blob: ec61cfc3d446eb99bf2721d26b4c0b0a8c8eb07c [file] [log] [blame]
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/moduleEntry.hpp"
#include "classfile/packageEntry.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/arrayKlass.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayKlass.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/macros.hpp"
ObjArrayKlass* ObjArrayKlass::allocate(ClassLoaderData* loader_data, int n, Klass* k, Symbol* name, TRAPS) {
assert(ObjArrayKlass::header_size() <= InstanceKlass::header_size(),
"array klasses must be same size as InstanceKlass");
int size = ArrayKlass::static_size(ObjArrayKlass::header_size());
return new (loader_data, size, THREAD) ObjArrayKlass(n, k, name);
}
Klass* ObjArrayKlass::allocate_objArray_klass(ClassLoaderData* loader_data,
int n, Klass* element_klass, TRAPS) {
// Eagerly allocate the direct array supertype.
Klass* super_klass = NULL;
if (!Universe::is_bootstrapping() || SystemDictionary::Object_klass_loaded()) {
Klass* element_super = element_klass->super();
if (element_super != NULL) {
// The element type has a direct super. E.g., String[] has direct super of Object[].
super_klass = element_super->array_klass_or_null();
bool supers_exist = super_klass != NULL;
// Also, see if the element has secondary supertypes.
// We need an array type for each.
Array<Klass*>* element_supers = element_klass->secondary_supers();
for( int i = element_supers->length()-1; i >= 0; i-- ) {
Klass* elem_super = element_supers->at(i);
if (elem_super->array_klass_or_null() == NULL) {
supers_exist = false;
break;
}
}
if (!supers_exist) {
// Oops. Not allocated yet. Back out, allocate it, and retry.
Klass* ek = NULL;
{
MutexUnlocker mu(MultiArray_lock);
MutexUnlocker mc(Compile_lock); // for vtables
super_klass = element_super->array_klass(CHECK_0);
for( int i = element_supers->length()-1; i >= 0; i-- ) {
Klass* elem_super = element_supers->at(i);
elem_super->array_klass(CHECK_0);
}
// Now retry from the beginning
ek = element_klass->array_klass(n, CHECK_0);
} // re-lock
return ek;
}
} else {
// The element type is already Object. Object[] has direct super of Object.
super_klass = SystemDictionary::Object_klass();
}
}
// Create type name for klass.
Symbol* name = NULL;
if (!element_klass->is_instance_klass() ||
(name = InstanceKlass::cast(element_klass)->array_name()) == NULL) {
ResourceMark rm(THREAD);
char *name_str = element_klass->name()->as_C_string();
int len = element_klass->name()->utf8_length();
char *new_str = NEW_RESOURCE_ARRAY(char, len + 4);
int idx = 0;
new_str[idx++] = '[';
if (element_klass->is_instance_klass()) { // it could be an array or simple type
new_str[idx++] = 'L';
}
memcpy(&new_str[idx], name_str, len * sizeof(char));
idx += len;
if (element_klass->is_instance_klass()) {
new_str[idx++] = ';';
}
new_str[idx++] = '\0';
name = SymbolTable::new_permanent_symbol(new_str, CHECK_0);
if (element_klass->is_instance_klass()) {
InstanceKlass* ik = InstanceKlass::cast(element_klass);
ik->set_array_name(name);
}
}
// Initialize instance variables
ObjArrayKlass* oak = ObjArrayKlass::allocate(loader_data, n, element_klass, name, CHECK_0);
// Add all classes to our internal class loader list here,
// including classes in the bootstrap (NULL) class loader.
// GC walks these as strong roots.
loader_data->add_class(oak);
ModuleEntry* module = oak->module();
assert(module != NULL, "No module entry for array");
// Call complete_create_array_klass after all instance variables has been initialized.
ArrayKlass::complete_create_array_klass(oak, super_klass, module, CHECK_0);
return oak;
}
ObjArrayKlass::ObjArrayKlass(int n, Klass* element_klass, Symbol* name) : ArrayKlass(name, ID) {
this->set_dimension(n);
this->set_element_klass(element_klass);
// decrement refcount because object arrays are not explicitly freed. The
// InstanceKlass array_name() keeps the name counted while the klass is
// loaded.
