blob: 01d3c4d8758e31cbc162136168e2d46a316772e7 [file] [log] [blame]
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
#define SHARE_VM_GC_G1_HEAPREGION_HPP
#include "gc/g1/g1BlockOffsetTable.hpp"
#include "gc/g1/g1HeapRegionTraceType.hpp"
#include "gc/g1/heapRegionTracer.hpp"
#include "gc/g1/heapRegionType.hpp"
#include "gc/g1/survRateGroup.hpp"
#include "gc/shared/ageTable.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/spaceDecorator.hpp"
#include "utilities/macros.hpp"
// A HeapRegion is the smallest piece of a G1CollectedHeap that
// can be collected independently.
// NOTE: Although a HeapRegion is a Space, its
// Space::initDirtyCardClosure method must not be called.
// The problem is that the existence of this method breaks
// the independence of barrier sets from remembered sets.
// The solution is to remove this method from the definition
// of a Space.
// Each heap region is self contained. top() and end() can never
// be set beyond the end of the region. For humongous objects,
// the first region is a StartsHumongous region. If the humongous
// object is larger than a heap region, the following regions will
// be of type ContinuesHumongous. In this case the top() of the
// StartHumongous region and all ContinuesHumongous regions except
// the last will point to their own end. The last ContinuesHumongous
// region may have top() equal the end of object if there isn't
// room for filler objects to pad out to the end of the region.
class G1CollectedHeap;
class G1CMBitMap;
class G1IsAliveAndApplyClosure;
class HeapRegionRemSet;
class HeapRegionRemSetIterator;
class HeapRegion;
class HeapRegionSetBase;
class nmethod;
#define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
#define HR_FORMAT_PARAMS(_hr_) \
(_hr_)->hrm_index(), \
(_hr_)->get_short_type_str(), \
p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
// sentinel value for hrm_index
#define G1_NO_HRM_INDEX ((uint) -1)
// The complicating factor is that BlockOffsetTable diverged
// significantly, and we need functionality that is only in the G1 version.
// So I copied that code, which led to an alternate G1 version of
// OffsetTableContigSpace. If the two versions of BlockOffsetTable could
// be reconciled, then G1OffsetTableContigSpace could go away.
// The idea behind time stamps is the following. We want to keep track of
// the highest address where it's safe to scan objects for each region.
// This is only relevant for current GC alloc regions so we keep a time stamp
// per region to determine if the region has been allocated during the current
// GC or not. If the time stamp is current we report a scan_top value which
// was saved at the end of the previous GC for retained alloc regions and which is
// equal to the bottom for all other regions.
// There is a race between card scanners and allocating gc workers where we must ensure
// that card scanners do not read the memory allocated by the gc workers.
// In order to enforce that, we must not return a value of _top which is more recent than the
// time stamp. This is due to the fact that a region may become a gc alloc region at
// some point after we've read the timestamp value as being < the current time stamp.
// The time stamps are re-initialized to zero at cleanup and at Full GCs.
// The current scheme that uses sequential unsigned ints will fail only if we have 4b
// evacuation pauses between two cleanups, which is _highly_ unlikely.
class G1ContiguousSpace: public CompactibleSpace {
friend class VMStructs;
HeapWord* volatile _top;
protected:
G1BlockOffsetTablePart _bot_part;
Mutex _par_alloc_lock;
// When we need to retire an allocation region, while other threads
// are also concurrently trying to allocate into it, we typically
// allocate a dummy object at the end of the region to ensure that
// no more allocations can take place in it. However, sometimes we
// want to know where the end of the last "real" object we allocated
// into the region was and this is what this keeps track.
HeapWord* _pre_dummy_top;
public:
G1ContiguousSpace(G1BlockOffsetTable* bot);
void set_top(HeapWord* value) { _top = value; }
HeapWord* top() const { return _top; }
protected:
// Reset the G1ContiguousSpace.
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
HeapWord* volatile* top_addr() { return &_top; }
// Try to allocate at least min_word_size and up to desired_size from this Space.
// Returns NULL if not possible, otherwise sets actual_word_size to the amount of
// space allocated.
// This version assumes that all allocation requests to this Space are properly
// synchronized.
inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
// Try to allocate at least min_word_size and up to desired_size from this Space.
// Returns NULL if not possible, otherwise sets actual_word_size to the amount of
// space allocated.
