blob: 14f1cf80d3f4817639859789d24e7d48633330e1 [file] [log] [blame]
/*
* Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.hpp"
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
#include "gc/shared/space.inline.hpp"
#include "jfr/jfrEvents.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.hpp"
#include "runtime/safepoint.hpp"
size_t ShenandoahHeapRegion::RegionCount = 0;
size_t ShenandoahHeapRegion::RegionSizeBytes = 0;
size_t ShenandoahHeapRegion::RegionSizeWords = 0;
size_t ShenandoahHeapRegion::RegionSizeBytesShift = 0;
size_t ShenandoahHeapRegion::RegionSizeWordsShift = 0;
size_t ShenandoahHeapRegion::RegionSizeBytesMask = 0;
size_t ShenandoahHeapRegion::RegionSizeWordsMask = 0;
size_t ShenandoahHeapRegion::HumongousThresholdBytes = 0;
size_t ShenandoahHeapRegion::HumongousThresholdWords = 0;
size_t ShenandoahHeapRegion::MaxTLABSizeBytes = 0;
size_t ShenandoahHeapRegion::MaxTLABSizeWords = 0;
ShenandoahHeapRegion::ShenandoahHeapRegion(HeapWord* start, size_t index, bool committed) :
_index(index),
_bottom(start),
_end(start + RegionSizeWords),
_new_top(NULL),
_empty_time(os::elapsedTime()),
_state(committed ? _empty_committed : _empty_uncommitted),
_top(start),
_tlab_allocs(0),
_gclab_allocs(0),
_live_data(0),
_critical_pins(0),
_update_watermark(start) {
assert(Universe::on_page_boundary(_bottom) && Universe::on_page_boundary(_end),
"invalid space boundaries");
if (ZapUnusedHeapArea && committed) {
SpaceMangler::mangle_region(MemRegion(_bottom, _end));
}
}
void ShenandoahHeapRegion::report_illegal_transition(const char *method) {
ResourceMark rm;
stringStream ss;
ss.print("Illegal region state transition from \"%s\", at %s\n ", region_state_to_string(_state), method);
print_on(&ss);
fatal("%s", ss.as_string());
}
void ShenandoahHeapRegion::make_regular_allocation() {
shenandoah_assert_heaplocked();
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
set_state(_regular);
case _regular:
case _pinned:
return;
default:
report_illegal_transition("regular allocation");
}
}
void ShenandoahHeapRegion::make_regular_bypass() {
shenandoah_assert_heaplocked();
assert (ShenandoahHeap::heap()->is_full_gc_in_progress() || ShenandoahHeap::heap()->is_degenerated_gc_in_progress(),
"only for full or degen GC");
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
case _cset:
case _humongous_start:
case _humongous_cont:
set_state(_regular);
return;
case _pinned_cset:
set_state(_pinned);
return;
case _regular:
case _pinned:
return;
default:
report_illegal_transition("regular bypass");
}
}
void ShenandoahHeapRegion::make_humongous_start() {
shenandoah_assert_heaplocked();
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
set_state(_humongous_start);
return;
default:
report_illegal_transition("humongous start allocation");
}
}
void ShenandoahHeapRegion::make_humongous_start_bypass() {
shenandoah_assert_heaplocked();
assert (ShenandoahHeap::heap()->is_full_gc_in_progress(), "only for full GC");
switch (_state) {
case _empty_committed:
case _regular:
case _humongous_start:
case _humongous_cont:
set_state(_humongous_start);
return;
default:
report_illegal_transition("humongous start bypass");
}
}
void ShenandoahHeapRegion::make_humongous_cont() {
shenandoah_assert_heaplocked();
switch (_state) {
case _empty_uncommitted:
do_commit();
case _empty_committed:
set_state(_humongous_cont);
return;
default:
report_illegal_transition("humongous continuation allocation");
}
}
void ShenandoahHeapRegion::make_humongous_cont_bypass() {
shenandoah_assert_heaplocked();
assert (ShenandoahHeap::heap()->is_full_gc_in_progress(), "only for full GC");
switch (_state) {
case _empty_committed:
