+1] = Type::HALF;
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
// create result type (range)
fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = Type::DOUBLE;
fields[TypeFunc::Parms+1] = Type::HALF;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::Math_DD_D_Type() {
const Type **fields = TypeTuple::fields(4);
fields[TypeFunc::Parms+0] = Type::DOUBLE;
fields[TypeFunc::Parms+1] = Type::HALF;
fields[TypeFunc::Parms+2] = Type::DOUBLE;
fields[TypeFunc::Parms+3] = Type::HALF;
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
// create result type (range)
fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = Type::DOUBLE;
fields[TypeFunc::Parms+1] = Type::HALF;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
return TypeFunc::make(domain, range);
}
//-------------- currentTimeMillis, currentTimeNanos, etc
const TypeFunc* OptoRuntime::void_long_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(0);
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
// create result type (range)
fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeLong::LONG;
fields[TypeFunc::Parms+1] = Type::HALF;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
return TypeFunc::make(domain, range);
}
// arraycopy stub variations:
enum ArrayCopyType {
ac_fast, // void(ptr, ptr, size_t)
ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
ac_slow, // void(ptr, int, ptr, int, int)
ac_generic // int(ptr, int, ptr, int, int)
};
static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
// create input type (domain)
int num_args = (act == ac_fast ? 3 : 5);
int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
int argcnt = num_args;
LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // src
if (num_size_args == 0) {
fields[argp++] = TypeInt::INT; // src_pos
}
fields[argp++] = TypePtr::NOTNULL; // dest
if (num_size_args == 0) {
fields[argp++] = TypeInt::INT; // dest_pos
fields[argp++] = TypeInt::INT; // length
}
while (num_size_args-- > 0) {
fields[argp++] = TypeX_X; // size in whatevers (size_t)
LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
}
if (act == ac_checkcast) {
fields[argp++] = TypePtr::NOTNULL; // super_klass
}
assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// create result type if needed
int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
fields = TypeTuple::fields(1);
if (retcnt == 0)
fields[TypeFunc::Parms+0] = NULL; // void
else
fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
// This signature is simple: Two base pointers and a size_t.
return make_arraycopy_Type(ac_fast);
}
const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
// An extension of fast_arraycopy_Type which adds type checking.
return make_arraycopy_Type(ac_checkcast);
}
const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
// This signature is exactly the same as System.arraycopy.
// There are no intptr_t (int/long) arguments.
return make_arraycopy_Type(ac_slow);
}
const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
// This signature is like System.arraycopy, except that it returns status.
return make_arraycopy_Type(ac_generic);
}
const TypeFunc* OptoRuntime::array_fill_Type() {
const Type** fields;
int argp = TypeFunc::Parms;
// create input type (domain): pointer, int, size_t
fields = TypeTuple::fields(3 LP64_ONLY( + 1));
fields[argp++] = TypePtr::NOTNULL;
fields[argp++] = TypeInt::INT;
fields[argp++] = TypeX_X; // size in whatevers (size_t)
LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
const TypeTuple *domain = TypeTuple::make(argp, fields);
// create result type
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
const TypeFunc* OptoRuntime::aescrypt_block_Type() {
// create input type (domain)
int num_args = 3;
if (Matcher::pass_original_key_for_aes()) {
num_args = 4;
}
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // src
fields[argp++] = TypePtr::NOTNULL; // dest
fields[argp++] = TypePtr::NOTNULL; // k array
if (Matcher::pass_original_key_for_aes()) {
fields[argp++] = TypePtr::NOTNULL; // original k array
}
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// no result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
/**
* int updateBytesCRC32(int crc, byte* b, int len)
*/
const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
// create input type (domain)
int num_args = 3;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypeInt::INT; // crc
fields[argp++] = TypePtr::NOTNULL; // src
fields[argp++] = TypeInt::INT; // len
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
/**
* int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
*/
const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
// create input type (domain)
int num_args = 4;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypeInt::INT; // crc
fields[argp++] = TypePtr::NOTNULL; // buf
fields[argp++] = TypeInt::INT; // len
fields[argp++] = TypePtr::NOTNULL; // table
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
/**
* int updateBytesAdler32(int adler, bytes* b, int off, int len)
*/
const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
// create input type (domain)
int num_args = 3;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypeInt::INT; // crc
fields[argp++] = TypePtr::NOTNULL; // src + offset
fields[argp++] = TypeInt::INT; // len
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
// create input type (domain)
