blob: ac8ce1d1670b820a80857ab9a38727074296607d [file] [log] [blame]
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_PTRQUEUE_HPP
#define SHARE_VM_GC_G1_PTRQUEUE_HPP
#include "utilities/align.hpp"
#include "utilities/sizes.hpp"
// There are various techniques that require threads to be able to log
// addresses. For example, a generational write barrier might log
// the addresses of modified old-generation objects. This type supports
// this operation.
class BufferNode;
class PtrQueueSet;
class PtrQueue {
friend class VMStructs;
// Noncopyable - not defined.
PtrQueue(const PtrQueue&);
PtrQueue& operator=(const PtrQueue&);
// The ptr queue set to which this queue belongs.
PtrQueueSet* const _qset;
// Whether updates should be logged.
bool _active;
// If true, the queue is permanent, and doesn't need to deallocate
// its buffer in the destructor (since that obtains a lock which may not
// be legally locked by then.
const bool _permanent;
// The (byte) index at which an object was last enqueued. Starts at
// capacity_in_bytes (indicating an empty buffer) and goes towards zero.
// Value is always pointer-size aligned.
size_t _index;
// Size of the current buffer, in bytes.
// Value is always pointer-size aligned.
size_t _capacity_in_bytes;
static const size_t _element_size = sizeof(void*);
// Get the capacity, in bytes. The capacity must have been set.
size_t capacity_in_bytes() const {
assert(_capacity_in_bytes > 0, "capacity not set");
return _capacity_in_bytes;
}
void set_capacity(size_t entries) {
size_t byte_capacity = index_to_byte_index(entries);
assert(_capacity_in_bytes == 0 || _capacity_in_bytes == byte_capacity,
"changing capacity " SIZE_FORMAT " -> " SIZE_FORMAT,
_capacity_in_bytes, byte_capacity);
_capacity_in_bytes = byte_capacity;
}
static size_t byte_index_to_index(size_t ind) {
assert(is_aligned(ind, _element_size), "precondition");
return ind / _element_size;
}
static size_t index_to_byte_index(size_t ind) {
return ind * _element_size;
}
protected:
// The buffer.
void** _buf;
size_t index() const {
return byte_index_to_index(_index);
}
void set_index(size_t new_index) {
size_t byte_index = index_to_byte_index(new_index);
assert(byte_index <= capacity_in_bytes(), "precondition");
_index = byte_index;
}
size_t capacity() const {
return byte_index_to_index(capacity_in_bytes());
}
// If there is a lock associated with this buffer, this is that lock.
Mutex* _lock;
PtrQueueSet* qset() { return _qset; }
bool is_permanent() const { return _permanent; }
// Process queue entries and release resources.
void flush_impl();
// Initialize this queue to contain a null buffer, and be part of the
// given PtrQueueSet.
PtrQueue(PtrQueueSet* qset, bool permanent = false, bool active = false);
// Requires queue flushed or permanent.
~PtrQueue();
public:
// Associate a lock with a ptr queue.
void set_lock(Mutex* lock) { _lock = lock; }
// Forcibly set empty.
void reset() {
if (_buf != NULL) {
_index = capacity_in_bytes();
}
}
void enqueue(volatile void* ptr) {
enqueue((void*)(ptr));
}
// Enqueues the given "obj".
void enqueue(void* ptr) {
if (!_active) return;
else enqueue_known_active(ptr);
}
// This method is called when we're doing the zero index handling
// and gives a chance to the queues to do any pre-enqueueing
// processing they might want to do on the buffer. It should return
// true if the buffer should be enqueued, or false if enough
// entries were cleared from it so that it can be re-used. It should
// not return false if the buffer is still full (otherwise we can
// get into an infinite loop).
virtual bool should_enqueue_buffer() { return true; }
void handle_zero_index();
void locking_enqueue_completed_buffer(BufferNode* node);
void enqueue_known_active(void* ptr);
// Return the size of the in-use region.
size_t size() const {
size_t result = 0;
if (_buf != NULL) {
assert(_index <= capacity_in_bytes(), "Invariant");
result = byte_index_to_index(capacity_in_bytes() - _index);
}
return result;
}
bool is_empty() const {
return _buf == NULL || capacity_in_bytes() == _index;
}
// Set the "active" property of the queue to "b". An enqueue to an
// inactive thread is a no-op. Setting a queue to inactive resets its
// log to the empty state.
void set_active(bool b) {
_active = b;
if (!b && _buf != NULL) {
reset();
} else if (b && _buf != NULL) {
assert(index() == capacity(),
"invariant: queues are empty when activated.");
}
}
bool is_active() const { return _active; }
// To support compiler.
protected:
template<typename Derived>
static ByteSize byte_offset_of_index() {
return byte_offset_of(Derived, _index);
}
static ByteSize byte_width_of_index() { return in_ByteSize(sizeof(size_t)); }
template<typename Derived>
static ByteSize byte_offset_of_buf() {
return byte_offset_of(Derived, _buf);
}
static ByteSize byte_width_of_buf() { return in_ByteSize(_element_size); }
template<typename Derived>
static ByteSize byte_offset_of_active() {
return byte_offset_of(Derived, _active);
}
static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
};
class BufferNode {
size_t _index;
BufferNode* _next;
void* _buffer[1]; // Pseudo flexible array member.