case _regular:
case _humongous_start:
case _humongous_cont:
set_state(_humongous_cont);
return;
default:
report_illegal_transition("humongous continuation bypass");
}
}
void ShenandoahHeapRegion::make_pinned() {
shenandoah_assert_heaplocked();
assert(pin_count() > 0, "Should have pins: " SIZE_FORMAT, pin_count());
switch (_state) {
case _regular:
set_state(_pinned);
case _pinned_cset:
case _pinned:
return;
case _humongous_start:
set_state(_pinned_humongous_start);
case _pinned_humongous_start:
return;
case _cset:
_state = _pinned_cset;
return;
default:
report_illegal_transition("pinning");
}
}
void ShenandoahHeapRegion::make_unpinned() {
shenandoah_assert_heaplocked();
assert(pin_count() == 0, "Should not have pins: " SIZE_FORMAT, pin_count());
switch (_state) {
case _pinned:
set_state(_regular);
return;
case _regular:
case _humongous_start:
return;
case _pinned_cset:
set_state(_cset);
return;
case _pinned_humongous_start:
set_state(_humongous_start);
return;
default:
report_illegal_transition("unpinning");
}
}
void ShenandoahHeapRegion::make_cset() {
shenandoah_assert_heaplocked();
switch (_state) {
case _regular:
set_state(_cset);
case _cset:
return;
default:
report_illegal_transition("cset");
}
}
void ShenandoahHeapRegion::make_trash() {
shenandoah_assert_heaplocked();
switch (_state) {
case _cset:
// Reclaiming cset regions
case _humongous_start:
case _humongous_cont:
// Reclaiming humongous regions
case _regular:
// Immediate region reclaim
set_state(_trash);
return;
default:
report_illegal_transition("trashing");
}
}
void ShenandoahHeapRegion::make_trash_immediate() {
make_trash();
// On this path, we know there are no marked objects in the region,
// tell marking context about it to bypass bitmap resets.
ShenandoahHeap::heap()->complete_marking_context()->reset_top_bitmap(this);
}
void ShenandoahHeapRegion::make_empty() {
shenandoah_assert_heaplocked();
switch (_state) {
case _trash:
set_state(_empty_committed);
_empty_time = os::elapsedTime();
return;
default:
report_illegal_transition("emptying");
}
}
void ShenandoahHeapRegion::make_uncommitted() {
shenandoah_assert_heaplocked();
switch (_state) {
case _empty_committed:
do_uncommit();
set_state(_empty_uncommitted);
return;
default:
report_illegal_transition("uncommiting");
}
}
void ShenandoahHeapRegion::make_committed_bypass() {
shenandoah_assert_heaplocked();
assert (ShenandoahHeap::heap()->is_full_gc_in_progress(), "only for full GC");
switch (_state) {
case _empty_uncommitted:
do_commit();
set_state(_empty_committed);
return;
default:
report_illegal_transition("commit bypass");
}
}
void ShenandoahHeapRegion::reset_alloc_metadata() {
_tlab_allocs = 0;
_gclab_allocs = 0;
}
size_t ShenandoahHeapRegion::get_shared_allocs() const {
return used() - (_tlab_allocs + _gclab_allocs) * HeapWordSize;
}
size_t ShenandoahHeapRegion::get_tlab_allocs() const {
return _tlab_allocs * HeapWordSize;
}
size_t ShenandoahHeapRegion::get_gclab_allocs() const {
return _gclab_allocs * HeapWordSize;
}
void ShenandoahHeapRegion::set_live_data(size_t s) {
assert(Thread::current()->is_VM_thread(), "by VM thread");
_live_data = (s >> LogHeapWordSize);
}
void ShenandoahHeapRegion::print_on(outputStream* st) const {
st->print("|");
st->print(SIZE_FORMAT_W(5), this->_index);
switch (_state) {
case _empty_uncommitted:
st->print("|EU ");
break;
case _empty_committed:
st->print("|EC ");
break;
case _regular:
st->print("|R ");
break;
case _humongous_start:
st->print("|H ");
break;
case _pinned_humongous_start:
st->print("|HP ");
break;
case _humongous_cont:
st->print("|HC ");
break;
case _cset:
st->print("|CS ");
break;
case _trash:
st->print("|T ");