int num_args = 5;
if (Matcher::pass_original_key_for_aes()) {
num_args = 6;
}
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // src
fields[argp++] = TypePtr::NOTNULL; // dest
fields[argp++] = TypePtr::NOTNULL; // k array
fields[argp++] = TypePtr::NOTNULL; // r array
fields[argp++] = TypeInt::INT; // src len
if (Matcher::pass_original_key_for_aes()) {
fields[argp++] = TypePtr::NOTNULL; // original k array
}
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// returning cipher len (int)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
// for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
// create input type (domain)
int num_args = 4;
if (Matcher::pass_original_key_for_aes()) {
num_args = 5;
}
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // src
fields[argp++] = TypePtr::NOTNULL; // dest
fields[argp++] = TypePtr::NOTNULL; // k array
fields[argp++] = TypeInt::INT; // src len
if (Matcher::pass_original_key_for_aes()) {
fields[argp++] = TypePtr::NOTNULL; // original k array
}
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
// returning cipher len (int)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms + 0] = TypeInt::INT;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
return TypeFunc::make(domain, range);
}
//for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
// create input type (domain)
int num_args = 7;
if (Matcher::pass_original_key_for_aes()) {
num_args = 8;
}
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // src
fields[argp++] = TypePtr::NOTNULL; // dest
fields[argp++] = TypePtr::NOTNULL; // k array
fields[argp++] = TypePtr::NOTNULL; // counter array
fields[argp++] = TypeInt::INT; // src len
fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
fields[argp++] = TypePtr::NOTNULL; // saved used addr
if (Matcher::pass_original_key_for_aes()) {
fields[argp++] = TypePtr::NOTNULL; // original k array
}
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
// returning cipher len (int)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms + 0] = TypeInt::INT;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
return TypeFunc::make(domain, range);
}
/*
* void implCompress(byte[] buf, int ofs)
*/
const TypeFunc* OptoRuntime::sha_implCompress_Type() {
// create input type (domain)
int num_args = 2;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // buf
fields[argp++] = TypePtr::NOTNULL; // state
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// no result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
/*
* int implCompressMultiBlock(byte[] b, int ofs, int limit)
*/
const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
// create input type (domain)
int num_args = 4;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // buf
fields[argp++] = TypePtr::NOTNULL; // state
fields[argp++] = TypeInt::INT; // ofs
fields[argp++] = TypeInt::INT; // limit
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// returning ofs (int)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::multiplyToLen_Type() {
// create input type (domain)
int num_args = 6;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // x
fields[argp++] = TypeInt::INT; // xlen
fields[argp++] = TypePtr::NOTNULL; // y
fields[argp++] = TypeInt::INT; // ylen
fields[argp++] = TypePtr::NOTNULL; // z
fields[argp++] = TypeInt::INT; // zlen
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// no result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::squareToLen_Type() {
// create input type (domain)
int num_args = 4;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // x
fields[argp++] = TypeInt::INT; // len
fields[argp++] = TypePtr::NOTNULL; // z
fields[argp++] = TypeInt::INT; // zlen
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// no result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
// for mulAdd calls, 2 pointers and 3 ints, returning int
const TypeFunc* OptoRuntime::mulAdd_Type() {
// create input type (domain)
int num_args = 5;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // out
fields[argp++] = TypePtr::NOTNULL; // in
fields[argp++] = TypeInt::INT; // offset
fields[argp++] = TypeInt::INT; // len
fields[argp++] = TypeInt::INT; // k
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// returning carry (int)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInt::INT;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
// create input type (domain)
int num_args = 7;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // a
fields[argp++] = TypePtr::NOTNULL; // b
fields[argp++] = TypePtr::NOTNULL; // n
fields[argp++] = TypeInt::INT; // len
fields[argp++] = TypeLong::LONG; // inv
fields[argp++] = Type::HALF;
fields[argp++] = TypePtr::NOTNULL; // result
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::montgomerySquare_Type() {
// create input type (domain)
int num_args = 6;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // a
fields[argp++] = TypePtr::NOTNULL; // n
fields[argp++] = TypeInt::INT; // len
fields[argp++] = TypeLong::LONG; // inv
fields[argp++] = Type::HALF;
fields[argp++] = TypePtr::NOTNULL; // result
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
// create input type (domain)
int num_args = 4;
int argcnt = num_args;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // obja
fields[argp++] = TypePtr::NOTNULL; // objb
fields[argp++] = TypeInt::INT; // length, number of elements
