blob: 6bb8abd49366b00a4a1393c33e1bd5aab3ea1465 [file] [log] [blame]
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
#define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
#include "gc/shared/referenceDiscoverer.hpp"
#include "gc/shared/referencePolicy.hpp"
#include "gc/shared/referenceProcessorStats.hpp"
#include "memory/referenceType.hpp"
#include "oops/instanceRefKlass.hpp"
class AbstractRefProcTaskExecutor;
class GCTimer;
class ReferencePolicy;
class ReferenceProcessorPhaseTimes;
// List of discovered references.
class DiscoveredList {
public:
DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
inline oop head() const;
HeapWord* adr_head() {
return UseCompressedOops ? (HeapWord*)&_compressed_head :
(HeapWord*)&_oop_head;
}
inline void set_head(oop o);
inline bool is_empty() const;
size_t length() { return _len; }
void set_length(size_t len) { _len = len; }
void inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
void dec_length(size_t dec) { _len -= dec; }
inline void clear();
private:
// Set value depending on UseCompressedOops. This could be a template class
// but then we have to fix all the instantiations and declarations that use this class.
oop _oop_head;
narrowOop _compressed_head;
size_t _len;
};
// Iterator for the list of discovered references.
class DiscoveredListIterator {
private:
DiscoveredList& _refs_list;
HeapWord* _prev_discovered_addr;
oop _prev_discovered;
oop _current_discovered;
HeapWord* _current_discovered_addr;
oop _next_discovered;
HeapWord* _referent_addr;
oop _referent;
OopClosure* _keep_alive;
BoolObjectClosure* _is_alive;
DEBUG_ONLY(
oop _first_seen; // cyclic linked list check
)
size_t _processed;
size_t _removed;
public:
inline DiscoveredListIterator(DiscoveredList& refs_list,
OopClosure* keep_alive,
BoolObjectClosure* is_alive);
// End Of List.
inline bool has_next() const { return _current_discovered != NULL; }
// Get oop to the Reference object.
inline oop obj() const { return _current_discovered; }
// Get oop to the referent object.
inline oop referent() const { return _referent; }
// Returns true if referent is alive.
inline bool is_referent_alive() const {
return _is_alive->do_object_b(_referent);
}
// Loads data for the current reference.
// The "allow_null_referent" argument tells us to allow for the possibility
// of a NULL referent in the discovered Reference object. This typically
// happens in the case of concurrent collectors that may have done the
// discovery concurrently, or interleaved, with mutator execution.
void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
// Move to the next discovered reference.
inline void next() {
_prev_discovered_addr = _current_discovered_addr;
_prev_discovered = _current_discovered;
move_to_next();
}
// Remove the current reference from the list
void remove();
// Make the referent alive.
inline void make_referent_alive() {
if (UseCompressedOops) {
_keep_alive->do_oop((narrowOop*)_referent_addr);
} else {
_keep_alive->do_oop((oop*)_referent_addr);
}
}
// Do enqueuing work, i.e. notifying the GC about the changed discovered pointers.
void enqueue();
// Move enqueued references to the reference pending list.
void complete_enqueue();
// NULL out referent pointer.
void clear_referent();
// Statistics
inline size_t processed() const { return _processed; }
inline size_t removed() const { return _removed; }
inline void move_to_next() {
if (_current_discovered == _next_discovered) {
// End of the list.
_current_discovered = NULL;
} else {
_current_discovered = _next_discovered;
}
assert(_current_discovered != _first_seen, "cyclic ref_list found");
_processed++;
}
};
// The ReferenceProcessor class encapsulates the per-"collector" processing
// of java.lang.Reference objects for GC. The interface is useful for supporting
// a generational abstraction, in particular when there are multiple
// generations that are being independently collected -- possibly
// concurrently and/or incrementally.
