blob: 29ef2ea765b98de4528c53e25cdf7a27dfa8b815 [file] [log] [blame]
/*
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "gc/shared/referencePolicy.hpp"
#include "gc/shared/referenceProcessorStats.hpp"
#include "gc/z/zHeap.inline.hpp"
#include "gc/z/zOopClosures.inline.hpp"
#include "gc/z/zReferenceProcessor.hpp"
#include "gc/z/zStat.hpp"
#include "gc/z/zTask.hpp"
#include "gc/z/zTracer.inline.hpp"
#include "gc/z/zUtils.inline.hpp"
#include "memory/universe.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.hpp"
static const ZStatSubPhase ZSubPhaseConcurrentReferencesProcess("Concurrent References Process");
static const ZStatSubPhase ZSubPhaseConcurrentReferencesEnqueue("Concurrent References Enqueue");
ZReferenceProcessor::ZReferenceProcessor(ZWorkers* workers) :
_workers(workers),
_soft_reference_policy(NULL),
_encountered_count(),
_discovered_count(),
_enqueued_count(),
_discovered_list(NULL),
_pending_list(NULL),
_pending_list_tail(_pending_list.addr()) {}
void ZReferenceProcessor::set_soft_reference_policy(bool clear) {
static AlwaysClearPolicy always_clear_policy;
static LRUMaxHeapPolicy lru_max_heap_policy;
if (clear) {
log_info(gc, ref)("Clearing All Soft References");
_soft_reference_policy = &always_clear_policy;
} else {
_soft_reference_policy = &lru_max_heap_policy;
}
_soft_reference_policy->setup();
}
void ZReferenceProcessor::update_soft_reference_clock() const {
const jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
java_lang_ref_SoftReference::set_clock(now);
}
bool ZReferenceProcessor::is_reference_inactive(oop obj) const {
// A non-null next field means the reference is inactive
return java_lang_ref_Reference::next(obj) != NULL;
}
ReferenceType ZReferenceProcessor::reference_type(oop obj) const {
return InstanceKlass::cast(obj->klass())->reference_type();
}
const char* ZReferenceProcessor::reference_type_name(ReferenceType type) const {
switch (type) {
case REF_SOFT:
return "Soft";
case REF_WEAK:
return "Weak";
case REF_FINAL:
return "Final";
case REF_PHANTOM:
return "Phantom";
default:
ShouldNotReachHere();
return NULL;
}
}
volatile oop* ZReferenceProcessor::reference_referent_addr(oop obj) const {
return (volatile oop*)java_lang_ref_Reference::referent_addr_raw(obj);
}
oop ZReferenceProcessor::reference_referent(oop obj) const {
return *reference_referent_addr(obj);
}
bool ZReferenceProcessor::is_referent_strongly_alive_or_null(oop obj, ReferenceType type) const {
// Check if the referent is strongly alive or null, in which case we don't want to
// discover the reference. It can only be null if the application called
// Reference.enqueue() or Reference.clear().
//
// PhantomReferences with finalizable marked referents should technically not have
// to be discovered. However, InstanceRefKlass::oop_oop_iterate_ref_processing()
// does not know about the finalizable mark concept, and will therefore mark
// referents in non-discovered PhantomReferences as strongly live. To prevent
// this, we always discover PhantomReferences with finalizable marked referents.
// They will automatically be dropped during the reference processing phase.
volatile oop* const p = reference_referent_addr(obj);
const oop o = ZBarrier::weak_load_barrier_on_oop_field(p);
return o == NULL || ZHeap::heap()->is_object_strongly_live(ZOop::to_address(o));
}
bool ZReferenceProcessor::is_referent_softly_alive(oop obj, ReferenceType type) const {
if (type != REF_SOFT) {
// Not a soft reference
return false;
}
// Ask soft reference policy
const jlong clock = java_lang_ref_SoftReference::clock();
assert(clock != 0, "Clock not initialized");
assert(_soft_reference_policy != NULL, "Policy not initialized");
return !_soft_reference_policy->should_clear_reference(obj, clock);
}
bool ZReferenceProcessor::should_drop_reference(oop obj, ReferenceType type) const {
// This check is racing with a call to Reference.clear() from the application.