fields[argp++] = TypeInt::INT; // log2scale, element size
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
//return mismatch index (int)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms + 0] = TypeInt::INT;
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
return TypeFunc::make(domain, range);
}
// GHASH block processing
const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
int argcnt = 4;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // state
fields[argp++] = TypePtr::NOTNULL; // subkeyH
fields[argp++] = TypePtr::NOTNULL; // data
fields[argp++] = TypeInt::INT; // blocks
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
// Base64 encode function
const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
int argcnt = 6;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // src array
fields[argp++] = TypeInt::INT; // offset
fields[argp++] = TypeInt::INT; // length
fields[argp++] = TypePtr::NOTNULL; // dest array
fields[argp++] = TypeInt::INT; // dp
fields[argp++] = TypeInt::BOOL; // isURL
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms + 0] = NULL; // void
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
//------------- Interpreter state access for on stack replacement
const TypeFunc* OptoRuntime::osr_end_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
// create result type
fields = TypeTuple::fields(1);
// fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
//-------------- methodData update helpers
const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
// create result type
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain,range);
}
JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
if (receiver == NULL) return;
Klass* receiver_klass = receiver->klass();
intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
int empty_row = -1; // free row, if any is encountered
// ReceiverTypeData* vc = new ReceiverTypeData(mdp);
for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
// if (vc->receiver(row) == receiver_klass)
int receiver_off = ReceiverTypeData::receiver_cell_index(row);
intptr_t row_recv = *(mdp + receiver_off);
if (row_recv == (intptr_t) receiver_klass) {
// vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
int count_off = ReceiverTypeData::receiver_count_cell_index(row);
*(mdp + count_off) += DataLayout::counter_increment;
return;
} else if (row_recv == 0) {
// else if (vc->receiver(row) == NULL)
empty_row = (int) row;
}
}
if (empty_row != -1) {
int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
// vc->set_receiver(empty_row, receiver_klass);
*(mdp + receiver_off) = (intptr_t) receiver_klass;
// vc->set_receiver_count(empty_row, DataLayout::counter_increment);
int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
*(mdp + count_off) = DataLayout::counter_increment;
} else {
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
*count_p += DataLayout::counter_increment;
}
JRT_END
//-------------------------------------------------------------------------------------
// register policy
bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
switch (register_save_policy[reg]) {
case 'C': return false; //SOC
case 'E': return true ; //SOE
case 'N': return false; //NS
case 'A': return false; //AS
}
ShouldNotReachHere();
return false;
}
//-----------------------------------------------------------------------
// Exceptions
//
static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
// The method is an entry that is always called by a C++ method not
// directly from compiled code. Compiled code will call the C++ method following.
// We can't allow async exception to be installed during exception processing.
JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
// Do not confuse exception_oop with pending_exception. The exception_oop
// is only used to pass arguments into the method. Not for general
// exception handling. DO NOT CHANGE IT to use pending_exception, since
// the runtime stubs checks this on exit.
assert(thread->exception_oop() != NULL, "exception oop is found");
address handler_address = NULL;
Handle exception(thread, thread->exception_oop());
address pc = thread->exception_pc();
// Clear out the exception oop and pc since looking up an
// exception handler can cause class loading, which might throw an
// exception and those fields are expected to be clear during
// normal bytecode execution.
thread->clear_exception_oop_and_pc();
LogTarget(Info, exceptions) lt;
if (lt.is_enabled()) {
ResourceMark rm;
LogStream ls(lt);
trace_exception(&ls, exception(), pc, "");
}
// for AbortVMOnException flag
Exceptions::debug_check_abort(exception);
#ifdef ASSERT
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
// should throw an exception here
ShouldNotReachHere();
}
#endif
// new exception handling: this method is entered only from adapters
// exceptions from compiled java methods are handled in compiled code
// using rethrow node
nm = CodeCache::find_nmethod(pc);
assert(nm != NULL, "No NMethod found");
if (nm->is_native_method()) {
fatal("Native method should not have path to exception handling");
} else {
// we are switching to old paradigm: search for exception handler in caller_frame
// instead in exception handler of caller_frame.sender()
if (JvmtiExport::can_post_on_exceptions()) {
// "Full-speed catching" is not necessary here,
// since we're notifying the VM on every catch.