name->decrement_refcount();
Klass* bk;
if (element_klass->is_objArray_klass()) {
bk = ObjArrayKlass::cast(element_klass)->bottom_klass();
} else {
bk = element_klass;
}
assert(bk != NULL && (bk->is_instance_klass() || bk->is_typeArray_klass()), "invalid bottom klass");
this->set_bottom_klass(bk);
this->set_class_loader_data(bk->class_loader_data());
this->set_layout_helper(array_layout_helper(T_OBJECT));
assert(this->is_array_klass(), "sanity");
assert(this->is_objArray_klass(), "sanity");
}
int ObjArrayKlass::oop_size(oop obj) const {
assert(obj->is_objArray(), "must be object array");
return objArrayOop(obj)->object_size();
}
objArrayOop ObjArrayKlass::allocate(int length, TRAPS) {
if (length >= 0) {
if (length <= arrayOopDesc::max_array_length(T_OBJECT)) {
int size = objArrayOopDesc::object_size(length);
return (objArrayOop)Universe::heap()->array_allocate(this, size, length,
/* do_zero */ true, THREAD);
} else {
report_java_out_of_memory("Requested array size exceeds VM limit");
JvmtiExport::post_array_size_exhausted();
THROW_OOP_0(Universe::out_of_memory_error_array_size());
}
} else {
THROW_MSG_0(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
}
}
static int multi_alloc_counter = 0;
oop ObjArrayKlass::multi_allocate(int rank, jint* sizes, TRAPS) {
int length = *sizes;
// Call to lower_dimension uses this pointer, so most be called before a
// possible GC
Klass* ld_klass = lower_dimension();
// If length < 0 allocate will throw an exception.
objArrayOop array = allocate(length, CHECK_NULL);
objArrayHandle h_array (THREAD, array);
if (rank > 1) {
if (length != 0) {
for (int index = 0; index < length; index++) {
ArrayKlass* ak = ArrayKlass::cast(ld_klass);
oop sub_array = ak->multi_allocate(rank-1, &sizes[1], CHECK_NULL);
h_array->obj_at_put(index, sub_array);
}
} else {
// Since this array dimension has zero length, nothing will be
// allocated, however the lower dimension values must be checked
// for illegal values.
for (int i = 0; i < rank - 1; ++i) {
sizes += 1;
if (*sizes < 0) {
THROW_MSG_0(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", *sizes));
}
}
}
}
return h_array();
}
// Either oop or narrowOop depending on UseCompressedOops.
void ObjArrayKlass::do_copy(arrayOop s, size_t src_offset,
arrayOop d, size_t dst_offset, int length, TRAPS) {
if (s == d) {
// since source and destination are equal we do not need conversion checks.
assert(length > 0, "sanity check");
ArrayAccess<>::oop_arraycopy(s, src_offset, d, dst_offset, length);
} else {
// We have to make sure all elements conform to the destination array
Klass* bound = ObjArrayKlass::cast(d->klass())->element_klass();
Klass* stype = ObjArrayKlass::cast(s->klass())->element_klass();
if (stype == bound || stype->is_subtype_of(bound)) {
// elements are guaranteed to be subtypes, so no check necessary
ArrayAccess<ARRAYCOPY_DISJOINT>::oop_arraycopy(s, src_offset, d, dst_offset, length);
} else {
// slow case: need individual subtype checks
// note: don't use obj_at_put below because it includes a redundant store check
if (!ArrayAccess<ARRAYCOPY_DISJOINT | ARRAYCOPY_CHECKCAST>::oop_arraycopy(s, src_offset, d, dst_offset, length)) {
ResourceMark rm(THREAD);
stringStream ss;
if (!bound->is_subtype_of(stype)) {
ss.print("arraycopy: type mismatch: can not copy %s[] into %s[]",
stype->external_name(), bound->external_name());
} else {
// oop_arraycopy should return the index in the source array that
// contains the problematic oop.
ss.print("arraycopy: element type mismatch: can not cast one of the elements"
" of %s[] to the type of the destination array, %s",
stype->external_name(), bound->external_name());
}
THROW_MSG(vmSymbols::java_lang_ArrayStoreException(), ss.as_string());
}
}
}
}
void ObjArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d,
int dst_pos, int length, TRAPS) {
assert(s->is_objArray(), "must be obj array");
if (!d->is_objArray()) {
ResourceMark rm(THREAD);
stringStream ss;
if (d->is_typeArray()) {
ss.print("arraycopy: type mismatch: can not copy object array[] into %s[]",
type2name_tab[ArrayKlass::cast(d->klass())->element_type()]);
} else {
ss.print("arraycopy: destination type %s is not an array", d->klass()->external_name());
}
THROW_MSG(vmSymbols::java_lang_ArrayStoreException(), ss.as_string());
}
// Check is all offsets and lengths are non negative
if (src_pos < 0 || dst_pos < 0 || length < 0) {
// Pass specific exception reason.
