blob: d19c1014f755cbc8bf87d6cf02dd9eae001fa0bf [file] [log] [blame]
/*
* Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/z/zAddress.inline.hpp"
#include "gc/z/zCollectedHeap.hpp"
#include "gc/z/zFuture.inline.hpp"
#include "gc/z/zGlobals.hpp"
#include "gc/z/zLock.inline.hpp"
#include "gc/z/zPage.inline.hpp"
#include "gc/z/zPageAllocator.hpp"
#include "gc/z/zPageCache.inline.hpp"
#include "gc/z/zPreMappedMemory.inline.hpp"
#include "gc/z/zStat.hpp"
#include "gc/z/zTracer.inline.hpp"
#include "runtime/init.hpp"
static const ZStatCounter ZCounterAllocationRate("Memory", "Allocation Rate", ZStatUnitBytesPerSecond);
static const ZStatCriticalPhase ZCriticalPhaseAllocationStall("Allocation Stall");
class ZPageAllocRequest : public StackObj {
friend class ZList<ZPageAllocRequest>;
private:
const uint8_t _type;
const size_t _size;
const ZAllocationFlags _flags;
const unsigned int _total_collections;
ZListNode<ZPageAllocRequest> _node;
ZFuture<ZPage*> _result;
public:
ZPageAllocRequest(uint8_t type, size_t size, ZAllocationFlags flags, unsigned int total_collections) :
_type(type),
_size(size),
_flags(flags),
_total_collections(total_collections) {}
uint8_t type() const {
return _type;
}
size_t size() const {
return _size;
}
ZAllocationFlags flags() const {
return _flags;
}
unsigned int total_collections() const {
return _total_collections;
}
ZPage* wait() {
return _result.get();
}
void satisfy(ZPage* page) {
_result.set(page);
}
};
ZPage* const ZPageAllocator::gc_marker = (ZPage*)-1;
ZPageAllocator::ZPageAllocator(size_t min_capacity, size_t max_capacity, size_t max_reserve) :
_lock(),
_virtual(),
_physical(max_capacity, ZPageSizeMin),
_cache(),
_max_reserve(max_reserve),
_pre_mapped(_virtual, _physical, try_ensure_unused_for_pre_mapped(min_capacity)),
_used_high(0),
_used_low(0),
_used(0),
_allocated(0),
_reclaimed(0),
_queue(),
_detached() {}
bool ZPageAllocator::is_initialized() const {
return _physical.is_initialized() &&
_virtual.is_initialized() &&
_pre_mapped.is_initialized();
}
size_t ZPageAllocator::max_capacity() const {
return _physical.max_capacity();
}
size_t ZPageAllocator::current_max_capacity() const {
return _physical.current_max_capacity();
}
size_t ZPageAllocator::capacity() const {
return _physical.capacity();
}
size_t ZPageAllocator::max_reserve() const {
return _max_reserve;
}
size_t ZPageAllocator::used_high() const {
return _used_high;
}
size_t ZPageAllocator::used_low() const {
return _used_low;
}
size_t ZPageAllocator::used() const {
return _used;
}
size_t ZPageAllocator::allocated() const {
return _allocated;
}
size_t ZPageAllocator::reclaimed() const {
return _reclaimed > 0 ? (size_t)_reclaimed : 0;
}
void ZPageAllocator::reset_statistics() {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
_allocated = 0;
_reclaimed = 0;
_used_high = _used_low = _used;
}
void ZPageAllocator::increase_used(size_t size, bool relocation) {
if (relocation) {
// Allocating a page for the purpose of relocation has a
// negative contribution to the number of reclaimed bytes.
_reclaimed -= size;
}
_allocated += size;
_used += size;
if (_used > _used_high) {
_used_high = _used;
}
}
void ZPageAllocator::decrease_used(size_t size, bool reclaimed) {
if (reclaimed) {
// Only pages explicitly released with the reclaimed flag set
// counts as reclaimed bytes. This flag is typically true when
// a worker releases a page after relocation, and is typically
// false when we release a page to undo an allocation.
_reclaimed += size;
}
_used -= size;
if (_used < _used_low) {
_used_low = _used;
}
}
size_t ZPageAllocator::max_available(bool no_reserve) const {
size_t available = current_max_capacity() - used();
if (no_reserve) {
// The reserve should not be considered available
available -= MIN2(available, max_reserve());
}
return available;
}
size_t ZPageAllocator::try_ensure_unused(size_t size, bool no_reserve) {
// Ensure that we always have space available for the reserve. This
// is needed to avoid losing the reserve because of failure to map
// more memory before reaching max capacity.