break;
case _pinned:
st->print("|P ");
break;
case _pinned_cset:
st->print("|CSP");
break;
default:
ShouldNotReachHere();
}
st->print("|BTE " INTPTR_FORMAT_W(12) ", " INTPTR_FORMAT_W(12) ", " INTPTR_FORMAT_W(12),
p2i(bottom()), p2i(top()), p2i(end()));
st->print("|TAMS " INTPTR_FORMAT_W(12),
p2i(ShenandoahHeap::heap()->marking_context()->top_at_mark_start(const_cast<ShenandoahHeapRegion*>(this))));
st->print("|UWM " INTPTR_FORMAT_W(12),
p2i(_update_watermark));
st->print("|U " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used()));
st->print("|T " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_tlab_allocs()), proper_unit_for_byte_size(get_tlab_allocs()));
st->print("|G " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_gclab_allocs()), proper_unit_for_byte_size(get_gclab_allocs()));
st->print("|S " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_shared_allocs()), proper_unit_for_byte_size(get_shared_allocs()));
st->print("|L " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_live_data_bytes()), proper_unit_for_byte_size(get_live_data_bytes()));
st->print("|CP " SIZE_FORMAT_W(3), pin_count());
st->cr();
}
void ShenandoahHeapRegion::oop_iterate(OopIterateClosure* blk) {
if (!is_active()) return;
if (is_humongous()) {
oop_iterate_humongous(blk);
} else {
oop_iterate_objects(blk);
}
}
void ShenandoahHeapRegion::oop_iterate_objects(OopIterateClosure* blk) {
assert(! is_humongous(), "no humongous region here");
HeapWord* obj_addr = bottom();
HeapWord* t = top();
// Could call objects iterate, but this is easier.
while (obj_addr < t) {
oop obj = oop(obj_addr);
obj_addr += obj->oop_iterate_size(blk);
}
}
void ShenandoahHeapRegion::oop_iterate_humongous(OopIterateClosure* blk) {
assert(is_humongous(), "only humongous region here");
// Find head.
ShenandoahHeapRegion* r = humongous_start_region();
assert(r->is_humongous_start(), "need humongous head here");
oop obj = oop(r->bottom());
obj->oop_iterate(blk, MemRegion(bottom(), top()));
}
ShenandoahHeapRegion* ShenandoahHeapRegion::humongous_start_region() const {
ShenandoahHeap* heap = ShenandoahHeap::heap();
assert(is_humongous(), "Must be a part of the humongous region");
size_t i = index();
ShenandoahHeapRegion* r = const_cast<ShenandoahHeapRegion*>(this);
while (!r->is_humongous_start()) {
assert(i > 0, "Sanity");
i--;
r = heap->get_region(i);
assert(r->is_humongous(), "Must be a part of the humongous region");
}
assert(r->is_humongous_start(), "Must be");
return r;
}
void ShenandoahHeapRegion::recycle() {
set_top(bottom());
clear_live_data();
reset_alloc_metadata();
ShenandoahHeap::heap()->marking_context()->reset_top_at_mark_start(this);
set_update_watermark(bottom());
make_empty();
if (ZapUnusedHeapArea) {
SpaceMangler::mangle_region(MemRegion(bottom(), end()));
}
}
HeapWord* ShenandoahHeapRegion::block_start(const void* p) const {
assert(MemRegion(bottom(), end()).contains(p),
"p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(bottom()), p2i(end()));
if (p >= top()) {
return top();
} else {
HeapWord* last = bottom();
HeapWord* cur = last;
while (cur <= p) {
last = cur;
cur += oop(cur)->size();
}
shenandoah_assert_correct(NULL, oop(last));
return last;
}
}
size_t ShenandoahHeapRegion::block_size(const HeapWord* p) const {
assert(MemRegion(bottom(), end()).contains(p),
"p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(bottom()), p2i(end()));
if (p < top()) {
return oop(p)->size();
} else {
assert(p == top(), "just checking");
return pointer_delta(end(), (HeapWord*) p);
}
}
size_t ShenandoahHeapRegion::setup_sizes(size_t max_heap_size) {
// Absolute minimums we should not ever break.