BufferNode() : _index(0), _next(NULL) { }
~BufferNode() { }
static size_t buffer_offset() {
return offset_of(BufferNode, _buffer);
}
public:
BufferNode* next() const { return _next; }
void set_next(BufferNode* n) { _next = n; }
size_t index() const { return _index; }
void set_index(size_t i) { _index = i; }
// Allocate a new BufferNode with the "buffer" having size elements.
static BufferNode* allocate(size_t size);
// Free a BufferNode.
static void deallocate(BufferNode* node);
// Return the BufferNode containing the buffer, after setting its index.
static BufferNode* make_node_from_buffer(void** buffer, size_t index) {
BufferNode* node =
reinterpret_cast<BufferNode*>(
reinterpret_cast<char*>(buffer) - buffer_offset());
node->set_index(index);
return node;
}
// Return the buffer for node.
static void** make_buffer_from_node(BufferNode *node) {
// &_buffer[0] might lead to index out of bounds warnings.
return reinterpret_cast<void**>(
reinterpret_cast<char*>(node) + buffer_offset());
}
};
// A PtrQueueSet represents resources common to a set of pointer queues.
// In particular, the individual queues allocate buffers from this shared
// set, and return completed buffers to the set.
// All these variables are are protected by the TLOQ_CBL_mon. XXX ???
class PtrQueueSet {
private:
// The size of all buffers in the set.
size_t _buffer_size;
protected:
Monitor* _cbl_mon; // Protects the fields below.
BufferNode* _completed_buffers_head;
BufferNode* _completed_buffers_tail;
size_t _n_completed_buffers;
int _process_completed_threshold;
volatile bool _process_completed;
// This (and the interpretation of the first element as a "next"
// pointer) are protected by the TLOQ_FL_lock.
Mutex* _fl_lock;
BufferNode* _buf_free_list;
size_t _buf_free_list_sz;
// Queue set can share a freelist. The _fl_owner variable
// specifies the owner. It is set to "this" by default.
PtrQueueSet* _fl_owner;
bool _all_active;
// If true, notify_all on _cbl_mon when the threshold is reached.
bool _notify_when_complete;
// Maximum number of elements allowed on completed queue: after that,
// enqueuer does the work itself. Zero indicates no maximum.
int _max_completed_queue;
size_t _completed_queue_padding;
size_t completed_buffers_list_length();
void assert_completed_buffer_list_len_correct_locked();
void assert_completed_buffer_list_len_correct();
protected:
// A mutator thread does the the work of processing a buffer.
// Returns "true" iff the work is complete (and the buffer may be
// deallocated).
virtual bool mut_process_buffer(BufferNode* node) {
ShouldNotReachHere();
return false;
}
// Create an empty ptr queue set.
PtrQueueSet(bool notify_when_complete = false);
~PtrQueueSet();
// Because of init-order concerns, we can't pass these as constructor
// arguments.
void initialize(Monitor* cbl_mon,
Mutex* fl_lock,
int process_completed_threshold,
int max_completed_queue,
PtrQueueSet *fl_owner = NULL);
public:
// Return the buffer for a BufferNode of size buffer_size().
void** allocate_buffer();
// Return an empty buffer to the free list. The node is required
// to have been allocated with a size of buffer_size().
void deallocate_buffer(BufferNode* node);
// Declares that "buf" is a complete buffer.
void enqueue_complete_buffer(BufferNode* node);
// To be invoked by the mutator.
bool process_or_enqueue_complete_buffer(BufferNode* node);
bool completed_buffers_exist_dirty() {
return _n_completed_buffers > 0;
}
bool process_completed_buffers() { return _process_completed; }
void set_process_completed(bool x) { _process_completed = x; }
bool is_active() { return _all_active; }
// Set the buffer size. Should be called before any "enqueue" operation
// can be called. And should only be called once.
void set_buffer_size(size_t sz);
// Get the buffer size. Must have been set.
size_t buffer_size() const {
assert(_buffer_size > 0, "buffer size not set");
return _buffer_size;
}
// Get/Set the number of completed buffers that triggers log processing.
void set_process_completed_threshold(int sz) { _process_completed_threshold = sz; }
int process_completed_threshold() const { return _process_completed_threshold; }
// Must only be called at a safe point. Indicates that the buffer free
// list size may be reduced, if that is deemed desirable.
void reduce_free_list();
size_t completed_buffers_num() { return _n_completed_buffers; }
void merge_bufferlists(PtrQueueSet* src);
void set_max_completed_queue(int m) { _max_completed_queue = m; }
int max_completed_queue() { return _max_completed_queue; }
void set_completed_queue_padding(size_t padding) { _completed_queue_padding = padding; }
size_t completed_queue_padding() { return _completed_queue_padding; }
// Notify the consumer if the number of buffers crossed the threshold
void notify_if_necessary();
};
#endif // SHARE_VM_GC_G1_PTRQUEUE_HPP