blob: 85e2b69a8097cab9eb76d1d9dd7ed8c4a6cdd5f6 [file] [log] [blame]
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/metaspace/metaspaceCommon.hpp"
#include "memory/metaspace/virtualSpaceNode.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/ostream.hpp"
namespace metaspace {
DEBUG_ONLY(internal_statistics_t g_internal_statistics;)
// Print a size, in words, scaled.
void print_scaled_words(outputStream* st, size_t word_size, size_t scale, int width) {
print_human_readable_size(st, word_size * sizeof(MetaWord), scale, width);
}
// Convenience helper: prints a size value and a percentage.
void print_scaled_words_and_percentage(outputStream* st, size_t word_size, size_t compare_word_size, size_t scale, int width) {
print_scaled_words(st, word_size, scale, width);
st->print(" (");
print_percentage(st, compare_word_size, word_size);
st->print(")");
}
// Print a human readable size.
// byte_size: size, in bytes, to be printed.
// scale: one of 1 (byte-wise printing), sizeof(word) (word-size printing), K, M, G (scaled by KB, MB, GB respectively,
// or 0, which means the best scale is choosen dynamically.
// width: printing width.
void print_human_readable_size(outputStream* st, size_t byte_size, size_t scale, int width) {
if (scale == 0) {
// Dynamic mode. Choose scale for this value.
if (byte_size == 0) {
// Zero values are printed as bytes.
scale = 1;
} else {
if (byte_size >= G) {
scale = G;
} else if (byte_size >= M) {
scale = M;
} else if (byte_size >= K) {
scale = K;
} else {
scale = 1;
}
}
return print_human_readable_size(st, byte_size, scale, width);
}
#ifdef ASSERT
assert(scale == 1 || scale == BytesPerWord || scale == K || scale == M || scale == G, "Invalid scale");
// Special case: printing wordsize should only be done with word-sized values
if (scale == BytesPerWord) {
assert(byte_size % BytesPerWord == 0, "not word sized");
}
#endif
if (scale == 1) {
st->print("%*" PRIuPTR " bytes", width, byte_size);
} else if (scale == BytesPerWord) {
st->print("%*" PRIuPTR " words", width, byte_size / BytesPerWord);
} else {
const char* display_unit = "";
switch(scale) {
case 1: display_unit = "bytes"; break;
case BytesPerWord: display_unit = "words"; break;
case K: display_unit = "KB"; break;
case M: display_unit = "MB"; break;
case G: display_unit = "GB"; break;
default:
ShouldNotReachHere();
}
float display_value = (float) byte_size / scale;
// Since we use width to display a number with two trailing digits, increase it a bit.
width += 3;
// Prevent very small but non-null values showing up as 0.00.
if (byte_size > 0 && display_value < 0.01f) {
st->print("%*s %s", width, "<0.01", display_unit);
} else {
st->print("%*.2f %s", width, display_value, display_unit);
}
}
}
// Prints a percentage value. Values smaller than 1% but not 0 are displayed as "<1%", values
// larger than 99% but not 100% are displayed as ">100%".
void print_percentage(outputStream* st, size_t total, size_t part) {
if (total == 0) {
st->print(" ?%%");
} else if (part == 0) {
st->print(" 0%%");
} else if (part == total) {
st->print("100%%");
} else {
// Note: clearly print very-small-but-not-0% and very-large-but-not-100% percentages.
float p = ((float)part / total) * 100.0f;
if (p < 1.0f) {
st->print(" <1%%");
} else if (p > 99.0f){
st->print(">99%%");
} else {
st->print("%3.0f%%", p);
}
}
}
// Returns size of this chunk type.
size_t get_size_for_nonhumongous_chunktype(ChunkIndex chunktype, bool is_class) {
assert(is_valid_nonhumongous_chunktype(chunktype), "invalid chunk type.");
size_t size = 0;
if (is_class) {
switch(chunktype) {
case SpecializedIndex: size = ClassSpecializedChunk; break;
case SmallIndex: size = ClassSmallChunk; break;
case MediumIndex: size = ClassMediumChunk; break;
default:
ShouldNotReachHere();
}
} else {
switch(chunktype) {
case SpecializedIndex: size = SpecializedChunk; break;
case SmallIndex: size = SmallChunk; break;
case MediumIndex: size = MediumChunk; break;
default:
ShouldNotReachHere();
}
}
return size;
}
ChunkIndex get_chunk_type_by_size(size_t size, bool is_class) {
if (is_class) {
if (size == ClassSpecializedChunk) {
return SpecializedIndex;
} else if (size == ClassSmallChunk) {
return SmallIndex;
} else if (size == ClassMediumChunk) {
return MediumIndex;
} else if (size > ClassMediumChunk) {
// A valid humongous chunk size is a multiple of the smallest chunk size.
assert(is_aligned(size, ClassSpecializedChunk), "Invalid chunk size");
return HumongousIndex;
}
} else {
if (size == SpecializedChunk) {
return SpecializedIndex;
} else if (size == SmallChunk) {
return SmallIndex;
} else if (size == MediumChunk) {
return MediumIndex;
} else if (size > MediumChunk) {
// A valid humongous chunk size is a multiple of the smallest chunk size.
assert(is_aligned(size, SpecializedChunk), "Invalid chunk size");
return HumongousIndex;
}
}
ShouldNotReachHere();
return (ChunkIndex)-1;
}
ChunkIndex next_chunk_index(ChunkIndex i) {
assert(i < NumberOfInUseLists, "Out of bound");
return (ChunkIndex) (i+1);
}
ChunkIndex prev_chunk_index(ChunkIndex i) {
assert(i > ZeroIndex, "Out of bound");
return (ChunkIndex) (i-1);
}
const char* loaders_plural(uintx num) {
return num == 1 ? "loader" : "loaders";
}
const char* classes_plural(uintx num) {
return num == 1 ? "class" : "classes";
}
void print_number_of_classes(outputStream* out, uintx classes, uintx classes_shared) {
out->print(UINTX_FORMAT " %s", classes, classes_plural(classes));
if (classes_shared > 0) {
out->print(" (" UINTX_FORMAT " shared)", classes_shared);
}
}
} // namespace metaspace