ResourceMark rm(THREAD);
stringStream ss;
if (src_pos < 0) {
ss.print("arraycopy: source index %d out of bounds for object array[%d]",
src_pos, s->length());
} else if (dst_pos < 0) {
ss.print("arraycopy: destination index %d out of bounds for object array[%d]",
dst_pos, d->length());
} else {
ss.print("arraycopy: length %d is negative", length);
}
THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
}
// Check if the ranges are valid
if ((((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length()) ||
(((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length())) {
// Pass specific exception reason.
ResourceMark rm(THREAD);
stringStream ss;
if (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length()) {
ss.print("arraycopy: last source index %u out of bounds for object array[%d]",
(unsigned int) length + (unsigned int) src_pos, s->length());
} else {
ss.print("arraycopy: last destination index %u out of bounds for object array[%d]",
(unsigned int) length + (unsigned int) dst_pos, d->length());
}
THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
}
// Special case. Boundary cases must be checked first
// This allows the following call: copy_array(s, s.length(), d.length(), 0).
// This is correct, since the position is supposed to be an 'in between point', i.e., s.length(),
// points to the right of the last element.
if (length==0) {
return;
}
if (UseCompressedOops) {
size_t src_offset = (size_t) objArrayOopDesc::obj_at_offset<narrowOop>(src_pos);
size_t dst_offset = (size_t) objArrayOopDesc::obj_at_offset<narrowOop>(dst_pos);
assert(arrayOopDesc::obj_offset_to_raw<narrowOop>(s, src_offset, NULL) ==
objArrayOop(s)->obj_at_addr<narrowOop>(src_pos), "sanity");
assert(arrayOopDesc::obj_offset_to_raw<narrowOop>(d, dst_offset, NULL) ==
objArrayOop(d)->obj_at_addr<narrowOop>(dst_pos), "sanity");
do_copy(s, src_offset, d, dst_offset, length, CHECK);
} else {
size_t src_offset = (size_t) objArrayOopDesc::obj_at_offset<oop>(src_pos);
size_t dst_offset = (size_t) objArrayOopDesc::obj_at_offset<oop>(dst_pos);
assert(arrayOopDesc::obj_offset_to_raw<oop>(s, src_offset, NULL) ==
objArrayOop(s)->obj_at_addr<oop>(src_pos), "sanity");
assert(arrayOopDesc::obj_offset_to_raw<oop>(d, dst_offset, NULL) ==
objArrayOop(d)->obj_at_addr<oop>(dst_pos), "sanity");
do_copy(s, src_offset, d, dst_offset, length, CHECK);
}
}
Klass* ObjArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) {
assert(dimension() <= n, "check order of chain");
int dim = dimension();
if (dim == n) return this;
// lock-free read needs acquire semantics
if (higher_dimension_acquire() == NULL) {
if (or_null) return NULL;
ResourceMark rm;
JavaThread *jt = (JavaThread *)THREAD;
{
MutexLocker mc(Compile_lock, THREAD); // for vtables
// Ensure atomic creation of higher dimensions
MutexLocker mu(MultiArray_lock, THREAD);
// Check if another thread beat us
if (higher_dimension() == NULL) {
// Create multi-dim klass object and link them together
Klass* k =
ObjArrayKlass::allocate_objArray_klass(class_loader_data(), dim + 1, this, CHECK_NULL);
ObjArrayKlass* ak = ObjArrayKlass::cast(k);
ak->set_lower_dimension(this);
// use 'release' to pair with lock-free load
release_set_higher_dimension(ak);
assert(ak->is_objArray_klass(), "incorrect initialization of ObjArrayKlass");
}
}
} else {
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
}
ObjArrayKlass *ak = ObjArrayKlass::cast(higher_dimension());
if (or_null) {
return ak->array_klass_or_null(n);
}
return ak->array_klass(n, THREAD);
}
Klass* ObjArrayKlass::array_klass_impl(bool or_null, TRAPS) {
return array_klass_impl(or_null, dimension() + 1, THREAD);
}
bool ObjArrayKlass::can_be_primary_super_slow() const {
if (!bottom_klass()->can_be_primary_super())
// array of interfaces
return false;
else
return Klass::can_be_primary_super_slow();
}
GrowableArray<Klass*>* ObjArrayKlass::compute_secondary_supers(int num_extra_slots,
Array<Klass*>* transitive_interfaces) {
assert(transitive_interfaces == NULL, "sanity");
// interfaces = { cloneable_klass, serializable_klass, elemSuper[], ... };
Array<Klass*>* elem_supers = element_klass()->secondary_supers();
int num_elem_supers = elem_supers == NULL ? 0 : elem_supers->length();
int num_secondaries = num_extra_slots + 2 + num_elem_supers;
if (num_secondaries == 2) {
// Must share this for correct bootstrapping!