static const size_t MIN_REGION_SIZE = 256*K;
if (FLAG_IS_DEFAULT(ShenandoahMinRegionSize)) {
FLAG_SET_DEFAULT(ShenandoahMinRegionSize, MIN_REGION_SIZE);
}
size_t region_size;
if (FLAG_IS_DEFAULT(ShenandoahRegionSize)) {
if (ShenandoahMinRegionSize > max_heap_size / MIN_NUM_REGIONS) {
err_msg message("Max heap size (" SIZE_FORMAT "%s) is too low to afford the minimum number "
"of regions (" SIZE_FORMAT ") of minimum region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(max_heap_size), proper_unit_for_byte_size(max_heap_size),
MIN_NUM_REGIONS,
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message);
}
if (ShenandoahMinRegionSize < MIN_REGION_SIZE) {
err_msg message("" SIZE_FORMAT "%s should not be lower than minimum region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize),
byte_size_in_proper_unit(MIN_REGION_SIZE), proper_unit_for_byte_size(MIN_REGION_SIZE));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message);
}
if (ShenandoahMinRegionSize < MinTLABSize) {
err_msg message("" SIZE_FORMAT "%s should not be lower than TLAB size size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize),
byte_size_in_proper_unit(MinTLABSize), proper_unit_for_byte_size(MinTLABSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message);
}
if (ShenandoahMaxRegionSize < MIN_REGION_SIZE) {
err_msg message("" SIZE_FORMAT "%s should not be lower than min region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMaxRegionSize), proper_unit_for_byte_size(ShenandoahMaxRegionSize),
byte_size_in_proper_unit(MIN_REGION_SIZE), proper_unit_for_byte_size(MIN_REGION_SIZE));
vm_exit_during_initialization("Invalid -XX:ShenandoahMaxRegionSize option", message);
}
if (ShenandoahMinRegionSize > ShenandoahMaxRegionSize) {
err_msg message("Minimum (" SIZE_FORMAT "%s) should be larger than maximum (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize),
byte_size_in_proper_unit(ShenandoahMaxRegionSize), proper_unit_for_byte_size(ShenandoahMaxRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize or -XX:ShenandoahMaxRegionSize", message);
}
// We rapidly expand to max_heap_size in most scenarios, so that is the measure
// for usual heap sizes. Do not depend on initial_heap_size here.
region_size = max_heap_size / ShenandoahTargetNumRegions;
// Now make sure that we don't go over or under our limits.
