blob: 3317cc5153edc2c6e7c7b9408e82ffc3801c6bb1 [file] [log] [blame]
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "accessBackend.inline.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/vm_version.hpp"
#include "utilities/copy.hpp"
namespace AccessInternal {
// VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'.
//
// On platforms which do not support atomic compare-and-swap of jlong (8 byte)
// values we have to use a lock-based scheme to enforce atomicity. This has to be
// applied to all Unsafe operations that set the value of a jlong field. Even so
// the compareAndSwapLong operation will not be atomic with respect to direct stores
// to the field from Java code. It is important therefore that any Java code that
// utilizes these Unsafe jlong operations does not perform direct stores. To permit
// direct loads of the field from Java code we must also use Atomic::store within the
// locked regions. And for good measure, in case there are direct stores, we also
// employ Atomic::load within those regions. Note that the field in question must be
// volatile and so must have atomic load/store accesses applied at the Java level.
//
// The locking scheme could utilize a range of strategies for controlling the locking
// granularity: from a lock per-field through to a single global lock. The latter is
// the simplest and is used for the current implementation. Note that the Java object
// that contains the field, can not, in general, be used for locking. To do so can lead
// to deadlocks as we may introduce locking into what appears to the Java code to be a
// lock-free path.
//
// As all the locked-regions are very short and themselves non-blocking we can treat
// them as leaf routines and elide safepoint checks (ie we don't perform any thread
// state transitions even when blocking for the lock). Note that if we do choose to
// add safepoint checks and thread state transitions, we must ensure that we calculate
// the address of the field _after_ we have acquired the lock, else the object may have
// been moved by the GC
#ifndef SUPPORTS_NATIVE_CX8
// This is intentionally in the cpp file rather than the .inline.hpp file. It seems
// desirable to trade faster JDK build times (not propagating vm_version.hpp)
// for slightly worse runtime atomic jlong performance on 32 bit machines with
// support for 64 bit atomics.
bool wide_atomic_needs_locking() {
return !VM_Version::supports_cx8();
}
AccessLocker::AccessLocker() {
assert(!VM_Version::supports_cx8(), "why else?");
UnsafeJlong_lock->lock_without_safepoint_check();
}
AccessLocker::~AccessLocker() {
UnsafeJlong_lock->unlock();
}
#endif
// These forward copying calls to Copy without exposing the Copy type in headers unnecessarily
void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length) {
Copy::arrayof_conjoint_oops(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst), length);
}
void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length) {
Copy::conjoint_oops_atomic(src, dst, length);
}
void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length) {
Copy::conjoint_oops_atomic(src, dst, length);
}
void arraycopy_disjoint_words(void* src, void* dst, size_t length) {
Copy::disjoint_words(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst), length);
}
void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length) {
Copy::disjoint_words_atomic(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst), length);
}
template<>
void arraycopy_conjoint<jboolean>(jboolean* src, jboolean* dst, size_t length) {
Copy::conjoint_jbytes(reinterpret_cast<jbyte*>(src), reinterpret_cast<jbyte*>(dst), length);
}
template<>
void arraycopy_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length) {
Copy::conjoint_jbytes(src, dst, length);
}
template<>
void arraycopy_conjoint<jchar>(jchar* src, jchar* dst, size_t length) {
Copy::conjoint_jshorts_atomic(reinterpret_cast<jshort*>(src), reinterpret_cast<jshort*>(dst), length);
}
template<>
void arraycopy_conjoint<jshort>(jshort* src, jshort* dst, size_t length) {
Copy::conjoint_jshorts_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint<jint>(jint* src, jint* dst, size_t length) {
Copy::conjoint_jints_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint<jfloat>(jfloat* src, jfloat* dst, size_t length) {
Copy::conjoint_jints_atomic(reinterpret_cast<jint*>(src), reinterpret_cast<jint*>(dst), length);
}
template<>
void arraycopy_conjoint<jlong>(jlong* src, jlong* dst, size_t length) {
Copy::conjoint_jlongs_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint<jdouble>(jdouble* src, jdouble* dst, size_t length) {
Copy::conjoint_jlongs_atomic(reinterpret_cast<jlong*>(src), reinterpret_cast<jlong*>(dst), length);
}
template<>
void arraycopy_arrayof_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length) {
Copy::arrayof_conjoint_jbytes(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_arrayof_conjoint<jshort>(jshort* src, jshort* dst, size_t length) {
Copy::arrayof_conjoint_jshorts(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_arrayof_conjoint<jint>(jint* src, jint* dst, size_t length) {
Copy::arrayof_conjoint_jints(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_arrayof_conjoint<jlong>(jlong* src, jlong* dst, size_t length) {
Copy::arrayof_conjoint_jlongs(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_conjoint<void>(void* src, void* dst, size_t length) {
Copy::conjoint_jbytes(reinterpret_cast<jbyte*>(src),
reinterpret_cast<jbyte*>(dst),
length);
}
template<>
void arraycopy_conjoint_atomic<jbyte>(jbyte* src, jbyte* dst, size_t length) {
Copy::conjoint_jbytes_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<jshort>(jshort* src, jshort* dst, size_t length) {
Copy::conjoint_jshorts_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<jint>(jint* src, jint* dst, size_t length) {
Copy::conjoint_jints_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<jlong>(jlong* src, jlong* dst, size_t length) {
Copy::conjoint_jlongs_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<void>(void* src, void* dst, size_t length) {
Copy::conjoint_memory_atomic(src, dst, length);
}
}