// ReferenceProcessor class abstracts away from a generational setting
// by using a closure that determines whether a given reference or referent are
// subject to this ReferenceProcessor's discovery, thus allowing its use in a
// straightforward manner in a general, non-generational, non-contiguous generation
// (or heap) setting.
class ReferenceProcessor : public ReferenceDiscoverer {
friend class RefProcPhase1Task;
friend class RefProcPhase2Task;
friend class RefProcPhase3Task;
friend class RefProcPhase4Task;
public:
// Names of sub-phases of reference processing. Indicates the type of the reference
// processed and the associated phase number at the end.
enum RefProcSubPhases {
SoftRefSubPhase1,
SoftRefSubPhase2,
WeakRefSubPhase2,
FinalRefSubPhase2,
FinalRefSubPhase3,
PhantomRefSubPhase4,
RefSubPhaseMax
};
// Main phases of reference processing.
enum RefProcPhases {
RefPhase1,
RefPhase2,
RefPhase3,
RefPhase4,
RefPhaseMax
};
private:
size_t total_count(DiscoveredList lists[]) const;
void verify_total_count_zero(DiscoveredList lists[], const char* type) NOT_DEBUG_RETURN;
// The SoftReference master timestamp clock
static jlong _soft_ref_timestamp_clock;
BoolObjectClosure* _is_subject_to_discovery; // determines whether a given oop is subject
// to this ReferenceProcessor's discovery
// (and further processing).
bool _discovering_refs; // true when discovery enabled
bool _discovery_is_atomic; // if discovery is atomic wrt
// other collectors in configuration
bool _discovery_is_mt; // true if reference discovery is MT.
bool _enqueuing_is_done; // true if all weak references enqueued
bool _processing_is_mt; // true during phases when
// reference processing is MT.
uint _next_id; // round-robin mod _num_queues counter in
// support of work distribution
bool _adjust_no_of_processing_threads; // allow dynamic adjustment of processing threads
// For collectors that do not keep GC liveness information
// in the object header, this field holds a closure that
// helps the reference processor determine the reachability
// of an oop. It is currently initialized to NULL for all
// collectors except for CMS and G1.
BoolObjectClosure* _is_alive_non_header;
// Soft ref clearing policies
// . the default policy
static ReferencePolicy* _default_soft_ref_policy;
// . the "clear all" policy
static ReferencePolicy* _always_clear_soft_ref_policy;
// . the current policy below is either one of the above
ReferencePolicy* _current_soft_ref_policy;
// The discovered ref lists themselves
// The active MT'ness degree of the queues below
uint _num_queues;
// The maximum MT'ness degree of the queues below
uint _max_num_queues;
// Master array of discovered oops
DiscoveredList* _discovered_refs;
// Arrays of lists of oops, one per thread (pointers into master array above)
DiscoveredList* _discoveredSoftRefs;
DiscoveredList* _discoveredWeakRefs;
DiscoveredList* _discoveredFinalRefs;
DiscoveredList* _discoveredPhantomRefs;
// Phase 1: Re-evaluate soft ref policy.
void process_soft_ref_reconsider(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor,
ReferenceProcessorPhaseTimes* phase_times);
// Phase 2: Drop Soft/Weak/Final references with a NULL or live referent, and clear
// and enqueue non-Final references.
void process_soft_weak_final_refs(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor,
ReferenceProcessorPhaseTimes* phase_times);
// Phase 3: Keep alive followers of Final references, and enqueue.
void process_final_keep_alive(OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor,
ReferenceProcessorPhaseTimes* phase_times);
// Phase 4: Drop and keep alive live Phantom references, or clear and enqueue if dead.
void process_phantom_refs(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor,
ReferenceProcessorPhaseTimes* phase_times);
// Work methods used by the process_* methods. All methods return the number of
// removed elements.
// (SoftReferences only) Traverse the list and remove any SoftReferences whose
// referents are not alive, but that should be kept alive for policy reasons.