region_size = MAX2(ShenandoahMinRegionSize, region_size);
region_size = MIN2(ShenandoahMaxRegionSize, region_size);
} else {
if (ShenandoahRegionSize > max_heap_size / MIN_NUM_REGIONS) {
err_msg message("Max heap size (" SIZE_FORMAT "%s) is too low to afford the minimum number "
"of regions (" SIZE_FORMAT ") of requested size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(max_heap_size), proper_unit_for_byte_size(max_heap_size),
MIN_NUM_REGIONS,
byte_size_in_proper_unit(ShenandoahRegionSize), proper_unit_for_byte_size(ShenandoahRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahRegionSize option", message);
}
if (ShenandoahRegionSize < ShenandoahMinRegionSize) {
err_msg message("Heap region size (" SIZE_FORMAT "%s) should be larger than min region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahRegionSize), proper_unit_for_byte_size(ShenandoahRegionSize),
byte_size_in_proper_unit(ShenandoahMinRegionSize), proper_unit_for_byte_size(ShenandoahMinRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahRegionSize option", message);
}
if (ShenandoahRegionSize > ShenandoahMaxRegionSize) {
err_msg message("Heap region size (" SIZE_FORMAT "%s) should be lower than max region size (" SIZE_FORMAT "%s).",
byte_size_in_proper_unit(ShenandoahRegionSize), proper_unit_for_byte_size(ShenandoahRegionSize),
byte_size_in_proper_unit(ShenandoahMaxRegionSize), proper_unit_for_byte_size(ShenandoahMaxRegionSize));
vm_exit_during_initialization("Invalid -XX:ShenandoahRegionSize option", message);
}
region_size = ShenandoahRegionSize;
}
// Make sure region size and heap size are page aligned.
// If large pages are used, we ensure that region size is aligned to large page size if
// heap size is large enough to accommodate minimal number of regions. Otherwise, we align
// region size to regular page size.
// Figure out page size to use, and aligns up heap to page size
int page_size = os::vm_page_size();
if (UseLargePages) {
size_t large_page_size = os::large_page_size();
max_heap_size = align_up(max_heap_size, large_page_size);
if ((max_heap_size / align_up(region_size, large_page_size)) >= MIN_NUM_REGIONS) {
page_size = (int)large_page_size;
} else {
// Should have been checked during argument initialization
assert(!ShenandoahUncommit, "Uncommit requires region size aligns to large page size");
}
} else {
max_heap_size = align_up(max_heap_size, page_size);
}
// Align region size to page size
region_size = align_up(region_size, page_size);
int region_size_log = log2_long((jlong) region_size);
// Recalculate the region size to make sure it's a power of
// 2. This means that region_size is the largest power of 2 that's
// <= what we've calculated so far.
region_size = size_t(1) << region_size_log;
// Now, set up the globals.
guarantee(RegionSizeBytesShift == 0, "we should only set it once");
RegionSizeBytesShift = (size_t)region_size_log;
guarantee(RegionSizeWordsShift == 0, "we should only set it once");
RegionSizeWordsShift = RegionSizeBytesShift - LogHeapWordSize;
guarantee(RegionSizeBytes == 0, "we should only set it once");
RegionSizeBytes = region_size;
RegionSizeWords = RegionSizeBytes >> LogHeapWordSize;
assert (RegionSizeWords*HeapWordSize == RegionSizeBytes, "sanity");
guarantee(RegionSizeWordsMask == 0, "we should only set it once");
RegionSizeWordsMask = RegionSizeWords - 1;
guarantee(RegionSizeBytesMask == 0, "we should only set it once");
RegionSizeBytesMask = RegionSizeBytes - 1;
guarantee(RegionCount == 0, "we should only set it once");
RegionCount = align_up(max_heap_size, RegionSizeBytes) / RegionSizeBytes;
guarantee(RegionCount >= MIN_NUM_REGIONS, "Should have at least minimum regions");
guarantee(HumongousThresholdWords == 0, "we should only set it once");
HumongousThresholdWords = RegionSizeWords * ShenandoahHumongousThreshold / 100;
HumongousThresholdWords = align_down(HumongousThresholdWords, MinObjAlignment);
assert (HumongousThresholdWords <= RegionSizeWords, "sanity");
guarantee(HumongousThresholdBytes == 0, "we should only set it once");
HumongousThresholdBytes = HumongousThresholdWords * HeapWordSize;
assert (HumongousThresholdBytes <= RegionSizeBytes, "sanity");
// The rationale for trimming the TLAB sizes has to do with the raciness in
// TLAB allocation machinery. It may happen that TLAB sizing policy polls Shenandoah
// about next free size, gets the answer for region #N, goes away for a while, then
// tries to allocate in region #N, and fail because some other thread have claimed part
// of the region #N, and then the freeset allocation code has to retire the region #N,
// before moving the allocation to region #N+1.
