blob: a857f425477ac5db596d9cc42215872d66b39fdc [file] [log] [blame]
/*
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "logging/log.hpp"
#include "logging/logFileStreamOutput.hpp"
#include "logging/logOutput.hpp"
#include "logging/logSelection.hpp"
#include "logging/logTagSet.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.inline.hpp"
LogOutput::~LogOutput() {
os::free(_config_string);
}
void LogOutput::describe(outputStream *out) {
out->print("%s ", name());
out->print_raw(config_string()); // raw printed because length might exceed O_BUFLEN
bool has_decorator = false;
char delimiter = ' ';
for (size_t d = 0; d < LogDecorators::Count; d++) {
LogDecorators::Decorator decorator = static_cast<LogDecorators::Decorator>(d);
if (decorators().is_decorator(decorator)) {
has_decorator = true;
out->print("%c%s", delimiter, LogDecorators::name(decorator));
delimiter = ',';
}
}
if (!has_decorator) {
out->print(" none");
}
}
void LogOutput::set_config_string(const char* string) {
os::free(_config_string);
_config_string = os::strdup(string, mtLogging);
_config_string_buffer_size = strlen(_config_string) + 1;
}
void LogOutput::add_to_config_string(const LogSelection& selection) {
if (_config_string_buffer_size < InitialConfigBufferSize) {
_config_string_buffer_size = InitialConfigBufferSize;
_config_string = REALLOC_C_HEAP_ARRAY(char, _config_string, _config_string_buffer_size, mtLogging);
}
size_t offset = strlen(_config_string);
if (offset > 0) {
// Add commas in-between tag and level combinations in the config string
_config_string[offset++] = ',';
}
for (;;) {
int ret = selection.describe(_config_string + offset,
_config_string_buffer_size - offset);
if (ret == -1) {
// Double the buffer size and retry
_config_string_buffer_size *= 2;
_config_string = REALLOC_C_HEAP_ARRAY(char, _config_string, _config_string_buffer_size, mtLogging);
continue;
}
break;
};
}
static int tag_cmp(const void *a, const void *b) {
return static_cast<const LogTagType*>(a) - static_cast<const LogTagType*>(b);
}
static void sort_tags(LogTagType tags[LogTag::MaxTags]) {
size_t ntags = 0;
while (tags[ntags] != LogTag::__NO_TAG) {
ntags++;
}
qsort(tags, ntags, sizeof(*tags), tag_cmp);
}
static const size_t MaxSubsets = 1 << LogTag::MaxTags;
// Fill result with all possible subsets of the given tag set. Empty set not included.
// For example, if tags is {gc, heap} then the result is {{gc}, {heap}, {gc, heap}}.
// (Arguments with default values are intended exclusively for recursive calls.)
static void generate_all_subsets_of(LogTagType result[MaxSubsets][LogTag::MaxTags],
size_t* result_size,
const LogTagType tags[LogTag::MaxTags],
LogTagType subset[LogTag::MaxTags] = NULL,
const size_t subset_size = 0,
const size_t depth = 0) {
assert(subset_size <= LogTag::MaxTags, "subset must never have more than MaxTags tags");
assert(depth <= LogTag::MaxTags, "recursion depth overflow");
if (subset == NULL) {
assert(*result_size == 0, "outer (non-recursive) call expects result_size to be 0");
// Make subset the first element in the result array initially
subset = result[0];
}
assert((void*) subset >= &result[0] && (void*) subset <= &result[MaxSubsets - 1],
"subset should always point to element in result");
if (depth == LogTag::MaxTags || tags[depth] == LogTag::__NO_TAG) {
if (subset_size == 0) {
// Ignore empty subset
return;
}
if (subset_size != LogTag::MaxTags) {
subset[subset_size] = LogTag::__NO_TAG;
}
assert(*result_size < MaxSubsets, "subsets overflow");
*result_size += 1;
// Bump subset and copy over current state
memcpy(result[*result_size], subset, sizeof(*subset) * LogTag::MaxTags);
subset = result[*result_size];
return;
}
// Recurse, excluding the tag of the current depth
generate_all_subsets_of(result, result_size, tags, subset, subset_size, depth + 1);
// ... and with it included
subset[subset_size] = tags[depth];
generate_all_subsets_of(result, result_size, tags, subset, subset_size + 1, depth + 1);
}
// Generate all possible selections (for the given level) based on the given tag set,
// and add them to the selections array (growing it as necessary).