// Keep alive the transitive closure of all such referents.
size_t process_soft_ref_reconsider_work(DiscoveredList& refs_list,
ReferencePolicy* policy,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc);
// Traverse the list and remove any Refs whose referents are alive,
// or NULL if discovery is not atomic. Enqueue and clear the reference for
// others if do_enqueue_and_clear is set.
size_t process_soft_weak_final_refs_work(DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
bool do_enqueue_and_clear);
// Keep alive followers of referents for FinalReferences. Must only be called for
// those.
size_t process_final_keep_alive_work(DiscoveredList& refs_list,
OopClosure* keep_alive,
VoidClosure* complete_gc);
size_t process_phantom_refs_work(DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc);
public:
static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
uint num_queues() const { return _num_queues; }
uint max_num_queues() const { return _max_num_queues; }
void set_active_mt_degree(uint v);
ReferencePolicy* setup_policy(bool always_clear) {
_current_soft_ref_policy = always_clear ?
_always_clear_soft_ref_policy : _default_soft_ref_policy;
_current_soft_ref_policy->setup(); // snapshot the policy threshold
return _current_soft_ref_policy;
}
// "Preclean" all the discovered reference lists by removing references that
// are active (e.g. due to the mutator calling enqueue()) or with NULL or
// strongly reachable referents.
// The first argument is a predicate on an oop that indicates
// its (strong) reachability and the fourth is a closure that
// may be used to incrementalize or abort the precleaning process.
// The caller is responsible for taking care of potential
// interference with concurrent operations on these lists
// (or predicates involved) by other threads.
void preclean_discovered_references(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
YieldClosure* yield,
GCTimer* gc_timer);
private:
// Returns the name of the discovered reference list
// occupying the i / _num_queues slot.
const char* list_name(uint i);
// "Preclean" the given discovered reference list by removing references with
// the attributes mentioned in preclean_discovered_references().
// Supports both normal and fine grain yielding.
// Returns whether the operation should be aborted.
bool preclean_discovered_reflist(DiscoveredList& refs_list,
BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
YieldClosure* yield);
// round-robin mod _num_queues (not: _not_ mod _max_num_queues)
uint next_id() {
uint id = _next_id;
assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
if (++_next_id == _num_queues) {
_next_id = 0;
}
assert(_next_id < _num_queues, "_next_id %u _num_queues %u _max_num_queues %u", _next_id, _num_queues, _max_num_queues);
return id;
}
DiscoveredList* get_discovered_list(ReferenceType rt);
inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
HeapWord* discovered_addr);
void clear_discovered_references(DiscoveredList& refs_list);
void log_reflist(const char* prefix, DiscoveredList list[], uint num_active_queues);
void log_reflist_counts(DiscoveredList ref_lists[], uint num_active_queues) PRODUCT_RETURN;
// Balances reference queues.
void balance_queues(DiscoveredList refs_lists[]);
bool need_balance_queues(DiscoveredList refs_lists[]);
// If there is need to balance the given queue, do it.
void maybe_balance_queues(DiscoveredList refs_lists[]);
// Update (advance) the soft ref master clock field.
void update_soft_ref_master_clock();
bool is_subject_to_discovery(oop const obj) const;
bool is_mt_processing_set_up(AbstractRefProcTaskExecutor* task_executor) const;
public:
// Default parameters give you a vanilla reference processor.
ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
bool mt_processing = false, uint mt_processing_degree = 1,
bool mt_discovery = false, uint mt_discovery_degree = 1,
bool atomic_discovery = true,
BoolObjectClosure* is_alive_non_header = NULL,
bool adjust_no_of_processing_threads = false);
// RefDiscoveryPolicy values
enum DiscoveryPolicy {
ReferenceBasedDiscovery = 0,
ReferentBasedDiscovery = 1,
DiscoveryPolicyMin = ReferenceBasedDiscovery,
DiscoveryPolicyMax = ReferentBasedDiscovery
};
static void init_statics();
// get and set "is_alive_non_header" field
BoolObjectClosure* is_alive_non_header() {
return _is_alive_non_header;
}
void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
_is_alive_non_header = is_alive_non_header;
}
BoolObjectClosure* is_subject_to_discovery_closure() const { return _is_subject_to_discovery; }
void set_is_subject_to_discovery_closure(BoolObjectClosure* cl) { _is_subject_to_discovery = cl; }
// start and stop weak ref discovery
void enable_discovery(bool check_no_refs = true);
void disable_discovery() { _discovering_refs = false; }
bool discovery_enabled() { return _discovering_refs; }
// whether discovery is atomic wrt other collectors
bool discovery_is_atomic() const { return _discovery_is_atomic; }
void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
// whether discovery is done by multiple threads same-old-timeously
bool discovery_is_mt() const { return _discovery_is_mt; }
void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
// Whether we are in a phase when _processing_ is MT.
