blob: 32ffd82cd991c76c301df7c547aac6a797545a2f [file] [log] [blame]
/*
* Copyright (c) 2017, 2018, Red Hat, Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/epsilon/epsilonHeap.hpp"
#include "gc/epsilon/epsilonMemoryPool.hpp"
#include "gc/epsilon/epsilonThreadLocalData.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
jint EpsilonHeap::initialize() {
size_t align = _policy->heap_alignment();
size_t init_byte_size = align_up(_policy->initial_heap_byte_size(), align);
size_t max_byte_size = align_up(_policy->max_heap_byte_size(), align);
// Initialize backing storage
ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
_virtual_space.initialize(heap_rs, init_byte_size);
MemRegion committed_region((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high());
MemRegion reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary());
initialize_reserved_region(reserved_region.start(), reserved_region.end());
_space = new ContiguousSpace();
_space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true);
// Precompute hot fields
_max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize));
_step_counter_update = MIN2<size_t>(max_byte_size / 16, EpsilonUpdateCountersStep);
_step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps);
_decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC;
// Enable monitoring
_monitoring_support = new EpsilonMonitoringSupport(this);
_last_counter_update = 0;
_last_heap_print = 0;
// Install barrier set
BarrierSet::set_barrier_set(new EpsilonBarrierSet());
// All done, print out the configuration
if (init_byte_size != max_byte_size) {
log_info(gc)("Resizeable heap; starting at " SIZE_FORMAT "M, max: " SIZE_FORMAT "M, step: " SIZE_FORMAT "M",
init_byte_size / M, max_byte_size / M, EpsilonMinHeapExpand / M);
} else {
log_info(gc)("Non-resizeable heap; start/max: " SIZE_FORMAT "M", init_byte_size / M);
}
if (UseTLAB) {
log_info(gc)("Using TLAB allocation; max: " SIZE_FORMAT "K", _max_tlab_size * HeapWordSize / K);
if (EpsilonElasticTLAB) {
log_info(gc)("Elastic TLABs enabled; elasticity: %.2fx", EpsilonTLABElasticity);
}
if (EpsilonElasticTLABDecay) {
log_info(gc)("Elastic TLABs decay enabled; decay time: " SIZE_FORMAT "ms", EpsilonTLABDecayTime);
}
} else {
log_info(gc)("Not using TLAB allocation");
}
return JNI_OK;
}
void EpsilonHeap::post_initialize() {
CollectedHeap::post_initialize();
}
void EpsilonHeap::initialize_serviceability() {
_pool = new EpsilonMemoryPool(this);
_memory_manager.add_pool(_pool);
}
GrowableArray<GCMemoryManager*> EpsilonHeap::memory_managers() {
GrowableArray<GCMemoryManager*> memory_managers(1);
memory_managers.append(&_memory_manager);
return memory_managers;
}
GrowableArray<MemoryPool*> EpsilonHeap::memory_pools() {
GrowableArray<MemoryPool*> memory_pools(1);
memory_pools.append(_pool);
return memory_pools;
}
size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread* thr) const {
// Return max allocatable TLAB size, and let allocation path figure out
// the actual allocation size. Note: result should be in bytes.
return _max_tlab_size * HeapWordSize;
}
EpsilonHeap* EpsilonHeap::heap() {
CollectedHeap* heap = Universe::heap();
assert(heap != NULL, "Uninitialized access to EpsilonHeap::heap()");
assert(heap->kind() == CollectedHeap::Epsilon, "Not an Epsilon heap");
return (EpsilonHeap*)heap;
}
HeapWord* EpsilonHeap::allocate_work(size_t size) {
assert(is_object_aligned(size), "Allocation size should be aligned: " SIZE_FORMAT, size);
HeapWord* res = NULL;
while (true) {
// Try to allocate, assume space is available
res = _space->par_allocate(size);
if (res != NULL) {
break;
}
// Allocation failed, attempt expansion, and retry:
{
MutexLockerEx ml(Heap_lock);
// Try to allocate under the lock, assume another thread was able to expand
res = _space->par_allocate(size);
if (res != NULL) {
break;
}
// Expand and loop back if space is available
size_t space_left = max_capacity() - capacity();
size_t want_space = MAX2(size, EpsilonMinHeapExpand);
if (want_space < space_left) {
// Enough space to expand in bulk:
bool expand = _virtual_space.expand_by(want_space);
assert(expand, "Should be able to expand");
} else if (size < space_left) {
// No space to expand in bulk, and this allocation is still possible,
// take all the remaining space:
bool expand = _virtual_space.expand_by(space_left);
assert(expand, "Should be able to expand");
} else {
// No space left:
return NULL;
}
_space->set_end((HeapWord *) _virtual_space.high());
}
}
size_t used = _space->used();
// Allocation successful, update counters
{
size_t last = _last_counter_update;
if ((used - last >= _step_counter_update) && Atomic::cmpxchg(used, &_last_counter_update, last) == last) {
_monitoring_support->update_counters();
}
}
// ...and print the occupancy line, if needed
{
size_t last = _last_heap_print;
if ((used - last >= _step_heap_print) && Atomic::cmpxchg(used, &_last_heap_print, last) == last) {
print_heap_info(used);
print_metaspace_info();
}
}
assert(is_object_aligned(res), "Object should be aligned: " PTR_FORMAT, p2i(res));
return res;
}
HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size) {
Thread* thread = Thread::current();
// Defaults in case elastic paths are not taken
bool fits = true;
size_t size = requested_size;
size_t ergo_tlab = requested_size;
int64_t time = 0;
if (EpsilonElasticTLAB) {
ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread);
if (EpsilonElasticTLABDecay) {
int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread);
time = (int64_t) os::javaTimeNanos();
assert(last_time <= time, "time should be monotonic");
// If the thread had not allocated recently, retract the ergonomic size.
