blob: 0cedac789371c82fee17fc5d56ce27889e4f6f7c [file] [log] [blame]
/*
* Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/adjoiningGenerations.hpp"
#include "gc/parallel/adjoiningVirtualSpaces.hpp"
#include "gc/parallel/generationSizer.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/resourceArea.hpp"
#include "utilities/align.hpp"
#include "utilities/ostream.hpp"
// If boundary moving is being used, create the young gen and old
// gen with ASPSYoungGen and ASPSOldGen, respectively. Revert to
// the old behavior otherwise (with PSYoungGen and PSOldGen).
AdjoiningGenerations::AdjoiningGenerations(ReservedSpace old_young_rs,
GenerationSizer* policy,
size_t alignment) :
_virtual_spaces(old_young_rs, policy->min_old_size(),
policy->min_young_size(), alignment) {
size_t init_low_byte_size = policy->initial_old_size();
size_t min_low_byte_size = policy->min_old_size();
size_t max_low_byte_size = policy->max_old_size();
size_t init_high_byte_size = policy->initial_young_size();
size_t min_high_byte_size = policy->min_young_size();
size_t max_high_byte_size = policy->max_young_size();
assert(min_low_byte_size <= init_low_byte_size &&
init_low_byte_size <= max_low_byte_size, "Parameter check");
assert(min_high_byte_size <= init_high_byte_size &&
init_high_byte_size <= max_high_byte_size, "Parameter check");
// Create the generations differently based on the option to
// move the boundary.
if (UseAdaptiveGCBoundary) {
// Initialize the adjoining virtual spaces. Then pass the
// a virtual to each generation for initialization of the
// generation.
// Does the actual creation of the virtual spaces
_virtual_spaces.initialize(max_low_byte_size,
init_low_byte_size,
init_high_byte_size);
// Place the young gen at the high end. Passes in the virtual space.
_young_gen = new ASPSYoungGen(_virtual_spaces.high(),
_virtual_spaces.high()->committed_size(),
min_high_byte_size,
_virtual_spaces.high_byte_size_limit());
// Place the old gen at the low end. Passes in the virtual space.
_old_gen = new ASPSOldGen(_virtual_spaces.low(),
_virtual_spaces.low()->committed_size(),
min_low_byte_size,
_virtual_spaces.low_byte_size_limit(),
"old", 1);
young_gen()->initialize_work();
assert(young_gen()->reserved().byte_size() <= young_gen()->gen_size_limit(),
"Consistency check");
assert(old_young_rs.size() >= young_gen()->gen_size_limit(),
"Consistency check");
old_gen()->initialize_work("old", 1);
assert(old_gen()->reserved().byte_size() <= old_gen()->gen_size_limit(),
"Consistency check");
assert(old_young_rs.size() >= old_gen()->gen_size_limit(),
"Consistency check");
} else {
// Layout the reserved space for the generations.
ReservedSpace old_rs =
virtual_spaces()->reserved_space().first_part(max_low_byte_size);
ReservedSpace heap_rs =
virtual_spaces()->reserved_space().last_part(max_low_byte_size);
ReservedSpace young_rs = heap_rs.first_part(max_high_byte_size);
assert(young_rs.size() == heap_rs.size(), "Didn't reserve all of the heap");
// Create the generations. Virtual spaces are not passed in.
_young_gen = new PSYoungGen(init_high_byte_size,
min_high_byte_size,
max_high_byte_size);
_old_gen = new PSOldGen(init_low_byte_size,
min_low_byte_size,
max_low_byte_size,
"old", 1);
// The virtual spaces are created by the initialization of the gens.
_young_gen->initialize(young_rs, alignment);
assert(young_gen()->gen_size_limit() == young_rs.size(),
"Consistency check");
_old_gen->initialize(old_rs, alignment, "old", 1);
assert(old_gen()->gen_size_limit() == old_rs.size(), "Consistency check");
}
}
size_t AdjoiningGenerations::reserved_byte_size() {
return virtual_spaces()->reserved_space().size();
}
void log_before_expansion(bool old, size_t expand_in_bytes, size_t change_in_bytes, size_t max_size) {
Log(heap, ergo) log;
if (!log.is_debug()) {
return;
}
log.debug("Before expansion of %s gen with boundary move", old ? "old" : "young");
log.debug(" Requested change: " SIZE_FORMAT_HEX " Attempted change: " SIZE_FORMAT_HEX,
expand_in_bytes, change_in_bytes);
ResourceMark rm;
LogStream ls(log.debug());
ParallelScavengeHeap::heap()->print_on(&ls);
log.debug(" PS%sGen max size: " SIZE_FORMAT "K", old ? "Old" : "Young", max_size/K);
}
void log_after_expansion(bool old, size_t max_size) {
Log(heap, ergo) log;
if (!log.is_debug()) {
return;
}
log.debug("After expansion of %s gen with boundary move", old ? "old" : "young");
ResourceMark rm;
LogStream ls(log.debug());
ParallelScavengeHeap::heap()->print_on(&ls);
log.debug(" PS%sGen max size: " SIZE_FORMAT "K", old ? "Old" : "Young", max_size/K);
}
// Make checks on the current sizes of the generations and
// the constraints on the sizes of the generations. Push
// up the boundary within the constraints. A partial
// push can occur.