bool processing_is_mt() const { return _processing_is_mt; }
void set_mt_processing(bool mt) { _processing_is_mt = mt; }
// whether all enqueueing of weak references is complete
bool enqueuing_is_done() { return _enqueuing_is_done; }
void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
// iterate over oops
void weak_oops_do(OopClosure* f); // weak roots
void verify_list(DiscoveredList& ref_list);
// Discover a Reference object, using appropriate discovery criteria
virtual bool discover_reference(oop obj, ReferenceType rt);
// Has discovered references that need handling
bool has_discovered_references();
// Process references found during GC (called by the garbage collector)
ReferenceProcessorStats
process_discovered_references(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
VoidClosure* complete_gc,
AbstractRefProcTaskExecutor* task_executor,
ReferenceProcessorPhaseTimes* phase_times);
// If a discovery is in process that is being superceded, abandon it: all
// the discovered lists will be empty, and all the objects on them will
// have NULL discovered fields. Must be called only at a safepoint.
void abandon_partial_discovery();
size_t total_reference_count(ReferenceType rt) const;
// debugging
void verify_no_references_recorded() PRODUCT_RETURN;
void verify_referent(oop obj) PRODUCT_RETURN;
bool adjust_no_of_processing_threads() const { return _adjust_no_of_processing_threads; }
};
// A subject-to-discovery closure that uses a single memory span to determine the area that
// is subject to discovery. Useful for collectors which have contiguous generations.
class SpanSubjectToDiscoveryClosure : public BoolObjectClosure {
MemRegion _span;
public:
SpanSubjectToDiscoveryClosure() : BoolObjectClosure(), _span() { }
SpanSubjectToDiscoveryClosure(MemRegion span) : BoolObjectClosure(), _span(span) { }
MemRegion span() const { return _span; }
void set_span(MemRegion mr) {
_span = mr;
}
virtual bool do_object_b(oop obj) {
return _span.contains(obj);
}
};
// A utility class to disable reference discovery in
// the scope which contains it, for given ReferenceProcessor.
class NoRefDiscovery: StackObj {
private:
ReferenceProcessor* _rp;
bool _was_discovering_refs;
public:
NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
_was_discovering_refs = _rp->discovery_enabled();
if (_was_discovering_refs) {
_rp->disable_discovery();
}
}
~NoRefDiscovery() {
if (_was_discovering_refs) {
_rp->enable_discovery(false /*check_no_refs*/);
}
}
};
// A utility class to temporarily mutate the subject discovery closure of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorSubjectToDiscoveryMutator : StackObj {
ReferenceProcessor* _rp;
BoolObjectClosure* _saved_cl;
public:
ReferenceProcessorSubjectToDiscoveryMutator(ReferenceProcessor* rp, BoolObjectClosure* cl):
_rp(rp) {
_saved_cl = _rp->is_subject_to_discovery_closure();
_rp->set_is_subject_to_discovery_closure(cl);
}
~ReferenceProcessorSubjectToDiscoveryMutator() {
_rp->set_is_subject_to_discovery_closure(_saved_cl);
}
};
// A utility class to temporarily mutate the span of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorSpanMutator : StackObj {
ReferenceProcessor* _rp;
SpanSubjectToDiscoveryClosure _discoverer;
BoolObjectClosure* _old_discoverer;
public:
ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
MemRegion span):
_rp(rp),
_discoverer(span),
_old_discoverer(rp->is_subject_to_discovery_closure()) {
rp->set_is_subject_to_discovery_closure(&_discoverer);
}
~ReferenceProcessorSpanMutator() {
_rp->set_is_subject_to_discovery_closure(_old_discoverer);
}
};
// A utility class to temporarily change the MT'ness of
// reference discovery for the given ReferenceProcessor
// in the scope that contains it.