// This version synchronizes with other calls to par_allocate_impl().
inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
public:
void reset_after_compaction() { set_top(compaction_top()); }
size_t used() const { return byte_size(bottom(), top()); }
size_t free() const { return byte_size(top(), end()); }
bool is_free_block(const HeapWord* p) const { return p >= top(); }
MemRegion used_region() const { return MemRegion(bottom(), top()); }
void object_iterate(ObjectClosure* blk);
void safe_object_iterate(ObjectClosure* blk);
void mangle_unused_area() PRODUCT_RETURN;
void mangle_unused_area_complete() PRODUCT_RETURN;
// See the comment above in the declaration of _pre_dummy_top for an
// explanation of what it is.
void set_pre_dummy_top(HeapWord* pre_dummy_top) {
assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
_pre_dummy_top = pre_dummy_top;
}
HeapWord* pre_dummy_top() {
return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
}
void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
virtual void clear(bool mangle_space);
HeapWord* block_start(const void* p);
HeapWord* block_start_const(const void* p) const;
// Allocation (return NULL if full). Assumes the caller has established
// mutually exclusive access to the space.
HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
// Allocation (return NULL if full). Enforces mutual exclusion internally.
HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
virtual HeapWord* allocate(size_t word_size);
virtual HeapWord* par_allocate(size_t word_size);
HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
// MarkSweep support phase3
virtual HeapWord* initialize_threshold();
virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
virtual void print() const;
void reset_bot() {
_bot_part.reset_bot();
}
void print_bot_on(outputStream* out) {
_bot_part.print_on(out);
}
};
class HeapRegion: public G1ContiguousSpace {
friend class VMStructs;
// Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
private:
// The remembered set for this region.
// (Might want to make this "inline" later, to avoid some alloc failure
// issues.)
HeapRegionRemSet* _rem_set;
// Auxiliary functions for scan_and_forward support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return top();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return true; // Always true, since scan_limit is top
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return HeapRegion::block_size(addr); // Avoid virtual call
}
void report_region_type_change(G1HeapRegionTraceType::Type to);
// Returns whether the given object address refers to a dead object, and either the
// size of the object (if live) or the size of the block (if dead) in size.
// May
// - only called with obj < top()
// - not called on humongous objects or archive regions
inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const;
protected:
// The index of this region in the heap region sequence.
uint _hrm_index;
HeapRegionType _type;
// For a humongous region, region in which it starts.
HeapRegion* _humongous_start_region;
// True iff an attempt to evacuate an object in the region failed.
bool _evacuation_failed;
// Fields used by the HeapRegionSetBase class and subclasses.
HeapRegion* _next;
HeapRegion* _prev;
#ifdef ASSERT
HeapRegionSetBase* _containing_set;
#endif // ASSERT
// We use concurrent marking to determine the amount of live data
// in each heap region.
size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
// The calculated GC efficiency of the region.
double _gc_efficiency;
int _young_index_in_cset;
SurvRateGroup* _surv_rate_group;
int _age_index;
// The start of the unmarked area. The unmarked area extends from this
// word until the top and/or end of the region, and is the part
// of the region for which no marking was done, i.e. objects may
// have been allocated in this part since the last mark phase.
// "prev" is the top at the start of the last completed marking.
// "next" is the top at the start of the in-progress marking (if any.)
HeapWord* _prev_top_at_mark_start;
HeapWord* _next_top_at_mark_start;
// If a collection pause is in progress, this is the top at the start
// of that pause.
void init_top_at_mark_start() {
assert(_prev_marked_bytes == 0 &&
_next_marked_bytes == 0,
"Must be called after zero_marked_bytes.");
HeapWord* bot = bottom();
_prev_top_at_mark_start = bot;
_next_top_at_mark_start = bot;
}
// Cached attributes used in the collection set policy information
// The RSet length that was added to the total value
// for the collection set.
size_t _recorded_rs_length;
// The predicted elapsed time that was added to total value
// for the collection set.
double _predicted_elapsed_time_ms;
// Iterate over the references in a humongous objects and apply the given closure
// to them.
// Humongous objects are allocated directly in the old-gen. So we need special
// handling for concurrent processing encountering an in-progress allocation.
template <class Closure, bool is_gc_active>
inline bool do_oops_on_card_in_humongous(MemRegion mr,
Closure* cl,
G1CollectedHeap* g1h);
// Returns the block size of the given (dead, potentially having its class unloaded) object
// starting at p extending to at most the prev TAMS using the given mark bitmap.
inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const;
public:
HeapRegion(uint hrm_index,
G1BlockOffsetTable* bot,
MemRegion mr);
// Initializing the HeapRegion not only resets the data structure, but also
// resets the BOT for that heap region.