void AdjoiningGenerations::request_old_gen_expansion(size_t expand_in_bytes) {
assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check");
assert_lock_strong(ExpandHeap_lock);
assert_locked_or_safepoint(Heap_lock);
// These sizes limit the amount the boundaries can move. Effectively,
// the generation says how much it is willing to yield to the other
// generation.
const size_t young_gen_available = young_gen()->available_for_contraction();
const size_t old_gen_available = old_gen()->available_for_expansion();
const size_t alignment = virtual_spaces()->alignment();
size_t change_in_bytes = MIN3(young_gen_available,
old_gen_available,
align_up(expand_in_bytes, alignment));
if (change_in_bytes == 0) {
return;
}
log_before_expansion(true, expand_in_bytes, change_in_bytes, old_gen()->max_gen_size());
// Move the boundary between the generations up (smaller young gen).
if (virtual_spaces()->adjust_boundary_up(change_in_bytes)) {
young_gen()->reset_after_change();
old_gen()->reset_after_change();
}
// The total reserved for the generations should match the sum
// of the two even if the boundary is moving.
assert(reserved_byte_size() ==
old_gen()->max_gen_size() + young_gen()->max_size(),
"Space is missing");
young_gen()->space_invariants();
old_gen()->space_invariants();
log_after_expansion(true, old_gen()->max_gen_size());
}
// See comments on request_old_gen_expansion()
bool AdjoiningGenerations::request_young_gen_expansion(size_t expand_in_bytes) {
assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check");
// If eden is not empty, the boundary can be moved but no advantage
// can be made of the move since eden cannot be moved.
if (!young_gen()->eden_space()->is_empty()) {
return false;
}
bool result = false;
const size_t young_gen_available = young_gen()->available_for_expansion();
const size_t old_gen_available = old_gen()->available_for_contraction();
const size_t alignment = virtual_spaces()->alignment();
size_t change_in_bytes = MIN3(young_gen_available,
old_gen_available,
align_up(expand_in_bytes, alignment));
if (change_in_bytes == 0) {
return false;
}
log_before_expansion(false, expand_in_bytes, change_in_bytes, young_gen()->max_size());
// Move the boundary between the generations down (smaller old gen).
MutexLocker x(ExpandHeap_lock);
if (virtual_spaces()->adjust_boundary_down(change_in_bytes)) {
young_gen()->reset_after_change();
old_gen()->reset_after_change();
result = true;
}
// The total reserved for the generations should match the sum
// of the two even if the boundary is moving.
assert(reserved_byte_size() ==
old_gen()->max_gen_size() + young_gen()->max_size(),
"Space is missing");
young_gen()->space_invariants();
old_gen()->space_invariants();
log_after_expansion(false, young_gen()->max_size());
return result;
}
// Additional space is needed in the old generation. Try to move the boundary
// up to meet the need. Moves boundary up only
void AdjoiningGenerations::adjust_boundary_for_old_gen_needs(
size_t desired_free_space) {
assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check");
// Stress testing.
if (PSAdaptiveSizePolicyResizeVirtualSpaceAlot == 1) {
MutexLocker x(ExpandHeap_lock);
request_old_gen_expansion(virtual_spaces()->alignment() * 3 / 2);
}
// Expand only if the entire generation is already committed.
if (old_gen()->virtual_space()->uncommitted_size() == 0) {
if (old_gen()->free_in_bytes() < desired_free_space) {
MutexLocker x(ExpandHeap_lock);
request_old_gen_expansion(desired_free_space);
}
}
}
// See comment on adjust_boundary_for_old_gen_needss().
// Adjust boundary down only.
void AdjoiningGenerations::adjust_boundary_for_young_gen_needs(size_t eden_size,
size_t survivor_size) {
assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check");
// Stress testing.
if (PSAdaptiveSizePolicyResizeVirtualSpaceAlot == 0) {
request_young_gen_expansion(virtual_spaces()->alignment() * 3 / 2);
eden_size = young_gen()->eden_space()->capacity_in_bytes();
}
// Expand only if the entire generation is already committed.
if (young_gen()->virtual_space()->uncommitted_size() == 0) {
size_t desired_size = eden_size + 2 * survivor_size;
const size_t committed = young_gen()->virtual_space()->committed_size();
if (desired_size > committed) {
request_young_gen_expansion(desired_size - committed);
}
}
}