class ReferenceProcessorMTDiscoveryMutator: StackObj {
private:
ReferenceProcessor* _rp;
bool _saved_mt;
public:
ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
bool mt):
_rp(rp) {
_saved_mt = _rp->discovery_is_mt();
_rp->set_mt_discovery(mt);
}
~ReferenceProcessorMTDiscoveryMutator() {
_rp->set_mt_discovery(_saved_mt);
}
};
// A utility class to temporarily change the disposition
// of the "is_alive_non_header" closure field of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorIsAliveMutator: StackObj {
private:
ReferenceProcessor* _rp;
BoolObjectClosure* _saved_cl;
public:
ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
BoolObjectClosure* cl):
_rp(rp) {
_saved_cl = _rp->is_alive_non_header();
_rp->set_is_alive_non_header(cl);
}
~ReferenceProcessorIsAliveMutator() {
_rp->set_is_alive_non_header(_saved_cl);
}
};
// A utility class to temporarily change the disposition
// of the "discovery_is_atomic" field of the
// given ReferenceProcessor in the scope that contains it.
class ReferenceProcessorAtomicMutator: StackObj {
private:
ReferenceProcessor* _rp;
bool _saved_atomic_discovery;
public:
ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
bool atomic):
_rp(rp) {
_saved_atomic_discovery = _rp->discovery_is_atomic();
_rp->set_atomic_discovery(atomic);
}
~ReferenceProcessorAtomicMutator() {
_rp->set_atomic_discovery(_saved_atomic_discovery);
}
};
// A utility class to temporarily change the MT processing
// disposition of the given ReferenceProcessor instance
// in the scope that contains it.
class ReferenceProcessorMTProcMutator: StackObj {
private:
ReferenceProcessor* _rp;
bool _saved_mt;
public:
ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
bool mt):
_rp(rp) {
_saved_mt = _rp->processing_is_mt();
_rp->set_mt_processing(mt);
}
~ReferenceProcessorMTProcMutator() {
_rp->set_mt_processing(_saved_mt);
}
};
// This class is an interface used to implement task execution for the
// reference processing.
class AbstractRefProcTaskExecutor {
public:
// Abstract tasks to execute.
class ProcessTask;
// Executes a task using worker threads.
virtual void execute(ProcessTask& task, uint ergo_workers) = 0;
// Switch to single threaded mode.
virtual void set_single_threaded_mode() { };
};
// Abstract reference processing task to execute.
class AbstractRefProcTaskExecutor::ProcessTask {
protected:
ReferenceProcessor& _ref_processor;
// Indicates whether the phase could generate work that should be balanced across
// threads after execution.
bool _marks_oops_alive;
ReferenceProcessorPhaseTimes* _phase_times;
ProcessTask(ReferenceProcessor& ref_processor,
bool marks_oops_alive,
ReferenceProcessorPhaseTimes* phase_times)
: _ref_processor(ref_processor),
_marks_oops_alive(marks_oops_alive),
_phase_times(phase_times)
{ }
public:
virtual void work(uint worker_id,
BoolObjectClosure& is_alive,
OopClosure& keep_alive,
VoidClosure& complete_gc) = 0;
bool marks_oops_alive() const { return _marks_oops_alive; }
};
// Temporarily change the number of workers based on given reference count.
// This ergonomically decided worker count will be used to activate worker threads.
class RefProcMTDegreeAdjuster : public StackObj {
typedef ReferenceProcessor::RefProcPhases RefProcPhases;
ReferenceProcessor* _rp;
bool _saved_mt_processing;
uint _saved_num_queues;
// Calculate based on total of references.
uint ergo_proc_thread_count(size_t ref_count,
uint max_threads,
RefProcPhases phase) const;
bool use_max_threads(RefProcPhases phase) const;
public:
RefProcMTDegreeAdjuster(ReferenceProcessor* rp,
RefProcPhases phase,
size_t ref_count);
~RefProcMTDegreeAdjuster();
};
#endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP