blob: 5f6c7f205ba54a64a2fec5eab1af8c4bc9332c97 [file] [log] [blame]
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#ifdef PRODUCT
#define __ _masm->
#define BLOCK_COMMENT(str)
#define BIND(label) __ bind(label);
#else
#define __ (PRODUCT_ONLY(false&&)Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
#define BLOCK_COMMENT(str) __ block_comment(str)
#define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
#endif
// The assumed minimum size of a BranchTableBlock.
// The actual size of each block heavily depends on the CPU capabilities and,
// of course, on the logic implemented in each block.
#ifdef ASSERT
#define BTB_MINSIZE 256
#else
#define BTB_MINSIZE 64
#endif
#ifdef ASSERT
// Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
#define BTB_BEGIN(lbl, alignment, name) \
__ align_address(alignment); \
__ bind(lbl); \
{ unsigned int b_off = __ offset(); \
uintptr_t b_addr = (uintptr_t)__ pc(); \
__ z_larl(Z_R0, (int64_t)0); /* Check current address alignment. */ \
__ z_slgr(Z_R0, br_tab); /* Current Address must be equal */ \
__ z_slgr(Z_R0, flags); /* to calculated branch target. */ \
__ z_brc(Assembler::bcondLogZero, 3); /* skip trap if ok. */ \
__ z_illtrap(0x55); \
guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
// Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
#define BTB_END(lbl, alignment, name) \
uintptr_t e_addr = (uintptr_t)__ pc(); \
unsigned int e_off = __ offset(); \
unsigned int len = e_off-b_off; \
if (len > alignment) { \
tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s", \
len, alignment, e_addr-len, name); \
guarantee(len <= alignment, "block too large"); \
} \
guarantee(len == e_addr-b_addr, "block len mismatch"); \
}
#else
// Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
#define BTB_BEGIN(lbl, alignment, name) \
__ align_address(alignment); \
__ bind(lbl); \
{ unsigned int b_off = __ offset(); \
uintptr_t b_addr = (uintptr_t)__ pc(); \
guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
// Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
#define BTB_END(lbl, alignment, name) \
uintptr_t e_addr = (uintptr_t)__ pc(); \
unsigned int e_off = __ offset(); \
unsigned int len = e_off-b_off; \
if (len > alignment) { \
tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s", \
len, alignment, e_addr-len, name); \
guarantee(len <= alignment, "block too large"); \
} \
guarantee(len == e_addr-b_addr, "block len mismatch"); \
}
#endif // ASSERT
// Platform-dependent initialization.
void TemplateTable::pd_initialize() {
// No specific initialization.
}
// Address computation: local variables
static inline Address iaddress(int n) {
return Address(Z_locals, Interpreter::local_offset_in_bytes(n));
}
static inline Address laddress(int n) {
return iaddress(n + 1);
}
static inline Address faddress(int n) {
return iaddress(n);
}
static inline Address daddress(int n) {
return laddress(n);
}
static inline Address aaddress(int n) {
return iaddress(n);
}
// Pass NULL, if no shift instruction should be emitted.
static inline Address iaddress(InterpreterMacroAssembler *masm, Register r) {
if (masm) {
masm->z_sllg(r, r, LogBytesPerWord); // index2bytes
}
return Address(Z_locals, r, Interpreter::local_offset_in_bytes(0));
}
// Pass NULL, if no shift instruction should be emitted.
static inline Address laddress(InterpreterMacroAssembler *masm, Register r) {
if (masm) {
masm->z_sllg(r, r, LogBytesPerWord); // index2bytes
}
return Address(Z_locals, r, Interpreter::local_offset_in_bytes(1) );
}
static inline Address faddress(InterpreterMacroAssembler *masm, Register r) {
return iaddress(masm, r);
}
static inline Address daddress(InterpreterMacroAssembler *masm, Register r) {
return laddress(masm, r);
}
static inline Address aaddress(InterpreterMacroAssembler *masm, Register r) {
return iaddress(masm, r);
}
// At top of Java expression stack which may be different than esp(). It
// isn't for category 1 objects.
static inline Address at_tos(int slot = 0) {
return Address(Z_esp, Interpreter::expr_offset_in_bytes(slot));
}
// Condition conversion
static Assembler::branch_condition j_not(TemplateTable::Condition cc) {
switch (cc) {
case TemplateTable::equal :
return Assembler::bcondNotEqual;
case TemplateTable::not_equal :
return Assembler::bcondEqual;
case TemplateTable::less :
return Assembler::bcondNotLow;
case TemplateTable::less_equal :
return Assembler::bcondHigh;
case TemplateTable::greater :
return Assembler::bcondNotHigh;
case TemplateTable::greater_equal:
return Assembler::bcondLow;
}
ShouldNotReachHere();
return Assembler::bcondZero;
}
// Do an oop store like *(base + offset) = val
// offset can be a register or a constant.
static void do_oop_store(InterpreterMacroAssembler* _masm,
const Address& addr,
Register val, // Noreg means always null.
Register tmp1,
Register tmp2,
Register tmp3,
DecoratorSet decorators) {
assert_different_registers(tmp1, tmp2, tmp3, val, addr.base());
__ store_heap_oop(val, addr, tmp1, tmp2, tmp3, decorators);
}
static void do_oop_load(InterpreterMacroAssembler* _masm,
const Address& addr,
Register dst,
Register tmp1,
Register tmp2,
DecoratorSet decorators) {
assert_different_registers(addr.base(), tmp1, tmp2);
assert_different_registers(dst, tmp1, tmp2);
__ load_heap_oop(dst, addr, tmp1, tmp2, decorators);
}
Address TemplateTable::at_bcp(int offset) {
assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
return Address(Z_bcp, offset);
}
void TemplateTable::patch_bytecode(Bytecodes::Code bc,
Register bc_reg,
Register temp_reg,
bool load_bc_into_bc_reg, // = true
int byte_no) {
if (!RewriteBytecodes) { return; }
NearLabel L_patch_done;
BLOCK_COMMENT("patch_bytecode {");
switch (bc) {
case Bytecodes::_fast_aputfield:
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_dputfield:
case Bytecodes::_fast_fputfield:
case Bytecodes::_fast_iputfield:
case Bytecodes::_fast_lputfield:
case Bytecodes::_fast_sputfield:
{
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_and_bytecode_at_bcp(Z_R1_scratch, bc_reg,
temp_reg, byte_no, 1);
__ load_const_optimized(bc_reg, bc);
__ compareU32_and_branch(temp_reg, (intptr_t)0,
Assembler::bcondZero, L_patch_done);
}
break;
default:
assert(byte_no == -1, "sanity");
// The pair bytecodes have already done the load.
if (load_bc_into_bc_reg) {
__ load_const_optimized(bc_reg, bc);
}
break;
}
if (JvmtiExport::can_post_breakpoint()) {
Label L_fast_patch;
// If a breakpoint is present we can't rewrite the stream directly.
__ z_cli(at_bcp(0), Bytecodes::_breakpoint);
__ z_brne(L_fast_patch);
__ get_method(temp_reg);
// Let breakpoint table handling rewrite to quicker bytecode.
__ call_VM_static(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at),
temp_reg, Z_R13, bc_reg);
__ z_bru(L_patch_done);
__ bind(L_fast_patch);
}
#ifdef ASSERT
NearLabel L_okay;
// We load into 64 bits, since this works on any CPU.
__ z_llgc(temp_reg, at_bcp(0));
__ compareU32_and_branch(temp_reg, Bytecodes::java_code(bc),
Assembler::bcondEqual, L_okay );
__ compareU32_and_branch(temp_reg, bc_reg, Assembler::bcondEqual, L_okay);
__ stop_static("patching the wrong bytecode");
__ bind(L_okay);
#endif
// Patch bytecode.
__ z_stc(bc_reg, at_bcp(0));
__ bind(L_patch_done);
BLOCK_COMMENT("} patch_bytecode");
}
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("shouldnotreachhere bytecode");
}
void TemplateTable::aconst_null() {
transition(vtos, atos);
__ clear_reg(Z_tos, true, false);
}
void TemplateTable::iconst(int value) {
transition(vtos, itos);
// Zero extension of the iconst makes zero extension at runtime obsolete.
__ load_const_optimized(Z_tos, ((unsigned long)(unsigned int)value));
}
void TemplateTable::lconst(int value) {
transition(vtos, ltos);
__ load_const_optimized(Z_tos, value);
}
// No pc-relative load/store for floats.
void TemplateTable::fconst(int value) {
transition(vtos, ftos);
static float one = 1.0f, two = 2.0f;
switch (value) {
case 0:
__ z_lzer(Z_ftos);
return;
case 1:
__ load_absolute_address(Z_R1_scratch, (address) &one);
__ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
return;
case 2:
__ load_absolute_address(Z_R1_scratch, (address) &two);
__ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
return;
default:
ShouldNotReachHere();
return;
}
}
void TemplateTable::dconst(int value) {
transition(vtos, dtos);
static double one = 1.0;
switch (value) {
case 0:
__ z_lzdr(Z_ftos);
return;
case 1:
__ load_absolute_address(Z_R1_scratch, (address) &one);
__ mem2freg_opt(Z_ftos, Address(Z_R1_scratch));
return;
default:
ShouldNotReachHere();
return;
}
}
void TemplateTable::bipush() {
transition(vtos, itos);
__ z_lb(Z_tos, at_bcp(1));
}
void TemplateTable::sipush() {
transition(vtos, itos);
__ get_2_byte_integer_at_bcp(Z_tos, 1, InterpreterMacroAssembler::Signed);
}
void TemplateTable::ldc(bool wide) {
transition(vtos, vtos);
Label call_ldc, notFloat, notClass, notInt, Done;
const Register RcpIndex = Z_tmp_1;
const Register Rtags = Z_ARG2;
if (wide) {
__ get_2_byte_integer_at_bcp(RcpIndex, 1, InterpreterMacroAssembler::Unsigned);
} else {
__ z_llgc(RcpIndex, at_bcp(1));
}
__ get_cpool_and_tags(Z_tmp_2, Rtags);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
const Register Raddr_type = Rtags;
// Get address of type.
__ add2reg_with_index(Raddr_type, tags_offset, RcpIndex, Rtags);
__ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClass);
__ z_bre(call_ldc); // Unresolved class - get the resolved class.
__ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClassInError);
__ z_bre(call_ldc); // Unresolved class in error state - call into runtime
// to throw the error from the first resolution attempt.
__ z_cli(0, Raddr_type, JVM_CONSTANT_Class);
__ z_brne(notClass); // Resolved class - need to call vm to get java
// mirror of the class.
// We deal with a class. Call vm to do the appropriate.
__ bind(call_ldc);
__ load_const_optimized(Z_ARG2, wide);
call_VM(Z_RET, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), Z_ARG2);
__ push_ptr(Z_RET);
__ z_bru(Done);
// Not a class.
__ bind(notClass);
Register RcpOffset = RcpIndex;
__ z_sllg(RcpOffset, RcpIndex, LogBytesPerWord); // Convert index to offset.
__ z_cli(0, Raddr_type, JVM_CONSTANT_Float);
__ z_brne(notFloat);
// ftos
__ mem2freg_opt(Z_ftos, Address(Z_tmp_2, RcpOffset, base_offset), false);
__ push_f();
__ z_bru(Done);
__ bind(notFloat);
__ z_cli(0, Raddr_type, JVM_CONSTANT_Integer);
__ z_brne(notInt);
// itos
__ mem2reg_opt(Z_tos, Address(Z_tmp_2, RcpOffset, base_offset), false);
__ push_i(Z_tos);
__ z_bru(Done);
// assume the tag is for condy; if not, the VM runtime will tell us
__ bind(notInt);
condy_helper(Done);
__ bind(Done);
}
// Fast path for caching oop constants.
// %%% We should use this to handle Class and String constants also.
// %%% It will simplify the ldc/primitive path considerably.
void TemplateTable::fast_aldc(bool wide) {
transition(vtos, atos);
const Register index = Z_tmp_2;
int index_size = wide ? sizeof(u2) : sizeof(u1);
Label L_do_resolve, L_resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (CallSite, etc.).
__ get_cache_index_at_bcp(index, 1, index_size); // Load index.
__ load_resolved_reference_at_index(Z_tos, index);
__ z_ltgr(Z_tos, Z_tos);
__ z_bre(L_do_resolve);
// Convert null sentinel to NULL.
__ load_const_optimized(Z_R1_scratch, (intptr_t)Universe::the_null_sentinel_addr());
__ z_cg(Z_tos, Address(Z_R1_scratch));
__ z_brne(L_resolved);
__ clear_reg(Z_tos);
__ z_bru(L_resolved);
__ bind(L_do_resolve);
// First time invocation - must resolve first.
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
__ load_const_optimized(Z_ARG1, (int)bytecode());
__ call_VM(Z_tos, entry, Z_ARG1);
__ bind(L_resolved);
__ verify_oop(Z_tos);
}
void TemplateTable::ldc2_w() {
transition(vtos, vtos);
Label notDouble, notLong, Done;
// Z_tmp_1 = index of cp entry
__ get_2_byte_integer_at_bcp(Z_tmp_1, 1, InterpreterMacroAssembler::Unsigned);
__ get_cpool_and_tags(Z_tmp_2, Z_tos);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// Get address of type.
__ add2reg_with_index(Z_tos, tags_offset, Z_tos, Z_tmp_1);
// Index needed in both branches, so calculate here.
__ z_sllg(Z_tmp_1, Z_tmp_1, LogBytesPerWord); // index2bytes
// Check type.
__ z_cli(0, Z_tos, JVM_CONSTANT_Double);
__ z_brne(notDouble);
// dtos
__ mem2freg_opt(Z_ftos, Address(Z_tmp_2, Z_tmp_1, base_offset));
__ push_d();
__ z_bru(Done);
__ bind(notDouble);
__ z_cli(0, Z_tos, JVM_CONSTANT_Long);
__ z_brne(notLong);
// ltos
__ mem2reg_opt(Z_tos, Address(Z_tmp_2, Z_tmp_1, base_offset));
__ push_l();
__ z_bru(Done);
__ bind(notLong);
condy_helper(Done);
__ bind(Done);
}
void TemplateTable::condy_helper(Label& Done) {
const Register obj = Z_tmp_1;
const Register off = Z_tmp_2;
const Register flags = Z_ARG1;
const Register rarg = Z_ARG2;
__ load_const_optimized(rarg, (int)bytecode());
call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
__ get_vm_result_2(flags);
// VMr = obj = base address to find primitive value to push
// VMr2 = flags = (tos, off) using format of CPCE::_flags
assert(ConstantPoolCacheEntry::field_index_mask == 0xffff, "or use other instructions");
__ z_llghr(off, flags);
const Address field(obj, off);
// What sort of thing are we loading?
__ z_srl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask flags for tos_state after the above shift.
ConstantPoolCacheEntry::verify_tos_state_shift();
switch (bytecode()) {
case Bytecodes::_ldc:
case Bytecodes::_ldc_w:
{
// tos in (itos, ftos, stos, btos, ctos, ztos)
Label notInt, notFloat, notShort, notByte, notChar, notBool;
__ z_cghi(flags, itos);
__ z_brne(notInt);
// itos
__ z_l(Z_tos, field);
__ push(itos);
__ z_bru(Done);
__ bind(notInt);
__ z_cghi(flags, ftos);
__ z_brne(notFloat);
// ftos
__ z_le(Z_ftos, field);
__ push(ftos);
__ z_bru(Done);
__ bind(notFloat);
__ z_cghi(flags, stos);
__ z_brne(notShort);
// stos
__ z_lh(Z_tos, field);
__ push(stos);
__ z_bru(Done);
__ bind(notShort);
__ z_cghi(flags, btos);
__ z_brne(notByte);
// btos
__ z_lb(Z_tos, field);
__ push(btos);
__ z_bru(Done);
__ bind(notByte);
__ z_cghi(flags, ctos);
__ z_brne(notChar);
// ctos
__ z_llh(Z_tos, field);
__ push(ctos);
__ z_bru(Done);
__ bind(notChar);
__ z_cghi(flags, ztos);
__ z_brne(notBool);
// ztos
__ z_lb(Z_tos, field);
__ push(ztos);
__ z_bru(Done);
__ bind(notBool);
break;
}
case Bytecodes::_ldc2_w:
{
Label notLong, notDouble;
__ z_cghi(flags, ltos);
__ z_brne(notLong);
// ltos
__ z_lg(Z_tos, field);
__ push(ltos);
__ z_bru(Done);
__ bind(notLong);
__ z_cghi(flags, dtos);
__ z_brne(notDouble);
// dtos
__ z_ld(Z_ftos, field);
__ push(dtos);
__ z_bru(Done);
__ bind(notDouble);
break;
}
default:
ShouldNotReachHere();
}
__ stop("bad ldc/condy");
}
void TemplateTable::locals_index(Register reg, int offset) {
__ z_llgc(reg, at_bcp(offset));
__ z_lcgr(reg);
}
void TemplateTable::iload() {
iload_internal();
}
void TemplateTable::nofast_iload() {
iload_internal(may_not_rewrite);
}
void TemplateTable::iload_internal(RewriteControl rc) {
transition(vtos, itos);
if (RewriteFrequentPairs && rc == may_rewrite) {
NearLabel rewrite, done;
const Register bc = Z_ARG4;
assert(Z_R1_scratch != bc, "register damaged");
// Get next byte.
__ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_iload)));
// If _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_iload,
Assembler::bcondEqual, done);
__ load_const_optimized(bc, Bytecodes::_fast_iload2);
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_iload,
Assembler::bcondEqual, rewrite);
// If _caload, rewrite to fast_icaload.
__ load_const_optimized(bc, Bytecodes::_fast_icaload);
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_caload,
Assembler::bcondEqual, rewrite);
// Rewrite so iload doesn't check again.