// Force deoptimization and the rest of the lookup
// will be fine.
deoptimize_caller_frame(thread);
}
// Check the stack guard pages. If enabled, look for handler in this frame;
// otherwise, forcibly unwind the frame.
//
// 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
bool force_unwind = !thread->reguard_stack();
bool deopting = false;
if (nm->is_deopt_pc(pc)) {
deopting = true;
RegisterMap map(thread, false);
frame deoptee = thread->last_frame().sender(&map);
assert(deoptee.is_deoptimized_frame(), "must be deopted");
// Adjust the pc back to the original throwing pc
pc = deoptee.pc();
}
// If we are forcing an unwind because of stack overflow then deopt is
// irrelevant since we are throwing the frame away anyway.
if (deopting && !force_unwind) {
handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
} else {
handler_address =
force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
if (handler_address == NULL) {
bool recursive_exception = false;
handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
assert (handler_address != NULL, "must have compiled handler");
// Update the exception cache only when the unwind was not forced
// and there didn't happen another exception during the computation of the
// compiled exception handler. Checking for exception oop equality is not
// sufficient because some exceptions are pre-allocated and reused.
if (!force_unwind && !recursive_exception) {
nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
}
} else {
#ifdef ASSERT
bool recursive_exception = false;
address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
p2i(handler_address), p2i(computed_address));
#endif
}
}
thread->set_exception_pc(pc);
thread->set_exception_handler_pc(handler_address);
// Check if the exception PC is a MethodHandle call site.
thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
}
// Restore correct return pc. Was saved above.
thread->set_exception_oop(exception());
return handler_address;
JRT_END
// We are entering here from exception_blob
// If there is a compiled exception handler in this method, we will continue there;
// otherwise we will unwind the stack and continue at the caller of top frame method
// Note we enter without the usual JRT wrapper. We will call a helper routine that
// will do the normal VM entry. We do it this way so that we can see if the nmethod
// we looked up the handler for has been deoptimized in the meantime. If it has been
// we must not use the handler and instead return the deopt blob.
address OptoRuntime::handle_exception_C(JavaThread* thread) {
//
// We are in Java not VM and in debug mode we have a NoHandleMark
//
#ifndef PRODUCT
SharedRuntime::_find_handler_ctr++; // find exception handler
#endif
debug_only(NoHandleMark __hm;)
nmethod* nm = NULL;
address handler_address = NULL;
{
// Enter the VM
ResetNoHandleMark rnhm;
handler_address = handle_exception_C_helper(thread, nm);
}
// Back in java: Use no oops, DON'T safepoint
// Now check to see if the handler we are returning is in a now
// deoptimized frame
if (nm != NULL) {
RegisterMap map(thread, false);
frame caller = thread->last_frame().sender(&map);
#ifdef ASSERT
assert(caller.is_compiled_frame(), "must be");
#endif // ASSERT
if (caller.is_deoptimized_frame()) {
handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
}
}
return handler_address;
}
//------------------------------rethrow----------------------------------------
// We get here after compiled code has executed a 'RethrowNode'. The callee
// is either throwing or rethrowing an exception. The callee-save registers
// have been restored, synchronized objects have been unlocked and the callee
// stack frame has been removed. The return address was passed in.
// Exception oop is passed as the 1st argument. This routine is then called
// from the stub. On exit, we know where to jump in the caller's code.
// After this C code exits, the stub will pop his frame and end in a jump
// (instead of a return). We enter the caller's default handler.
//
// This must be JRT_LEAF:
// - caller will not change its state as we cannot block on exit,
// therefore raw_exception_handler_for_return_address is all it takes
// to handle deoptimized blobs
//
// However, there needs to be a safepoint check in the middle! So compiled
// safepoints are completely watertight.
//
// Thus, it cannot be a leaf since it contains the NoGCVerifier.
//
// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
//
address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
#ifndef PRODUCT
SharedRuntime::_rethrow_ctr++; // count rethrows
#endif
assert (exception != NULL, "should have thrown a NULLPointerException");
#ifdef ASSERT
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
// should throw an exception here
ShouldNotReachHere();
}
#endif
thread->set_vm_result(exception);
// Frame not compiled (handles deoptimization blob)
return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
}
const TypeFunc *OptoRuntime::rethrow_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
// create result type (range)
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
// Deoptimize the caller before continuing, as the compiled
// exception handler table may not be valid.
if (!StressCompiledExceptionHandlers && doit) {
deoptimize_caller_frame(thread);
}
}
void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
// Called from within the owner thread, so no need for safepoint
RegisterMap reg_map(thread);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
frame caller_frame = stub_frame.sender(&reg_map);
// Deoptimize the caller frame.