_physical.try_ensure_unused_capacity(size + max_reserve());
size_t unused = _physical.unused_capacity();
if (no_reserve) {
// The reserve should not be considered unused
unused -= MIN2(unused, max_reserve());
}
return MIN2(size, unused);
}
size_t ZPageAllocator::try_ensure_unused_for_pre_mapped(size_t size) {
// This function is called during construction, where the
// physical memory manager might have failed to initialied.
if (!_physical.is_initialized()) {
return 0;
}
return try_ensure_unused(size, true /* no_reserve */);
}
ZPage* ZPageAllocator::create_page(uint8_t type, size_t size) {
// Allocate physical memory
const ZPhysicalMemory pmem = _physical.alloc(size);
if (pmem.is_null()) {
// Out of memory
return NULL;
}
// Allocate virtual memory
const ZVirtualMemory vmem = _virtual.alloc(size);
if (vmem.is_null()) {
// Out of address space
_physical.free(pmem);
return NULL;
}
// Allocate page
return new ZPage(type, vmem, pmem);
}
void ZPageAllocator::flush_pre_mapped() {
if (_pre_mapped.available() == 0) {
return;
}
// Detach the memory mapping.
detach_memory(_pre_mapped.virtual_memory(), _pre_mapped.physical_memory());
_pre_mapped.clear();
}
void ZPageAllocator::map_page(ZPage* page) {
// Map physical memory
_physical.map(page->physical_memory(), page->start());
}
void ZPageAllocator::detach_page(ZPage* page) {
// Detach the memory mapping.
detach_memory(page->virtual_memory(), page->physical_memory());
// Add to list of detached pages
_detached.insert_last(page);
}
void ZPageAllocator::destroy_page(ZPage* page) {
assert(page->is_detached(), "Invalid page state");
// Free virtual memory
{
ZLocker locker(&_lock);
_virtual.free(page->virtual_memory());
}
delete page;
}
void ZPageAllocator::flush_detached_pages(ZList<ZPage>* list) {
ZLocker locker(&_lock);
list->transfer(&_detached);
}
void ZPageAllocator::flush_cache(size_t size) {
ZList<ZPage> list;
_cache.flush(&list, size);
for (ZPage* page = list.remove_first(); page != NULL; page = list.remove_first()) {
detach_page(page);
}
}
void ZPageAllocator::check_out_of_memory_during_initialization() {
if (!is_init_completed()) {
vm_exit_during_initialization("java.lang.OutOfMemoryError", "Java heap too small");
}
}
ZPage* ZPageAllocator::alloc_page_common_inner(uint8_t type, size_t size, ZAllocationFlags flags) {
const size_t max = max_available(flags.no_reserve());
if (max < size) {
// Not enough free memory
return NULL;
}
// Try allocating from the page cache
ZPage* const cached_page = _cache.alloc_page(type, size);
if (cached_page != NULL) {
return cached_page;
}
// Try allocate from the pre-mapped memory
ZPage* const pre_mapped_page = _pre_mapped.alloc_page(type, size);
if (pre_mapped_page != NULL) {
return pre_mapped_page;
}
// Flush any remaining pre-mapped memory so that
// subsequent allocations can use the physical memory.