// The default values for clear_space means that we will do the clearing if
// there's clearing to be done ourselves. We also always mangle the space.
virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
static int LogOfHRGrainBytes;
static int LogOfHRGrainWords;
static size_t GrainBytes;
static size_t GrainWords;
static size_t CardsPerRegion;
static size_t align_up_to_region_byte_size(size_t sz) {
return (sz + (size_t) GrainBytes - 1) &
~((1 << (size_t) LogOfHRGrainBytes) - 1);
}
// Returns whether a field is in the same region as the obj it points to.
template <typename T>
static bool is_in_same_region(T* p, oop obj) {
assert(p != NULL, "p can't be NULL");
assert(obj != NULL, "obj can't be NULL");
return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
}
static size_t max_region_size();
static size_t min_region_size_in_words();
// It sets up the heap region size (GrainBytes / GrainWords), as
// well as other related fields that are based on the heap region
// size (LogOfHRGrainBytes / LogOfHRGrainWords /
// CardsPerRegion). All those fields are considered constant
// throughout the JVM's execution, therefore they should only be set
// up once during initialization time.
static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
// All allocated blocks are occupied by objects in a HeapRegion
bool block_is_obj(const HeapWord* p) const;
// Returns whether the given object is dead based on TAMS and bitmap.
bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const;
// Returns the object size for all valid block starts
// and the amount of unallocated words if called on top()
size_t block_size(const HeapWord* p) const;
// Scans through the region using the bitmap to determine what
// objects to call size_t ApplyToMarkedClosure::apply(oop) for.
template<typename ApplyToMarkedClosure>
inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure);
// Override for scan_and_forward support.
void prepare_for_compaction(CompactPoint* cp);
// Update heap region to be consistent after compaction.
void complete_compaction();
inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
inline HeapWord* allocate_no_bot_updates(size_t word_size);
inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
// If this region is a member of a HeapRegionManager, the index in that
// sequence, otherwise -1.
uint hrm_index() const { return _hrm_index; }
// The number of bytes marked live in the region in the last marking phase.
size_t marked_bytes() { return _prev_marked_bytes; }
size_t live_bytes() {
return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
}
// The number of bytes counted in the next marking.
size_t next_marked_bytes() { return _next_marked_bytes; }
// The number of bytes live wrt the next marking.
size_t next_live_bytes() {
return
(top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
}
// A lower bound on the amount of garbage bytes in the region.
size_t garbage_bytes() {
size_t used_at_mark_start_bytes =
(prev_top_at_mark_start() - bottom()) * HeapWordSize;
return used_at_mark_start_bytes - marked_bytes();
}
// Return the amount of bytes we'll reclaim if we collect this
// region. This includes not only the known garbage bytes in the
// region but also any unallocated space in it, i.e., [top, end),
// since it will also be reclaimed if we collect the region.
size_t reclaimable_bytes() {
size_t known_live_bytes = live_bytes();
assert(known_live_bytes <= capacity(), "sanity");
return capacity() - known_live_bytes;
}
// An upper bound on the number of live bytes in the region.
size_t max_live_bytes() { return used() - garbage_bytes(); }
void add_to_marked_bytes(size_t incr_bytes) {
_next_marked_bytes = _next_marked_bytes + incr_bytes;
}
void zero_marked_bytes() {
_prev_marked_bytes = _next_marked_bytes = 0;
}
const char* get_type_str() const { return _type.get_str(); }
const char* get_short_type_str() const { return _type.get_short_str(); }
G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
bool is_free() const { return _type.is_free(); }
bool is_young() const { return _type.is_young(); }
bool is_eden() const { return _type.is_eden(); }
bool is_survivor() const { return _type.is_survivor(); }
bool is_humongous() const { return _type.is_humongous(); }
bool is_starts_humongous() const { return _type.is_starts_humongous(); }
bool is_continues_humongous() const { return _type.is_continues_humongous(); }
bool is_old() const { return _type.is_old(); }
bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
// A pinned region contains objects which are not moved by garbage collections.
// Humongous regions and archive regions are pinned.
bool is_pinned() const { return _type.is_pinned(); }
// An archive region is a pinned region, also tagged as old, which
// should not be marked during mark/sweep. This allows the address
// space to be shared by JVM instances.
bool is_archive() const { return _type.is_archive(); }
bool is_open_archive() const { return _type.is_open_archive(); }
bool is_closed_archive() const { return _type.is_closed_archive(); }
// For a humongous region, region in which it starts.