set_secondary_supers(Universe::the_array_interfaces_array());
return NULL;
} else {
GrowableArray<Klass*>* secondaries = new GrowableArray<Klass*>(num_elem_supers+2);
secondaries->push(SystemDictionary::Cloneable_klass());
secondaries->push(SystemDictionary::Serializable_klass());
for (int i = 0; i < num_elem_supers; i++) {
Klass* elem_super = (Klass*) elem_supers->at(i);
Klass* array_super = elem_super->array_klass_or_null();
assert(array_super != NULL, "must already have been created");
secondaries->push(array_super);
}
return secondaries;
}
}
bool ObjArrayKlass::compute_is_subtype_of(Klass* k) {
if (!k->is_objArray_klass())
return ArrayKlass::compute_is_subtype_of(k);
ObjArrayKlass* oak = ObjArrayKlass::cast(k);
return element_klass()->is_subtype_of(oak->element_klass());
}
void ObjArrayKlass::initialize(TRAPS) {
bottom_klass()->initialize(THREAD); // dispatches to either InstanceKlass or TypeArrayKlass
}
void ObjArrayKlass::metaspace_pointers_do(MetaspaceClosure* it) {
ArrayKlass::metaspace_pointers_do(it);
it->push(&_element_klass);
it->push(&_bottom_klass);
}
// JVM support
jint ObjArrayKlass::compute_modifier_flags(TRAPS) const {
// The modifier for an objectArray is the same as its element
if (element_klass() == NULL) {
assert(Universe::is_bootstrapping(), "partial objArray only at startup");
return JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC;
}
// Return the flags of the bottom element type.
jint element_flags = bottom_klass()->compute_modifier_flags(CHECK_0);
return (element_flags & (JVM_ACC_PUBLIC | JVM_ACC_PRIVATE | JVM_ACC_PROTECTED))
| (JVM_ACC_ABSTRACT | JVM_ACC_FINAL);
}
ModuleEntry* ObjArrayKlass::module() const {
assert(bottom_klass() != NULL, "ObjArrayKlass returned unexpected NULL bottom_klass");
// The array is defined in the module of its bottom class
return bottom_klass()->module();
}
PackageEntry* ObjArrayKlass::package() const {
assert(bottom_klass() != NULL, "ObjArrayKlass returned unexpected NULL bottom_klass");
return bottom_klass()->package();
}
// Printing
void ObjArrayKlass::print_on(outputStream* st) const {
#ifndef PRODUCT
Klass::print_on(st);
st->print(" - instance klass: ");
element_klass()->print_value_on(st);
st->cr();
#endif //PRODUCT
}
void ObjArrayKlass::print_value_on(outputStream* st) const {
assert(is_klass(), "must be klass");
element_klass()->print_value_on(st);
st->print("[]");
}
#ifndef PRODUCT
void ObjArrayKlass::oop_print_on(oop obj, outputStream* st) {
ArrayKlass::oop_print_on(obj, st);
assert(obj->is_objArray(), "must be objArray");
objArrayOop oa = objArrayOop(obj);
int print_len = MIN2((intx) oa->length(), MaxElementPrintSize);
for(int index = 0; index < print_len; index++) {
st->print(" - %3d : ", index);
oa->obj_at(index)->print_value_on(st);
st->cr();
}
int remaining = oa->length() - print_len;
if (remaining > 0) {
st->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining);
}
}
#endif //PRODUCT
void ObjArrayKlass::oop_print_value_on(oop obj, outputStream* st) {
assert(obj->is_objArray(), "must be objArray");
st->print("a ");
element_klass()->print_value_on(st);
int len = objArrayOop(obj)->length();
st->print("[%d] ", len);
obj->print_address_on(st);
}
const char* ObjArrayKlass::internal_name() const {
return external_name();
}
// Verification
void ObjArrayKlass::verify_on(outputStream* st) {
ArrayKlass::verify_on(st);
guarantee(element_klass()->is_klass(), "should be klass");
guarantee(bottom_klass()->is_klass(), "should be klass");
Klass* bk = bottom_klass();
guarantee(bk->is_instance_klass() || bk->is_typeArray_klass(), "invalid bottom klass");
}
void ObjArrayKlass::oop_verify_on(oop obj, outputStream* st) {
ArrayKlass::oop_verify_on(obj, st);
guarantee(obj->is_objArray(), "must be objArray");
objArrayOop oa = objArrayOop(obj);
for(int index = 0; index < oa->length(); index++) {
guarantee(oopDesc::is_oop_or_null(oa->obj_at(index)), "should be oop");
}
}