// If the application clears the reference after this check it will still end
// up on the pending list, and there's nothing we can do about that without
// changing the Reference.clear() API. This check is also racing with a call
// to Reference.enqueue() from the application, which is unproblematic, since
// the application wants the reference to be enqueued anyway.
const oop o = reference_referent(obj);
if (o == NULL) {
// Reference has been cleared, by a call to Reference.enqueue()
// or Reference.clear() from the application, which means we
// should drop the reference.
return true;
}
// Check if the referent is still alive, in which case we should
// drop the reference.
if (type == REF_PHANTOM) {
return ZBarrier::is_alive_barrier_on_phantom_oop(o);
} else {
return ZBarrier::is_alive_barrier_on_weak_oop(o);
}
}
bool ZReferenceProcessor::should_mark_referent(ReferenceType type) const {
// Referents of final references (and its reachable sub graph) are
// always marked finalizable during discovery. This avoids the problem
// of later having to mark those objects if the referent is still final
// reachable during processing.
return type == REF_FINAL;
}
bool ZReferenceProcessor::should_clear_referent(ReferenceType type) const {
// Referents that were not marked must be cleared
return !should_mark_referent(type);
}
void ZReferenceProcessor::keep_referent_alive(oop obj, ReferenceType type) const {
volatile oop* const p = reference_referent_addr(obj);
if (type == REF_PHANTOM) {
ZBarrier::keep_alive_barrier_on_phantom_oop_field(p);
} else {
ZBarrier::keep_alive_barrier_on_weak_oop_field(p);
}
}
bool ZReferenceProcessor::discover_reference(oop obj, ReferenceType type) {
if (!RegisterReferences) {
// Reference processing disabled
return false;
}
log_trace(gc, ref)("Encountered Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type));
// Update statistics
_encountered_count.get()[type]++;
if (is_reference_inactive(obj) ||
is_referent_strongly_alive_or_null(obj, type) ||
is_referent_softly_alive(obj, type)) {
// Not discovered
return false;
}
discover(obj, type);
// Discovered
return true;
}
void ZReferenceProcessor::discover(oop obj, ReferenceType type) {
log_trace(gc, ref)("Discovered Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type));
// Update statistics
_discovered_count.get()[type]++;
// Mark referent finalizable
if (should_mark_referent(type)) {
oop* const referent_addr = (oop*)java_lang_ref_Reference::referent_addr_raw(obj);
ZBarrier::mark_barrier_on_oop_field(referent_addr, true /* finalizable */);
}
// Add reference to discovered list
assert(java_lang_ref_Reference::discovered(obj) == NULL, "Already discovered");
oop* const list = _discovered_list.addr();
java_lang_ref_Reference::set_discovered(obj, *list);
*list = obj;
}
oop ZReferenceProcessor::drop(oop obj, ReferenceType type) {
log_trace(gc, ref)("Dropped Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type));
// Keep referent alive
keep_referent_alive(obj, type);
// Unlink and return next in list
const oop next = java_lang_ref_Reference::discovered(obj);
java_lang_ref_Reference::set_discovered(obj, NULL);
return next;
}
oop* ZReferenceProcessor::keep(oop obj, ReferenceType type) {
log_trace(gc, ref)("Enqueued Reference: " PTR_FORMAT " (%s)", p2i(obj), reference_type_name(type));
// Update statistics
_enqueued_count.get()[type]++;
// Clear referent
if (should_clear_referent(type)) {
java_lang_ref_Reference::set_referent(obj, NULL);
}
// Make reference inactive by self-looping the next field. We could be racing with a
// call to Reference.enqueue() from the application, which is why we are using a CAS
// to make sure we change the next field only if it is NULL. A failing CAS means the
// reference has already been enqueued. However, we don't check the result of the CAS,
// since we still have no option other than keeping the reference on the pending list.
// It's ok to have the reference both on the pending list and enqueued at the same
// time (the pending list is linked through the discovered field, while the reference
// queue is linked through the next field). When the ReferenceHandler thread later
// calls Reference.enqueue() we detect that it has already been enqueued and drop it.