flush_pre_mapped();
// Try ensure that physical memory is available
const size_t unused = try_ensure_unused(size, flags.no_reserve());
if (unused < size) {
// Flush cache to free up more physical memory
flush_cache(size - unused);
}
// Create new page and allocate physical memory
return create_page(type, size);
}
ZPage* ZPageAllocator::alloc_page_common(uint8_t type, size_t size, ZAllocationFlags flags) {
ZPage* const page = alloc_page_common_inner(type, size, flags);
if (page == NULL) {
// Out of memory
return NULL;
}
// Update used statistics
increase_used(size, flags.relocation());
// Send trace event
ZTracer::tracer()->report_page_alloc(size, used(), max_available(flags.no_reserve()), _cache.available(), flags);
return page;
}
ZPage* ZPageAllocator::alloc_page_blocking(uint8_t type, size_t size, ZAllocationFlags flags) {
// Prepare to block
ZPageAllocRequest request(type, size, flags, ZCollectedHeap::heap()->total_collections());
_lock.lock();
// Try non-blocking allocation
ZPage* page = alloc_page_common(type, size, flags);
if (page == NULL) {
// Allocation failed, enqueue request
_queue.insert_last(&request);
}
_lock.unlock();
if (page == NULL) {
// Allocation failed
ZStatTimer timer(ZCriticalPhaseAllocationStall);
// We can only block if VM is fully initialized
check_out_of_memory_during_initialization();
do {
// Start asynchronous GC
ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall);
// Wait for allocation to complete or fail
page = request.wait();
} while (page == gc_marker);
{
// Guard deletion of underlying semaphore. This is a workaround for a
// bug in sem_post() in glibc < 2.21, where it's not safe to destroy
// the semaphore immediately after returning from sem_wait(). The
// reason is that sem_post() can touch the semaphore after a waiting
// thread have returned from sem_wait(). To avoid this race we are
// forcing the waiting thread to acquire/release the lock held by the
// posting thread. https://sourceware.org/bugzilla/show_bug.cgi?id=12674
ZLocker locker(&_lock);
}
}
return page;
}
ZPage* ZPageAllocator::alloc_page_nonblocking(uint8_t type, size_t size, ZAllocationFlags flags) {
ZLocker locker(&_lock);
return alloc_page_common(type, size, flags);
}
ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) {
ZPage* const page = flags.non_blocking()
? alloc_page_nonblocking(type, size, flags)
: alloc_page_blocking(type, size, flags);
if (page == NULL) {
// Out of memory
return NULL;
}
// Map page if needed
if (!page->is_mapped()) {
map_page(page);
}
// Reset page. This updates the page's sequence number and must
// be done after page allocation, which potentially blocked in
// a safepoint where the global sequence number was updated.
page->reset();
// Update allocation statistics. Exclude worker threads to avoid
// artificial inflation of the allocation rate due to relocation.
if (!flags.worker_thread()) {
// Note that there are two allocation rate counters, which have
// different purposes and are sampled at different frequencies.
const size_t bytes = page->size();
ZStatInc(ZCounterAllocationRate, bytes);
ZStatInc(ZStatAllocRate::counter(), bytes);
}
return page;
}
void ZPageAllocator::satisfy_alloc_queue() {
for (;;) {
ZPageAllocRequest* const request = _queue.first();
if (request == NULL) {
// Allocation queue is empty
return;
}
ZPage* const page = alloc_page_common(request->type(), request->size(), request->flags());
if (page == NULL) {
// Allocation could not be satisfied, give up
return;
}
// Allocation succeeded, dequeue and satisfy request. Note that
// the dequeue operation must happen first, since the request
// will immediately be deallocated once it has been satisfied.
_queue.remove(request);
request->satisfy(page);
}
}
void ZPageAllocator::detach_memory(const ZVirtualMemory& vmem, ZPhysicalMemory& pmem) {
const uintptr_t addr = vmem.start();
// Unmap physical memory
_physical.unmap(pmem, addr);
// Free physical memory
_physical.free(pmem);
// Clear physical mapping
pmem.clear();
}
void ZPageAllocator::flip_page(ZPage* page) {
const ZPhysicalMemory& pmem = page->physical_memory();
const uintptr_t addr = page->start();
// Flip physical mapping
_physical.flip(pmem, addr);
}
void ZPageAllocator::flip_pre_mapped() {
if (_pre_mapped.available() == 0) {
// Nothing to flip
return;
}
const ZPhysicalMemory& pmem = _pre_mapped.physical_memory();
const ZVirtualMemory& vmem = _pre_mapped.virtual_memory();
// Flip physical mapping
_physical.flip(pmem, vmem.start());
}
void ZPageAllocator::free_page(ZPage* page, bool reclaimed) {
ZLocker locker(&_lock);
// Update used statistics
decrease_used(page->size(), reclaimed);
// Cache page
_cache.free_page(page);
// Try satisfy blocked allocations
satisfy_alloc_queue();
}
bool ZPageAllocator::is_alloc_stalled() const {
assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint");
return !_queue.is_empty();
}
void ZPageAllocator::check_out_of_memory() {
ZLocker locker(&_lock);
// Fail allocation requests that were enqueued before the
// last GC cycle started, otherwise start a new GC cycle.
for (ZPageAllocRequest* request = _queue.first(); request != NULL; request = _queue.first()) {
if (request->total_collections() == ZCollectedHeap::heap()->total_collections()) {
// Start a new GC cycle, keep allocation requests enqueued
request->satisfy(gc_marker);
return;
}
// Out of memory, fail allocation request
_queue.remove_first();
request->satisfy(NULL);
}
}