blob: 8eac373576d58080aa5a614797bfe4799b39bbf3 [file] [log] [blame]
/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/referenceProcessorPhaseTimes.hpp"
#include "gc/shared/referenceProcessor.inline.hpp"
#include "gc/shared/workerDataArray.inline.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#define ASSERT_REF_TYPE(ref_type) assert((ref_type) >= REF_SOFT && (ref_type) <= REF_PHANTOM, \
"Invariant (%d)", (int)ref_type)
#define ASSERT_PHASE(phase) assert((phase) >= ReferenceProcessor::RefPhase1 && \
(phase) < ReferenceProcessor::RefPhaseMax, \
"Invariant (%d)", (int)phase);
#define ASSERT_SUB_PHASE(phase) assert((phase) >= ReferenceProcessor::SoftRefSubPhase1 && \
(phase) < ReferenceProcessor::RefSubPhaseMax, \
"Invariant (%d)", (int)phase);
static const char* SubPhasesParWorkTitle[ReferenceProcessor::RefSubPhaseMax] = {
"SoftRef (ms):",
"SoftRef (ms):",
"WeakRef (ms):",
"FinalRef (ms):",
"FinalRef (ms):",
"PhantomRef (ms):"
};
static const char* Phase2ParWorkTitle = "Total (ms):";
static const char* SubPhasesSerWorkTitle[ReferenceProcessor::RefSubPhaseMax] = {
"SoftRef:",
"SoftRef:",
"WeakRef:",
"FinalRef:",
"FinalRef:",
"PhantomRef:"
};
static const char* Phase2SerWorkTitle = "Total:";
static const char* Indents[6] = {"", " ", " ", " ", " ", " "};
static const char* PhaseNames[ReferenceProcessor::RefPhaseMax] = {
"Reconsider SoftReferences",
"Notify Soft/WeakReferences",
"Notify and keep alive finalizable",
"Notify PhantomReferences"
};
static const char* ReferenceTypeNames[REF_PHANTOM + 1] = {
"None", "Other", "SoftReference", "WeakReference", "FinalReference", "PhantomReference"
};
STATIC_ASSERT((REF_PHANTOM + 1) == ARRAY_SIZE(ReferenceTypeNames));
static const char* phase_enum_2_phase_string(ReferenceProcessor::RefProcPhases phase) {
ASSERT_PHASE(phase);
return PhaseNames[phase];
}
static const char* ref_type_2_string(ReferenceType ref_type) {
ASSERT_REF_TYPE(ref_type);
return ReferenceTypeNames[ref_type];
}
RefProcWorkerTimeTracker::RefProcWorkerTimeTracker(WorkerDataArray<double>* worker_time, uint worker_id) :
_worker_time(worker_time), _start_time(os::elapsedTime()), _worker_id(worker_id) {
assert(worker_time != NULL, "Invariant");
}
RefProcWorkerTimeTracker::~RefProcWorkerTimeTracker() {
double result = os::elapsedTime() - _start_time;
_worker_time->set(_worker_id, result);
}
RefProcSubPhasesWorkerTimeTracker::RefProcSubPhasesWorkerTimeTracker(ReferenceProcessor::RefProcSubPhases phase,
ReferenceProcessorPhaseTimes* phase_times,
uint worker_id) :
RefProcWorkerTimeTracker(phase_times->sub_phase_worker_time_sec(phase), worker_id) {
}
RefProcSubPhasesWorkerTimeTracker::~RefProcSubPhasesWorkerTimeTracker() {
}
RefProcPhaseTimeBaseTracker::RefProcPhaseTimeBaseTracker(const char* title,
ReferenceProcessor::RefProcPhases phase_number,
ReferenceProcessorPhaseTimes* phase_times) :
_phase_times(phase_times), _start_ticks(), _end_ticks(), _phase_number(phase_number) {
assert(_phase_times != NULL, "Invariant");
_start_ticks.stamp();
if (_phase_times->gc_timer() != NULL) {
_phase_times->gc_timer()->register_gc_phase_start(title, _start_ticks);
}
}
Ticks RefProcPhaseTimeBaseTracker::end_ticks() {
// If ASSERT is defined, the default value of Ticks will be -2.