oop* const next_addr = (oop*)java_lang_ref_Reference::next_addr_raw(obj);
Atomic::cmpxchg(obj, next_addr, oop(NULL));
// Return next in list
return (oop*)java_lang_ref_Reference::discovered_addr_raw(obj);
}
void ZReferenceProcessor::work() {
// Process discovered references
oop* const list = _discovered_list.addr();
oop* p = list;
while (*p != NULL) {
const oop obj = *p;
const ReferenceType type = reference_type(obj);
if (should_drop_reference(obj, type)) {
*p = drop(obj, type);
} else {
p = keep(obj, type);
}
}
// Prepend discovered references to internal pending list
if (*list != NULL) {
*p = Atomic::xchg(*list, _pending_list.addr());
if (*p == NULL) {
// First to prepend to list, record tail
_pending_list_tail = p;
}
// Clear discovered list
*list = NULL;
}
}
bool ZReferenceProcessor::is_empty() const {
ZPerWorkerConstIterator<oop> iter(&_discovered_list);
for (const oop* list; iter.next(&list);) {
if (*list != NULL) {
return false;
}
}
if (_pending_list.get() != NULL) {
return false;
}
return true;
}
void ZReferenceProcessor::reset_statistics() {
assert(is_empty(), "Should be empty");
// Reset encountered
ZPerWorkerIterator<Counters> iter_encountered(&_encountered_count);
for (Counters* counters; iter_encountered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
(*counters)[i] = 0;
}
}
// Reset discovered
ZPerWorkerIterator<Counters> iter_discovered(&_discovered_count);
for (Counters* counters; iter_discovered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
(*counters)[i] = 0;
}
}
// Reset enqueued
ZPerWorkerIterator<Counters> iter_enqueued(&_enqueued_count);
for (Counters* counters; iter_enqueued.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
(*counters)[i] = 0;
}
}
}
void ZReferenceProcessor::collect_statistics() {
Counters encountered = {};
Counters discovered = {};
Counters enqueued = {};
// Sum encountered
ZPerWorkerConstIterator<Counters> iter_encountered(&_encountered_count);
for (const Counters* counters; iter_encountered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
encountered[i] += (*counters)[i];
}
}
// Sum discovered
ZPerWorkerConstIterator<Counters> iter_discovered(&_discovered_count);
for (const Counters* counters; iter_discovered.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
discovered[i] += (*counters)[i];
}
}
// Sum enqueued
ZPerWorkerConstIterator<Counters> iter_enqueued(&_enqueued_count);
for (const Counters* counters; iter_enqueued.next(&counters);) {
for (int i = REF_SOFT; i <= REF_PHANTOM; i++) {
enqueued[i] += (*counters)[i];
}
}
// Update statistics
ZStatReferences::set_soft(encountered[REF_SOFT], discovered[REF_SOFT], enqueued[REF_SOFT]);
ZStatReferences::set_weak(encountered[REF_WEAK], discovered[REF_WEAK], enqueued[REF_WEAK]);
ZStatReferences::set_final(encountered[REF_FINAL], discovered[REF_FINAL], enqueued[REF_FINAL]);
ZStatReferences::set_phantom(encountered[REF_PHANTOM], discovered[REF_PHANTOM], enqueued[REF_PHANTOM]);
// Trace statistics
const ReferenceProcessorStats stats(discovered[REF_SOFT],
discovered[REF_WEAK],
discovered[REF_FINAL],
discovered[REF_PHANTOM]);
ZTracer::tracer()->report_gc_reference_stats(stats);
}
class ZReferenceProcessorTask : public ZTask {
private:
ZReferenceProcessor* const _reference_processor;
public:
ZReferenceProcessorTask(ZReferenceProcessor* reference_processor) :
ZTask("ZReferenceProcessorTask"),
_reference_processor(reference_processor) {}
virtual void work() {
_reference_processor->work();
}
};
void ZReferenceProcessor::process_references() {
ZStatTimer timer(ZSubPhaseConcurrentReferencesProcess);
// Process discovered lists
ZReferenceProcessorTask task(this);
_workers->run_concurrent(&task);
// Update soft reference clock
update_soft_reference_clock();
// Collect, log and trace statistics
collect_statistics();
}
void ZReferenceProcessor::enqueue_references() {
ZStatTimer timer(ZSubPhaseConcurrentReferencesEnqueue);
if (_pending_list.get() == NULL) {
// Nothing to enqueue
return;
}
{
// Heap_lock protects external pending list
MonitorLockerEx ml(Heap_lock);
// Prepend internal pending list to external pending list
*_pending_list_tail = Universe::swap_reference_pending_list(_pending_list.get());
// Notify ReferenceHandler thread
ml.notify_all();
}
// Reset internal pending list
_pending_list.set(NULL);
_pending_list_tail = _pending_list.addr();
}