static void add_selections(LogSelection** selections,
size_t* n_selections,
size_t* selections_cap,
const LogTagSet& tagset,
LogLevelType level) {
LogTagType tags[LogTag::MaxTags] = { LogTag::__NO_TAG };
for (size_t i = 0; i < tagset.ntags(); i++) {
tags[i] = tagset.tag(i);
}
size_t n_subsets = 0;
LogTagType subsets[MaxSubsets][LogTag::MaxTags];
generate_all_subsets_of(subsets, &n_subsets, tags);
for (size_t i = 0; i < n_subsets; i++) {
// Always keep tags sorted
sort_tags(subsets[i]);
// Ignore subsets already represented in selections
bool unique = true;
for (size_t sel = 0; sel < *n_selections; sel++) {
if (level == (*selections)[sel].level() && (*selections)[sel].consists_of(subsets[i])) {
unique = false;
break;
}
}
if (!unique) {
continue;
}
LogSelection exact_selection(subsets[i], false, level);
LogSelection wildcard_selection(subsets[i], true, level);
// Check if the two selections match any tag sets
bool wildcard_match = false;
bool exact_match = false;
for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) {
if (!wildcard_selection.selects(*ts)) {
continue;
}
wildcard_match = true;
if (exact_selection.selects(*ts)) {
exact_match = true;
}
if (exact_match) {
break;
}
}
if (!wildcard_match && !exact_match) {
continue;
}
// Ensure there's enough room for both wildcard_match and exact_match
if (*n_selections + 2 > *selections_cap) {
*selections_cap *= 2;
*selections = REALLOC_C_HEAP_ARRAY(LogSelection, *selections, *selections_cap, mtLogging);
}
// Add found matching selections to the result array
if (exact_match) {
(*selections)[(*n_selections)++] = exact_selection;
}
if (wildcard_match) {
(*selections)[(*n_selections)++] = wildcard_selection;
}
}
}
void LogOutput::update_config_string(const size_t on_level[LogLevel::Count]) {
// Find the most common level (MCL)
LogLevelType mcl = LogLevel::Off;
size_t max = on_level[LogLevel::Off];
for (LogLevelType l = LogLevel::First; l <= LogLevel::Last; l = static_cast<LogLevelType>(l + 1)) {
if (on_level[l] > max) {
mcl = l;
max = on_level[l];
}
}
// Always let the first part of each output's config string be "all=<MCL>"
{
char buf[64];
jio_snprintf(buf, sizeof(buf), "all=%s", LogLevel::name(mcl));
set_config_string(buf);
}
// If there are no deviating tag sets, we're done
size_t deviating_tagsets = LogTagSet::ntagsets() - max;
if (deviating_tagsets == 0) {
return;
}
size_t n_selections = 0;
size_t selections_cap = 4 * MaxSubsets; // Start with some reasonably large initial capacity
LogSelection* selections = NEW_C_HEAP_ARRAY(LogSelection, selections_cap, mtLogging);
size_t n_deviates = 0;
const LogTagSet** deviates = NEW_C_HEAP_ARRAY(const LogTagSet*, deviating_tagsets, mtLogging);
// Generate all possible selections involving the deviating tag sets
for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) {
LogLevelType level = ts->level_for(this);
if (level == mcl) {
continue;
}
deviates[n_deviates++] = ts;
add_selections(&selections, &n_selections, &selections_cap, *ts, level);
}
// Reduce deviates greedily, using the "best" selection at each step to reduce the number of deviating tag sets
while (n_deviates > 0) {
size_t prev_deviates = n_deviates;
int max_score = 0;
guarantee(n_selections > 0, "Cannot find maximal selection.");
const LogSelection* best_selection = &selections[0];
for (size_t i = 0; i < n_selections; i++) {
// Give the selection a score based on how many deviating tag sets it selects (with correct level)
int score = 0;
for (size_t d = 0; d < n_deviates; d++) {
if (selections[i].selects(*deviates[d]) && deviates[d]->level_for(this) == selections[i].level()) {
score++;
}
}
// Ignore selections with lower score than the current best even before subtracting mismatched selections
if (score < max_score) {
continue;
}
// Subtract from the score the number of tag sets it selects with an incorrect level
for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) {
if (selections[i].selects(*ts) && ts->level_for(this) != selections[i].level()) {
score--;
}
}
// Pick the selection with the best score, or in the case of a tie, the one with fewest tags
if (score > max_score ||
(score == max_score && selections[i].ntags() < best_selection->ntags())) {
max_score = score;
best_selection = &selections[i];
}
}
add_to_config_string(*best_selection);
// Remove all deviates that this selection covered
for (size_t d = 0; d < n_deviates;) {
if (deviates[d]->level_for(this) == best_selection->level() && best_selection->selects(*deviates[d])) {
deviates[d] = deviates[--n_deviates];
continue;
}
d++;
}
// Add back any new deviates that this selection added (no array growth since removed > added)
for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) {
if (ts->level_for(this) == best_selection->level() || !best_selection->selects(*ts)) {
continue;
}
bool already_added = false;
for (size_t dev = 0; dev < n_deviates; dev++) {
if (deviates[dev] == ts) {
already_added = true;
break;
}
}
if (already_added) {
continue;
}
deviates[n_deviates++] = ts;
}
// Reset the selections and generate a new ones based on the updated deviating tag sets
n_selections = 0;
for (size_t d = 0; d < n_deviates; d++) {
add_selections(&selections, &n_selections, &selections_cap, *deviates[d], deviates[d]->level_for(this));
}
assert(n_deviates < deviating_tagsets, "deviating tag set array overflow");
assert(prev_deviates > n_deviates, "number of deviating tag sets must never grow");
}
FREE_C_HEAP_ARRAY(LogTagSet*, deviates);
FREE_C_HEAP_ARRAY(Selection, selections);
}