__ load_const_optimized(bc, Bytecodes::_fast_iload);
// rewrite
// bc: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_iload, bc, Z_R1_scratch, false);
__ bind(done);
}
// Get the local value into tos.
locals_index(Z_R1_scratch);
__ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
}
void TemplateTable::fast_iload2() {
transition(vtos, itos);
locals_index(Z_R1_scratch);
__ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
__ push_i(Z_tos);
locals_index(Z_R1_scratch, 3);
__ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
}
void TemplateTable::fast_iload() {
transition(vtos, itos);
locals_index(Z_R1_scratch);
__ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
}
void TemplateTable::lload() {
transition(vtos, ltos);
locals_index(Z_R1_scratch);
__ mem2reg_opt(Z_tos, laddress(_masm, Z_R1_scratch));
}
void TemplateTable::fload() {
transition(vtos, ftos);
locals_index(Z_R1_scratch);
__ mem2freg_opt(Z_ftos, faddress(_masm, Z_R1_scratch), false);
}
void TemplateTable::dload() {
transition(vtos, dtos);
locals_index(Z_R1_scratch);
__ mem2freg_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
}
void TemplateTable::aload() {
transition(vtos, atos);
locals_index(Z_R1_scratch);
__ mem2reg_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
}
void TemplateTable::locals_index_wide(Register reg) {
__ get_2_byte_integer_at_bcp(reg, 2, InterpreterMacroAssembler::Unsigned);
__ z_lcgr(reg);
}
void TemplateTable::wide_iload() {
transition(vtos, itos);
locals_index_wide(Z_tmp_1);
__ mem2reg_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
}
void TemplateTable::wide_lload() {
transition(vtos, ltos);
locals_index_wide(Z_tmp_1);
__ mem2reg_opt(Z_tos, laddress(_masm, Z_tmp_1));
}
void TemplateTable::wide_fload() {
transition(vtos, ftos);
locals_index_wide(Z_tmp_1);
__ mem2freg_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
}
void TemplateTable::wide_dload() {
transition(vtos, dtos);
locals_index_wide(Z_tmp_1);
__ mem2freg_opt(Z_ftos, daddress(_masm, Z_tmp_1));
}
void TemplateTable::wide_aload() {
transition(vtos, atos);
locals_index_wide(Z_tmp_1);
__ mem2reg_opt(Z_tos, aaddress(_masm, Z_tmp_1));
}
void TemplateTable::index_check(Register array, Register index, unsigned int shift) {
assert_different_registers(Z_R1_scratch, array, index);
// Check array.
__ null_check(array, Z_R0_scratch, arrayOopDesc::length_offset_in_bytes());
// Sign extend index for use by indexed load.
__ z_lgfr(index, index);
// Check index.
Label index_ok;
__ z_cl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
__ z_brl(index_ok);
__ lgr_if_needed(Z_ARG3, index); // See generate_ArrayIndexOutOfBounds_handler().
// Pass the array to create more detailed exceptions.
__ lgr_if_needed(Z_ARG2, array); // See generate_ArrayIndexOutOfBounds_handler().
__ load_absolute_address(Z_R1_scratch,
Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
__ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
__ bind(index_ok);
if (shift > 0)
__ z_sllg(index, index, shift);
}
void TemplateTable::iaload() {
transition(itos, itos);
__ pop_ptr(Z_tmp_1); // array
// Index is in Z_tos.
Register index = Z_tos;
index_check(Z_tmp_1, index, LogBytesPerInt); // Kills Z_ARG3.
// Load the value.
__ mem2reg_opt(Z_tos,
Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
false);
}
void TemplateTable::laload() {
transition(itos, ltos);
__ pop_ptr(Z_tmp_2);
// Z_tos : index
// Z_tmp_2 : array
Register index = Z_tos;
index_check(Z_tmp_2, index, LogBytesPerLong);
__ mem2reg_opt(Z_tos,
Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_LONG)));
}
void TemplateTable::faload() {
transition(itos, ftos);
__ pop_ptr(Z_tmp_2);
// Z_tos : index
// Z_tmp_2 : array
Register index = Z_tos;
index_check(Z_tmp_2, index, LogBytesPerInt);
__ mem2freg_opt(Z_ftos,
Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
false);
}
void TemplateTable::daload() {
transition(itos, dtos);
__ pop_ptr(Z_tmp_2);
// Z_tos : index
// Z_tmp_2 : array
Register index = Z_tos;
index_check(Z_tmp_2, index, LogBytesPerLong);
__ mem2freg_opt(Z_ftos,
Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
}
void TemplateTable::aaload() {
transition(itos, atos);
unsigned const int shift = LogBytesPerHeapOop;
__ pop_ptr(Z_tmp_1); // array
// Index is in Z_tos.