HeapRegion* humongous_start_region() const {
return _humongous_start_region;
}
// Makes the current region be a "starts humongous" region, i.e.,
// the first region in a series of one or more contiguous regions
// that will contain a single "humongous" object.
//
// obj_top : points to the top of the humongous object.
// fill_size : size of the filler object at the end of the region series.
void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
// Makes the current region be a "continues humongous'
// region. first_hr is the "start humongous" region of the series
// which this region will be part of.
void set_continues_humongous(HeapRegion* first_hr);
// Unsets the humongous-related fields on the region.
void clear_humongous();
// If the region has a remembered set, return a pointer to it.
HeapRegionRemSet* rem_set() const {
return _rem_set;
}
inline bool in_collection_set() const;
// Methods used by the HeapRegionSetBase class and subclasses.
// Getter and setter for the next and prev fields used to link regions into
// linked lists.
HeapRegion* next() { return _next; }
HeapRegion* prev() { return _prev; }
void set_next(HeapRegion* next) { _next = next; }
void set_prev(HeapRegion* prev) { _prev = prev; }
// Every region added to a set is tagged with a reference to that
// set. This is used for doing consistency checking to make sure that
// the contents of a set are as they should be and it's only
// available in non-product builds.
#ifdef ASSERT
void set_containing_set(HeapRegionSetBase* containing_set) {
assert((containing_set == NULL && _containing_set != NULL) ||
(containing_set != NULL && _containing_set == NULL),
"containing_set: " PTR_FORMAT " "
"_containing_set: " PTR_FORMAT,
p2i(containing_set), p2i(_containing_set));
_containing_set = containing_set;
}
HeapRegionSetBase* containing_set() { return _containing_set; }
#else // ASSERT
void set_containing_set(HeapRegionSetBase* containing_set) { }
// containing_set() is only used in asserts so there's no reason
// to provide a dummy version of it.
#endif // ASSERT
// Reset the HeapRegion to default values.
// If skip_remset is true, do not clear the remembered set.
// If clear_space is true, clear the HeapRegion's memory.
// If locked is true, assume we are the only thread doing this operation.
void hr_clear(bool skip_remset, bool clear_space, bool locked = false);
// Clear the card table corresponding to this region.
void clear_cardtable();
// Get the start of the unmarked area in this region.
HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
// Note the start or end of marking. This tells the heap region
// that the collector is about to start or has finished (concurrently)
// marking the heap.
// Notify the region that concurrent marking is starting. Initialize
// all fields related to the next marking info.
inline void note_start_of_marking();
// Notify the region that concurrent marking has finished. Copy the
// (now finalized) next marking info fields into the prev marking
// info fields.
inline void note_end_of_marking();
// Notify the region that it will be used as to-space during a GC
// and we are about to start copying objects into it.
inline void note_start_of_copying(bool during_initial_mark);
// Notify the region that it ceases being to-space during a GC and
// we will not copy objects into it any more.
inline void note_end_of_copying(bool during_initial_mark);
// Notify the region that we are about to start processing
// self-forwarded objects during evac failure handling.
void note_self_forwarding_removal_start(bool during_initial_mark,
bool during_conc_mark);
// Notify the region that we have finished processing self-forwarded
// objects during evac failure handling.
void note_self_forwarding_removal_end(size_t marked_bytes);
void reset_during_compaction() {
assert(is_humongous(),
"should only be called for humongous regions");
zero_marked_bytes();
init_top_at_mark_start();
}
void calc_gc_efficiency(void);
double gc_efficiency() { return _gc_efficiency;}
int young_index_in_cset() const { return _young_index_in_cset; }
void set_young_index_in_cset(int index) {
assert( (index == -1) || is_young(), "pre-condition" );
_young_index_in_cset = index;
}
int age_in_surv_rate_group() {
assert( _surv_rate_group != NULL, "pre-condition" );
assert( _age_index > -1, "pre-condition" );
return _surv_rate_group->age_in_group(_age_index);
}
void record_surv_words_in_group(size_t words_survived) {
assert( _surv_rate_group != NULL, "pre-condition" );
assert( _age_index > -1, "pre-condition" );
int age_in_group = age_in_surv_rate_group();
_surv_rate_group->record_surviving_words(age_in_group, words_survived);
}
int age_in_surv_rate_group_cond() {
if (_surv_rate_group != NULL)
return age_in_surv_rate_group();
else
return -1;
}
SurvRateGroup* surv_rate_group() {
return _surv_rate_group;
}
void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
assert( surv_rate_group != NULL, "pre-condition" );
assert( _surv_rate_group == NULL, "pre-condition" );
assert( is_young(), "pre-condition" );
_surv_rate_group = surv_rate_group;
_age_index = surv_rate_group->next_age_index();
}
void uninstall_surv_rate_group() {
if (_surv_rate_group != NULL) {
assert( _age_index > -1, "pre-condition" );
assert( is_young(), "pre-condition" );
_surv_rate_group = NULL;
_age_index = -1;
} else {
assert( _age_index == -1, "pre-condition" );
}
}
void set_free();
void set_eden();
void set_eden_pre_gc();
void set_survivor();
void move_to_old();
void set_old();
void set_open_archive();
void set_closed_archive();
// Determine if an object has been allocated since the last
// mark performed by the collector. This returns true iff the object
// is within the unmarked area of the region.