//
// The worst case realizes when "answer" is "region size", which means it could
// prematurely retire an entire region. Having smaller TLABs does not fix that
// completely, but reduces the probability of too wasteful region retirement.
// With current divisor, we will waste no more than 1/8 of region size in the worst
// case. This also has a secondary effect on collection set selection: even under
// the race, the regions would be at least 7/8 used, which allows relying on
// "used" - "live" for cset selection. Otherwise, we can get the fragmented region
// below the garbage threshold that would never be considered for collection.
//
// The whole thing is mitigated if Elastic TLABs are enabled.
//
guarantee(MaxTLABSizeWords == 0, "we should only set it once");
MaxTLABSizeWords = MIN2(ShenandoahElasticTLAB ? RegionSizeWords : (RegionSizeWords / 8), HumongousThresholdWords);
MaxTLABSizeWords = align_down(MaxTLABSizeWords, MinObjAlignment);
guarantee(MaxTLABSizeBytes == 0, "we should only set it once");
MaxTLABSizeBytes = MaxTLABSizeWords * HeapWordSize;
assert (MaxTLABSizeBytes > MinTLABSize, "should be larger");
log_info(gc, init)("Regions: " SIZE_FORMAT " x " SIZE_FORMAT "%s",
RegionCount, byte_size_in_proper_unit(RegionSizeBytes), proper_unit_for_byte_size(RegionSizeBytes));
log_info(gc, init)("Humongous object threshold: " SIZE_FORMAT "%s",
byte_size_in_proper_unit(HumongousThresholdBytes), proper_unit_for_byte_size(HumongousThresholdBytes));
log_info(gc, init)("Max TLAB size: " SIZE_FORMAT "%s",
byte_size_in_proper_unit(MaxTLABSizeBytes), proper_unit_for_byte_size(MaxTLABSizeBytes));
return max_heap_size;
}
void ShenandoahHeapRegion::do_commit() {
ShenandoahHeap* heap = ShenandoahHeap::heap();
if (!heap->is_heap_region_special() && !os::commit_memory((char *) bottom(), RegionSizeBytes, false)) {
report_java_out_of_memory("Unable to commit region");
}
if (!heap->commit_bitmap_slice(this)) {
report_java_out_of_memory("Unable to commit bitmaps for region");
}
if (AlwaysPreTouch) {
os::pretouch_memory(bottom(), end(), heap->pretouch_heap_page_size());
}
heap->increase_committed(ShenandoahHeapRegion::region_size_bytes());
}
void ShenandoahHeapRegion::do_uncommit() {
ShenandoahHeap* heap = ShenandoahHeap::heap();
if (!heap->is_heap_region_special() && !os::uncommit_memory((char *) bottom(), RegionSizeBytes)) {
report_java_out_of_memory("Unable to uncommit region");
}
if (!heap->uncommit_bitmap_slice(this)) {
report_java_out_of_memory("Unable to uncommit bitmaps for region");
}
heap->decrease_committed(ShenandoahHeapRegion::region_size_bytes());
}
void ShenandoahHeapRegion::set_state(RegionState to) {
EventShenandoahHeapRegionStateChange evt;
if (evt.should_commit()){
evt.set_index((unsigned)index());
evt.set_start((uintptr_t)bottom());
evt.set_used(used());
evt.set_from(_state);
evt.set_to(to);
evt.commit();
}
_state = to;
}
void ShenandoahHeapRegion::record_pin() {
Atomic::add((size_t)1, &_critical_pins);
}
void ShenandoahHeapRegion::record_unpin() {
assert(pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", index());
Atomic::sub((size_t)1, &_critical_pins);
}
size_t ShenandoahHeapRegion::pin_count() const {
return Atomic::load(&_critical_pins);
}