Register index = Z_tos;
index_check(Z_tmp_1, index, shift);
// Now load array element.
do_oop_load(_masm, Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), Z_tos,
Z_tmp_2, Z_tmp_3, IS_ARRAY);
__ verify_oop(Z_tos);
}
void TemplateTable::baload() {
transition(itos, itos);
__ pop_ptr(Z_tmp_1);
// Z_tos : index
// Z_tmp_1 : array
Register index = Z_tos;
index_check(Z_tmp_1, index, 0);
__ z_lb(Z_tos,
Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
}
void TemplateTable::caload() {
transition(itos, itos);
__ pop_ptr(Z_tmp_2);
// Z_tos : index
// Z_tmp_2 : array
Register index = Z_tos;
index_check(Z_tmp_2, index, LogBytesPerShort);
// Load into 64 bits, works on all CPUs.
__ z_llgh(Z_tos,
Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
// Iload followed by caload frequent pair.
void TemplateTable::fast_icaload() {
transition(vtos, itos);
// Load index out of locals.
locals_index(Z_R1_scratch);
__ mem2reg_opt(Z_ARG3, iaddress(_masm, Z_R1_scratch), false);
// Z_ARG3 : index
// Z_tmp_2 : array
__ pop_ptr(Z_tmp_2);
index_check(Z_tmp_2, Z_ARG3, LogBytesPerShort);
// Load into 64 bits, works on all CPUs.
__ z_llgh(Z_tos,
Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
void TemplateTable::saload() {
transition(itos, itos);
__ pop_ptr(Z_tmp_2);
// Z_tos : index
// Z_tmp_2 : array
Register index = Z_tos;
index_check(Z_tmp_2, index, LogBytesPerShort);
__ z_lh(Z_tos,
Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
}
void TemplateTable::iload(int n) {
transition(vtos, itos);
__ z_ly(Z_tos, iaddress(n));
}
void TemplateTable::lload(int n) {
transition(vtos, ltos);
__ z_lg(Z_tos, laddress(n));
}
void TemplateTable::fload(int n) {
transition(vtos, ftos);
__ mem2freg_opt(Z_ftos, faddress(n), false);
}
void TemplateTable::dload(int n) {
transition(vtos, dtos);
__ mem2freg_opt(Z_ftos, daddress(n));
}
void TemplateTable::aload(int n) {
transition(vtos, atos);
__ mem2reg_opt(Z_tos, aaddress(n));
}
void TemplateTable::aload_0() {
aload_0_internal();
}
void TemplateTable::nofast_aload_0() {
aload_0_internal(may_not_rewrite);
}
void TemplateTable::aload_0_internal(RewriteControl rc) {
transition(vtos, atos);
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield
// _aload_0, _fast_agetfield
// _aload_0, _fast_fgetfield
//
// occur frequently. If RewriteFrequentPairs is set, the (slow)
// _aload_0 bytecode checks if the next bytecode is either
// _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
// rewrites the current bytecode into a pair bytecode; otherwise it
// rewrites the current bytecode into _fast_aload_0 that doesn't do
// the pair check anymore.
//
// Note: If the next bytecode is _getfield, the rewrite must be
// delayed, otherwise we may miss an opportunity for a pair.
//
// Also rewrite frequent pairs
// aload_0, aload_1
// aload_0, iload_1
// These bytecodes with a small amount of code are most profitable
// to rewrite.
if (!(RewriteFrequentPairs && (rc == may_rewrite))) {
aload(0);
return;
}
NearLabel rewrite, done;
const Register bc = Z_ARG4;
assert(Z_R1_scratch != bc, "register damaged");
// Get next byte.
__ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_aload_0)));
// Do actual aload_0.
aload(0);
// If _getfield then wait with rewrite.
