blob: e3b1f8b614471f564789f13c106f2c6072180b96 [file] [log] [blame]
/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP
#define SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP
#include "gc/shared/collectedHeap.hpp"
#include "memory/universe.hpp"
#include "oops/oop.hpp"
// Functions for encoding and decoding compressed oops.
// If the oops are compressed, the type passed to these overloaded functions
// is narrowOop. All functions are overloaded so they can be called by
// template functions without conditionals (the compiler instantiates via
// the right type and inlines the appropriate code).
// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
// offset from the heap base. Saving the check for null can save instructions
// in inner GC loops so these are separated.
namespace CompressedOops {
inline bool is_null(oop obj) { return obj == NULL; }
inline bool is_null(narrowOop obj) { return obj == 0; }
inline oop decode_not_null(narrowOop v) {
assert(!is_null(v), "narrow oop value can never be zero");
address base = Universe::narrow_oop_base();
int shift = Universe::narrow_oop_shift();
oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
return result;
}
inline oop decode(narrowOop v) {
return is_null(v) ? (oop)NULL : decode_not_null(v);
}
inline narrowOop encode_not_null(oop v) {
assert(!is_null(v), "oop value can never be zero");
assert(check_obj_alignment(v), "Address not aligned");
assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
address base = Universe::narrow_oop_base();
int shift = Universe::narrow_oop_shift();
uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
uint64_t result = pd >> shift;
assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
assert(decode(result) == v, "reversibility");
return (narrowOop)result;
}
inline narrowOop encode(oop v) {
return is_null(v) ? (narrowOop)0 : encode_not_null(v);
}
// No conversions needed for these overloads
inline oop decode_not_null(oop v) { return v; }
inline oop decode(oop v) { return v; }
inline narrowOop encode_not_null(narrowOop v) { return v; }
inline narrowOop encode(narrowOop v) { return v; }
}
#endif // SHARE_OOPS_COMPRESSEDOOPS_INLINE_HPP