Deoptimization::deoptimize_frame(thread, caller_frame.id());
}
bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
// Called from within the owner thread, so no need for safepoint
RegisterMap reg_map(thread);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
frame caller_frame = stub_frame.sender(&reg_map);
return caller_frame.is_deoptimized_frame();
}
const TypeFunc *OptoRuntime::register_finalizer_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
// // The JavaThread* is passed to each routine as the last argument
// fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
return TypeFunc::make(domain,range);
}
//-----------------------------------------------------------------------------
// Dtrace support. entry and exit probes have the same signature
const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
return TypeFunc::make(domain,range);
}
const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(2);
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
// create result type (range)
fields = TypeTuple::fields(0);
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
return TypeFunc::make(domain,range);
}
JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
assert(oopDesc::is_oop(obj), "must be a valid oop");
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
JRT_END
//-----------------------------------------------------------------------------
NamedCounter * volatile OptoRuntime::_named_counters = NULL;
//
// dump the collected NamedCounters.
//
void OptoRuntime::print_named_counters() {
int total_lock_count = 0;
int eliminated_lock_count = 0;
NamedCounter* c = _named_counters;
while (c) {
if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
int count = c->count();
if (count > 0) {
bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
if (Verbose) {
tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
}
total_lock_count += count;
if (eliminated) {
eliminated_lock_count += count;
}
}
} else if (c->tag() == NamedCounter::BiasedLockingCounter) {
BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
if (blc->nonzero()) {
tty->print_cr("%s", c->name());
blc->print_on(tty);
}
#if INCLUDE_RTM_OPT
} else if (c->tag() == NamedCounter::RTMLockingCounter) {
RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
if (rlc->nonzero()) {
tty->print_cr("%s", c->name());
rlc->print_on(tty);
}
#endif
}
c = c->next();
}
if (total_lock_count > 0) {
tty->print_cr("dynamic locks: %d", total_lock_count);
if (eliminated_lock_count) {
tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
(int)(eliminated_lock_count * 100.0 / total_lock_count));
}
}
}
//
// Allocate a new NamedCounter. The JVMState is used to generate the
// name which consists of method@line for the inlining tree.
//
NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
int max_depth = youngest_jvms->depth();
// Visit scopes from youngest to oldest.
bool first = true;
stringStream st;
for (int depth = max_depth; depth >= 1; depth--) {
JVMState* jvms = youngest_jvms->of_depth(depth);
ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
if (!first) {
st.print(" ");
} else {
first = false;
}
int bci = jvms->bci();
if (bci < 0) bci = 0;
if (m != NULL) {
st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
} else {
st.print("no method");
}
st.print("@%d", bci);
// To print linenumbers instead of bci use: m->line_number_from_bci(bci)
}
NamedCounter* c;
if (tag == NamedCounter::BiasedLockingCounter) {
c = new BiasedLockingNamedCounter(st.as_string());
} else if (tag == NamedCounter::RTMLockingCounter) {
c = new RTMLockingNamedCounter(st.as_string());
} else {
c = new NamedCounter(st.as_string(), tag);
}
// atomically add the new counter to the head of the list. We only
// add counters so this is safe.
NamedCounter* head;
do {
c->set_next(NULL);
head = _named_counters;
c->set_next(head);
} while (Atomic::cmpxchg(c, &_named_counters, head) != head);
return c;
}
int trace_exception_counter = 0;
static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
trace_exception_counter++;
stringStream tempst;
tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
exception_oop->print_value_on(&tempst);
tempst.print(" in ");
CodeBlob* blob = CodeCache::find_blob(exception_pc);
if (blob->is_compiled()) {
CompiledMethod* cm = blob->as_compiled_method_or_null();
cm->method()->print_value_on(&tempst);
} else if (blob->is_runtime_stub()) {
tempst.print("<runtime-stub>");
} else {
tempst.print("<unknown>");
}
tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
tempst.print("]");
st->print_raw_cr(tempst.as_string());
}