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_getfield,
Assembler::bcondEqual, done);
// If _igetfield then rewrite to _fast_iaccess_0.
assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0)
== Bytecodes::_aload_0, "fix bytecode definition");
__ load_const_optimized(bc, Bytecodes::_fast_iaccess_0);
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_igetfield,
Assembler::bcondEqual, rewrite);
// If _agetfield then rewrite to _fast_aaccess_0.
assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0)
== Bytecodes::_aload_0, "fix bytecode definition");
__ load_const_optimized(bc, Bytecodes::_fast_aaccess_0);
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_agetfield,
Assembler::bcondEqual, rewrite);
// If _fgetfield then rewrite to _fast_faccess_0.
assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0)
== Bytecodes::_aload_0, "fix bytecode definition");
__ load_const_optimized(bc, Bytecodes::_fast_faccess_0);
__ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_fgetfield,
Assembler::bcondEqual, rewrite);
// Else rewrite to _fast_aload0.
assert(Bytecodes::java_code(Bytecodes::_fast_aload_0)
== Bytecodes::_aload_0, "fix bytecode definition");
__ load_const_optimized(bc, Bytecodes::_fast_aload_0);
// rewrite
// bc: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_aload_0, bc, Z_R1_scratch, false);
// Reload local 0 because of VM call inside patch_bytecode().
// this may trigger GC and thus change the oop.
aload(0);
__ bind(done);
}
void TemplateTable::istore() {
transition(itos, vtos);
locals_index(Z_R1_scratch);
__ reg2mem_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
}
void TemplateTable::lstore() {
transition(ltos, vtos);
locals_index(Z_R1_scratch);
__ reg2mem_opt(Z_tos, laddress(_masm, Z_R1_scratch));
}
void TemplateTable::fstore() {
transition(ftos, vtos);
locals_index(Z_R1_scratch);
__ freg2mem_opt(Z_ftos, faddress(_masm, Z_R1_scratch));
}
void TemplateTable::dstore() {
transition(dtos, vtos);
locals_index(Z_R1_scratch);
__ freg2mem_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
}
void TemplateTable::astore() {
transition(vtos, vtos);
__ pop_ptr(Z_tos);
locals_index(Z_R1_scratch);
__ reg2mem_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
__ pop_i(Z_tos);
locals_index_wide(Z_tmp_1);
__ reg2mem_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
__ pop_l(Z_tos);
locals_index_wide(Z_tmp_1);
__ reg2mem_opt(Z_tos, laddress(_masm, Z_tmp_1));
}
void TemplateTable::wide_fstore() {
transition(vtos, vtos);
__ pop_f(Z_ftos);
locals_index_wide(Z_tmp_1);
__ freg2mem_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
}
void TemplateTable::wide_dstore() {
transition(vtos, vtos);
__ pop_d(Z_ftos);
locals_index_wide(Z_tmp_1);
__ freg2mem_opt(Z_ftos, daddress(_masm, Z_tmp_1));
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
__ pop_ptr(Z_tos);
locals_index_wide(Z_tmp_1);
__ reg2mem_opt(Z_tos, aaddress(_masm, Z_tmp_1));
}
void TemplateTable::iastore() {
transition(itos, vtos);
Register index = Z_ARG3; // Index_check expects index in Z_ARG3.
// Value is in Z_tos ...
__ pop_i(index); // index
__ pop_ptr(Z_tmp_1); // array
index_check(Z_tmp_1, index, LogBytesPerInt);
// ... and then move the value.
__ reg2mem_opt(Z_tos,
Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
false);
}
void TemplateTable::lastore() {
transition(ltos, vtos);
__ pop_i(Z_ARG3);
__ pop_ptr(Z_tmp_2);
// Z_tos : value
// Z_ARG3 : index
// Z_tmp_2 : array
index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
__ reg2mem_opt(Z_tos,
Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_LONG)));
}
void TemplateTable::fastore() {
transition(ftos, vtos);
__ pop_i(Z_ARG3);
__ pop_ptr(Z_tmp_2);
// Z_ftos : value
// Z_ARG3 : index
// Z_tmp_2 : array
index_check(Z_tmp_2, Z_ARG3, LogBytesPerInt); // Prefer index in Z_ARG3.
__ freg2mem_opt(Z_ftos,
Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
false);
}
void TemplateTable::dastore() {
transition(dtos, vtos);
__ pop_i(Z_ARG3);
__ pop_ptr(Z_tmp_2);
// Z_ftos : value
// Z_ARG3 : index
// Z_tmp_2 : array
index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
__ freg2mem_opt(Z_ftos,
Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
}
void TemplateTable::aastore() {
NearLabel is_null, ok_is_subtype, done;
transition(vtos, vtos);
// stack: ..., array, index, value
Register Rvalue = Z_tos;
Register Rarray = Z_ARG2;
Register Rindex = Z_ARG3; // Convention for index_check().
__ load_ptr(0, Rvalue);
__ z_l(Rindex, Address(Z_esp, Interpreter::expr_offset_in_bytes(1)));
__ load_ptr(2, Rarray);
unsigned const int shift = LogBytesPerHeapOop;
index_check(Rarray, Rindex, shift); // side effect: Rindex = Rindex << shift
Register Rstore_addr = Rindex;
// Address where the store goes to, i.e. &(Rarry[index])
__ load_address(Rstore_addr, Address(Rarray, Rindex, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
// do array store check - check for NULL value first.