// This conserves memory when the thread had initial burst of allocations,
// and then started allocating only sporadically.
if (last_time != 0 && (time - last_time > _decay_time_ns)) {
ergo_tlab = 0;
EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
}
}
// If we can fit the allocation under current TLAB size, do so.
// Otherwise, we want to elastically increase the TLAB size.
fits = (requested_size <= ergo_tlab);
if (!fits) {
size = (size_t) (ergo_tlab * EpsilonTLABElasticity);
}
}
// Always honor boundaries
size = MAX2(min_size, MIN2(_max_tlab_size, size));
// Always honor alignment
size = align_up(size, MinObjAlignment);
// Check that adjustments did not break local and global invariants
assert(is_object_aligned(size),
"Size honors object alignment: " SIZE_FORMAT, size);
assert(min_size <= size,
"Size honors min size: " SIZE_FORMAT " <= " SIZE_FORMAT, min_size, size);
assert(size <= _max_tlab_size,
"Size honors max size: " SIZE_FORMAT " <= " SIZE_FORMAT, size, _max_tlab_size);
assert(size <= CollectedHeap::max_tlab_size(),
"Size honors global max size: " SIZE_FORMAT " <= " SIZE_FORMAT, size, CollectedHeap::max_tlab_size());
if (log_is_enabled(Trace, gc)) {
ResourceMark rm;
log_trace(gc)("TLAB size for \"%s\" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT
"K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
thread->name(),
requested_size * HeapWordSize / K,
min_size * HeapWordSize / K,
_max_tlab_size * HeapWordSize / K,
ergo_tlab * HeapWordSize / K,
size * HeapWordSize / K);
}
// All prepared, let's do it!
HeapWord* res = allocate_work(size);
if (res != NULL) {
// Allocation successful
*actual_size = size;
if (EpsilonElasticTLABDecay) {
EpsilonThreadLocalData::set_last_tlab_time(thread, time);
}
if (EpsilonElasticTLAB && !fits) {
// If we requested expansion, this is our new ergonomic TLAB size
EpsilonThreadLocalData::set_ergo_tlab_size(thread, size);
}
} else {
// Allocation failed, reset ergonomics to try and fit smaller TLABs
if (EpsilonElasticTLAB) {
EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
}
}
return res;
}
HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
*gc_overhead_limit_was_exceeded = false;
return allocate_work(size);
}
void EpsilonHeap::collect(GCCause::Cause cause) {
switch (cause) {
case GCCause::_metadata_GC_threshold:
case GCCause::_metadata_GC_clear_soft_refs:
// Receiving these causes means the VM itself entered the safepoint for metadata collection.
// While Epsilon does not do GC, it has to perform sizing adjustments, otherwise we would
// re-enter the safepoint again very soon.
assert(SafepointSynchronize::is_at_safepoint(), "Expected at safepoint");
log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
MetaspaceGC::compute_new_size();
print_metaspace_info();
break;
default:
log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
}
_monitoring_support->update_counters();
}
void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
collect(gc_cause());
}
void EpsilonHeap::safe_object_iterate(ObjectClosure *cl) {
_space->safe_object_iterate(cl);
}
void EpsilonHeap::print_on(outputStream *st) const {
st->print_cr("Epsilon Heap");
// Cast away constness:
((VirtualSpace)_virtual_space).print_on(st);
st->print_cr("Allocation space:");
_space->print_on(st);
MetaspaceUtils::print_on(st);
}
void EpsilonHeap::print_tracing_info() const {
print_heap_info(used());
print_metaspace_info();
}
void EpsilonHeap::print_heap_info(size_t used) const {
size_t reserved = max_capacity();
size_t committed = capacity();
if (reserved != 0) {
log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
SIZE_FORMAT "%s (%.2f%%) used",
byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved),
byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
committed * 100.0 / reserved,
byte_size_in_proper_unit(used), proper_unit_for_byte_size(used),
used * 100.0 / reserved);
} else {
log_info(gc)("Heap: no reliable data");
}
}
void EpsilonHeap::print_metaspace_info() const {
size_t reserved = MetaspaceUtils::reserved_bytes();
size_t committed = MetaspaceUtils::committed_bytes();
size_t used = MetaspaceUtils::used_bytes();
if (reserved != 0) {
log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
SIZE_FORMAT "%s (%.2f%%) used",
byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved),
byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
committed * 100.0 / reserved,
byte_size_in_proper_unit(used), proper_unit_for_byte_size(used),
used * 100.0 / reserved);
} else {
log_info(gc, metaspace)("Metaspace: no reliable data");
}
}