bool obj_allocated_since_prev_marking(oop obj) const {
return (HeapWord *) obj >= prev_top_at_mark_start();
}
bool obj_allocated_since_next_marking(oop obj) const {
return (HeapWord *) obj >= next_top_at_mark_start();
}
// Returns the "evacuation_failed" property of the region.
bool evacuation_failed() { return _evacuation_failed; }
// Sets the "evacuation_failed" property of the region.
void set_evacuation_failed(bool b) {
_evacuation_failed = b;
if (b) {
_next_marked_bytes = 0;
}
}
// Iterate over the objects overlapping part of a card, applying cl
// to all references in the region. This is a helper for
// G1RemSet::refine_card*, and is tightly coupled with them.
// mr is the memory region covered by the card, trimmed to the
// allocated space for this region. Must not be empty.
// This region must be old or humongous.
// Returns true if the designated objects were successfully
// processed, false if an unparsable part of the heap was
// encountered; that only happens when invoked concurrently with the
// mutator.
template <bool is_gc_active, class Closure>
inline bool oops_on_card_seq_iterate_careful(MemRegion mr, Closure* cl);
size_t recorded_rs_length() const { return _recorded_rs_length; }
double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
void set_recorded_rs_length(size_t rs_length) {
_recorded_rs_length = rs_length;
}
void set_predicted_elapsed_time_ms(double ms) {
_predicted_elapsed_time_ms = ms;
}
// Routines for managing a list of code roots (attached to the
// this region's RSet) that point into this heap region.
void add_strong_code_root(nmethod* nm);
void add_strong_code_root_locked(nmethod* nm);
void remove_strong_code_root(nmethod* nm);
// Applies blk->do_code_blob() to each of the entries in
// the strong code roots list for this region
void strong_code_roots_do(CodeBlobClosure* blk) const;
// Verify that the entries on the strong code root list for this
// region are live and include at least one pointer into this region.
void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
void print() const;
void print_on(outputStream* st) const;
// vo == UsePrevMarking -> use "prev" marking information,
// vo == UseNextMarking -> use "next" marking information
// vo == UseFullMarking -> use "next" marking bitmap but no TAMS
//
// NOTE: Only the "prev" marking information is guaranteed to be
// consistent most of the time, so most calls to this should use
// vo == UsePrevMarking.
// Currently, there is only one case where this is called with
// vo == UseNextMarking, which is to verify the "next" marking
// information at the end of remark.
// Currently there is only one place where this is called with
// vo == UseFullMarking, which is to verify the marking during a
// full GC.
void verify(VerifyOption vo, bool *failures) const;
// Override; it uses the "prev" marking information
virtual void verify() const;
void verify_rem_set(VerifyOption vo, bool *failures) const;
void verify_rem_set() const;
};
// HeapRegionClosure is used for iterating over regions.
// Terminates the iteration when the "do_heap_region" method returns "true".
class HeapRegionClosure : public StackObj {
friend class HeapRegionManager;
friend class G1CollectionSet;
friend class CollectionSetChooser;
bool _is_complete;
void set_incomplete() { _is_complete = false; }
public:
HeapRegionClosure(): _is_complete(true) {}
// Typically called on each region until it returns true.
virtual bool do_heap_region(HeapRegion* r) = 0;
// True after iteration if the closure was applied to all heap regions
// and returned "false" in all cases.
bool is_complete() { return _is_complete; }
};
#endif // SHARE_VM_GC_G1_HEAPREGION_HPP