if (_end_ticks.value() <= 0) {
_end_ticks.stamp();
}
return _end_ticks;
}
double RefProcPhaseTimeBaseTracker::elapsed_time() {
jlong end_value = end_ticks().value();
return TimeHelper::counter_to_millis(end_value - _start_ticks.value());
}
RefProcPhaseTimeBaseTracker::~RefProcPhaseTimeBaseTracker() {
if (_phase_times->gc_timer() != NULL) {
Ticks ticks = end_ticks();
_phase_times->gc_timer()->register_gc_phase_end(ticks);
}
}
RefProcBalanceQueuesTimeTracker::RefProcBalanceQueuesTimeTracker(ReferenceProcessor::RefProcPhases phase_number,
ReferenceProcessorPhaseTimes* phase_times) :
RefProcPhaseTimeBaseTracker("Balance queues", phase_number, phase_times) {}
RefProcBalanceQueuesTimeTracker::~RefProcBalanceQueuesTimeTracker() {
double elapsed = elapsed_time();
phase_times()->set_balance_queues_time_ms(_phase_number, elapsed);
}
RefProcPhaseTimeTracker::RefProcPhaseTimeTracker(ReferenceProcessor::RefProcPhases phase_number,
ReferenceProcessorPhaseTimes* phase_times) :
RefProcPhaseTimeBaseTracker(phase_enum_2_phase_string(phase_number), phase_number, phase_times) {
}
RefProcPhaseTimeTracker::~RefProcPhaseTimeTracker() {
double elapsed = elapsed_time();
phase_times()->set_phase_time_ms(_phase_number, elapsed);
}
RefProcTotalPhaseTimesTracker::RefProcTotalPhaseTimesTracker(ReferenceProcessor::RefProcPhases phase_number,
ReferenceProcessorPhaseTimes* phase_times,
ReferenceProcessor* rp) :
_rp(rp), RefProcPhaseTimeBaseTracker(phase_enum_2_phase_string(phase_number), phase_number, phase_times) {
}
RefProcTotalPhaseTimesTracker::~RefProcTotalPhaseTimesTracker() {
double elapsed = elapsed_time();
phase_times()->set_phase_time_ms(_phase_number, elapsed);
}
ReferenceProcessorPhaseTimes::ReferenceProcessorPhaseTimes(GCTimer* gc_timer, uint max_gc_threads) :
_gc_timer(gc_timer), _processing_is_mt(false) {
for (uint i = 0; i < ReferenceProcessor::RefSubPhaseMax; i++) {
_sub_phases_worker_time_sec[i] = new WorkerDataArray<double>(max_gc_threads, SubPhasesParWorkTitle[i]);
}
_phase2_worker_time_sec = new WorkerDataArray<double>(max_gc_threads, Phase2ParWorkTitle);
reset();
}
inline int ref_type_2_index(ReferenceType ref_type) {
return ref_type - REF_SOFT;
}
WorkerDataArray<double>* ReferenceProcessorPhaseTimes::sub_phase_worker_time_sec(ReferenceProcessor::RefProcSubPhases sub_phase) const {
ASSERT_SUB_PHASE(sub_phase);
return _sub_phases_worker_time_sec[sub_phase];
}
double ReferenceProcessorPhaseTimes::phase_time_ms(ReferenceProcessor::RefProcPhases phase) const {
ASSERT_PHASE(phase);
return _phases_time_ms[phase];
}
void ReferenceProcessorPhaseTimes::set_phase_time_ms(ReferenceProcessor::RefProcPhases phase,
double phase_time_ms) {
ASSERT_PHASE(phase);
_phases_time_ms[phase] = phase_time_ms;
}
void ReferenceProcessorPhaseTimes::reset() {
for (int i = 0; i < ReferenceProcessor::RefSubPhaseMax; i++) {
_sub_phases_worker_time_sec[i]->reset();
_sub_phases_total_time_ms[i] = uninitialized();
}
for (int i = 0; i < ReferenceProcessor::RefPhaseMax; i++) {
_phases_time_ms[i] = uninitialized();
_balance_queues_time_ms[i] = uninitialized();
}
_phase2_worker_time_sec->reset();
for (int i = 0; i < number_of_subclasses_of_ref; i++) {
_ref_cleared[i] = 0;
_ref_discovered[i] = 0;
}
_total_time_ms = uninitialized();
_processing_is_mt = false;
}
ReferenceProcessorPhaseTimes::~ReferenceProcessorPhaseTimes() {
for (int i = 0; i < ReferenceProcessor::RefSubPhaseMax; i++) {
delete _sub_phases_worker_time_sec[i];
}
delete _phase2_worker_time_sec;
}
double ReferenceProcessorPhaseTimes::sub_phase_total_time_ms(ReferenceProcessor::RefProcSubPhases sub_phase) const {
ASSERT_SUB_PHASE(sub_phase);
return _sub_phases_total_time_ms[sub_phase];
}
void ReferenceProcessorPhaseTimes::set_sub_phase_total_phase_time_ms(ReferenceProcessor::RefProcSubPhases sub_phase,
double time_ms) {
ASSERT_SUB_PHASE(sub_phase);
_sub_phases_total_time_ms[sub_phase] = time_ms;
}
void ReferenceProcessorPhaseTimes::add_ref_cleared(ReferenceType ref_type, size_t count) {
ASSERT_REF_TYPE(ref_type);
Atomic::add(count, &_ref_cleared[ref_type_2_index(ref_type)]);
}
void ReferenceProcessorPhaseTimes::set_ref_discovered(ReferenceType ref_type, size_t count) {
ASSERT_REF_TYPE(ref_type);
_ref_discovered[ref_type_2_index(ref_type)] = count;
}
double ReferenceProcessorPhaseTimes::balance_queues_time_ms(ReferenceProcessor::RefProcPhases phase) const {
ASSERT_PHASE(phase);
return _balance_queues_time_ms[phase];
}
void ReferenceProcessorPhaseTimes::set_balance_queues_time_ms(ReferenceProcessor::RefProcPhases phase, double time_ms) {
ASSERT_PHASE(phase);
_balance_queues_time_ms[phase] = time_ms;
}
#define TIME_FORMAT "%.1lfms"
void ReferenceProcessorPhaseTimes::print_all_references(uint base_indent, bool print_total) const {
if (print_total) {
LogTarget(Debug, gc, phases, ref) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print_cr("%s%s: " TIME_FORMAT,
Indents[base_indent], "Reference Processing", total_time_ms());
}
}
uint next_indent = base_indent + 1;
print_phase(ReferenceProcessor::RefPhase1, next_indent);
print_phase(ReferenceProcessor::RefPhase2, next_indent);
print_phase(ReferenceProcessor::RefPhase3, next_indent);
print_phase(ReferenceProcessor::RefPhase4, next_indent);
print_reference(REF_SOFT, next_indent);
print_reference(REF_WEAK, next_indent);
print_reference(REF_FINAL, next_indent);
print_reference(REF_PHANTOM, next_indent);
}
void ReferenceProcessorPhaseTimes::print_reference(ReferenceType ref_type, uint base_indent) const {
LogTarget(Debug, gc, phases, ref) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ResourceMark rm;
ls.print_cr("%s%s:", Indents[base_indent], ref_type_2_string(ref_type));
uint const next_indent = base_indent + 1;
int const ref_type_index = ref_type_2_index(ref_type);
ls.print_cr("%sDiscovered: " SIZE_FORMAT, Indents[next_indent], _ref_discovered[ref_type_index]);
ls.print_cr("%sCleared: " SIZE_FORMAT, Indents[next_indent], _ref_cleared[ref_type_index]);
}
}
void ReferenceProcessorPhaseTimes::print_phase(ReferenceProcessor::RefProcPhases phase, uint indent) const {
double phase_time = phase_time_ms(phase);
if (phase_time == uninitialized()) {
return;
}
LogTarget(Debug, gc, phases, ref) lt;
LogStream ls(lt);
ls.print_cr("%s%s%s " TIME_FORMAT,
Indents[indent],
phase_enum_2_phase_string(phase),
indent == 0 ? "" : ":", /* 0 indent logs don't need colon. */
phase_time);
LogTarget(Debug, gc, phases, ref) lt2;
if (lt2.is_enabled()) {
LogStream ls(lt2);
if (_processing_is_mt) {
print_balance_time(&ls, phase, indent + 1);
}
switch (phase) {
case ReferenceProcessor::RefPhase1:
print_sub_phase(&ls, ReferenceProcessor::SoftRefSubPhase1, indent + 1);
break;
case ReferenceProcessor::RefPhase2:
print_sub_phase(&ls, ReferenceProcessor::SoftRefSubPhase2, indent + 1);
print_sub_phase(&ls, ReferenceProcessor::WeakRefSubPhase2, indent + 1);
print_sub_phase(&ls, ReferenceProcessor::FinalRefSubPhase2, indent + 1);
break;
case ReferenceProcessor::RefPhase3:
print_sub_phase(&ls, ReferenceProcessor::FinalRefSubPhase3, indent + 1);
break;
case ReferenceProcessor::RefPhase4:
print_sub_phase(&ls, ReferenceProcessor::PhantomRefSubPhase4, indent + 1);
break;
default:
ShouldNotReachHere();
}
if (phase == ReferenceProcessor::RefPhase2) {
print_worker_time(&ls, _phase2_worker_time_sec, Phase2SerWorkTitle, indent + 1);
}
}
}
void ReferenceProcessorPhaseTimes::print_balance_time(LogStream* ls, ReferenceProcessor::RefProcPhases phase, uint indent) const {
double balance_time = balance_queues_time_ms(phase);
if (balance_time != uninitialized()) {
ls->print_cr("%s%s " TIME_FORMAT, Indents[indent], "Balance queues:", balance_time);
}
}
void ReferenceProcessorPhaseTimes::print_sub_phase(LogStream* ls, ReferenceProcessor::RefProcSubPhases sub_phase, uint indent) const {
print_worker_time(ls, _sub_phases_worker_time_sec[sub_phase], SubPhasesSerWorkTitle[sub_phase], indent);
}
void ReferenceProcessorPhaseTimes::print_worker_time(LogStream* ls, WorkerDataArray<double>* worker_time, const char* ser_title, uint indent) const {
ls->print("%s", Indents[indent]);
if (_processing_is_mt) {
worker_time->print_summary_on(ls, true);
LogTarget(Trace, gc, phases, task) lt;
if (lt.is_enabled()) {
LogStream ls2(lt);
ls2.print("%s", Indents[indent]);
worker_time->print_details_on(&ls2);
}
} else {
if (worker_time->get(0) != uninitialized()) {
ls->print_cr("%s " TIME_FORMAT,
ser_title,
worker_time->get(0) * MILLIUNITS);
} else {
ls->print_cr("%s skipped", ser_title);
}
}
}
#undef ASSERT_REF_TYPE
#undef ASSERT_SUB_PHASE
#undef ASSERT_PHASE
#undef TIME_FORMAT