__ compareU64_and_branch(Rvalue, (intptr_t)0, Assembler::bcondEqual, is_null);
Register Rsub_klass = Z_ARG4;
Register Rsuper_klass = Z_ARG5;
__ load_klass(Rsub_klass, Rvalue);
// Load superklass.
__ load_klass(Rsuper_klass, Rarray);
__ z_lg(Rsuper_klass, Address(Rsuper_klass, ObjArrayKlass::element_klass_offset()));
// Generate a fast subtype check. Branch to ok_is_subtype if no failure.
// Throw if failure.
Register tmp1 = Z_tmp_1;
Register tmp2 = Z_tmp_2;
__ gen_subtype_check(Rsub_klass, Rsuper_klass, tmp1, tmp2, ok_is_subtype);
// Fall through on failure.
// Object is in Rvalue == Z_tos.
assert(Rvalue == Z_tos, "that's the expected location");
__ load_absolute_address(tmp1, Interpreter::_throw_ArrayStoreException_entry);
__ z_br(tmp1);
Register tmp3 = Rsub_klass;
// Have a NULL in Rvalue.
__ bind(is_null);
__ profile_null_seen(tmp1);
// Store a NULL.
do_oop_store(_masm, Address(Rstore_addr, (intptr_t)0), noreg,
tmp3, tmp2, tmp1, IS_ARRAY);
__ z_bru(done);
// Come here on success.
__ bind(ok_is_subtype);
// Now store using the appropriate barrier.
do_oop_store(_masm, Address(Rstore_addr, (intptr_t)0), Rvalue,
tmp3, tmp2, tmp1, IS_ARRAY | IS_NOT_NULL);
// Pop stack arguments.
__ bind(done);
__ add2reg(Z_esp, 3 * Interpreter::stackElementSize);
}
void TemplateTable::bastore() {
transition(itos, vtos);
__ pop_i(Z_ARG3);
__ pop_ptr(Z_tmp_2);
// Z_tos : value
// Z_ARG3 : index
// Z_tmp_2 : array
// Need to check whether array is boolean or byte
// since both types share the bastore bytecode.
__ load_klass(Z_tmp_1, Z_tmp_2);
__ z_llgf(Z_tmp_1, Address(Z_tmp_1, Klass::layout_helper_offset()));
__ z_tmll(Z_tmp_1, Klass::layout_helper_boolean_diffbit());
Label L_skip;
__ z_bfalse(L_skip);
// if it is a T_BOOLEAN array, mask the stored value to 0/1
__ z_nilf(Z_tos, 0x1);
__ bind(L_skip);
// No index shift necessary - pass 0.
index_check(Z_tmp_2, Z_ARG3, 0); // Prefer index in Z_ARG3.
__ z_stc(Z_tos,
Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
}
void TemplateTable::castore() {
transition(itos, vtos);
__ pop_i(Z_ARG3);
__ pop_ptr(Z_tmp_2);
// Z_tos : value
// Z_ARG3 : index
// Z_tmp_2 : array
Register index = Z_ARG3; // prefer index in Z_ARG3
index_check(Z_tmp_2, index, LogBytesPerShort);
__ z_sth(Z_tos,
Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
void TemplateTable::sastore() {
castore();
}
void TemplateTable::istore(int n) {
transition(itos, vtos);
__ reg2mem_opt(Z_tos, iaddress(n), false);
}
void TemplateTable::lstore(int n) {
transition(ltos, vtos);
__ reg2mem_opt(Z_tos, laddress(n));
}
void TemplateTable::fstore(int n) {
transition(ftos, vtos);
__ freg2mem_opt(Z_ftos, faddress(n), false);
}
void TemplateTable::dstore(int n) {
transition(dtos, vtos);
__ freg2mem_opt(Z_ftos, daddress(n));
}
void TemplateTable::astore(int n) {
transition(vtos, vtos);
__ pop_ptr(Z_tos);
__ reg2mem_opt(Z_tos, aaddress(n));
}
void TemplateTable::pop() {
transition(vtos, vtos);
__ add2reg(Z_esp, Interpreter::stackElementSize);
}
void TemplateTable::pop2() {
transition(vtos, vtos);
__ add2reg(Z_esp, 2 * Interpreter::stackElementSize);
}
void TemplateTable::dup() {
transition(vtos, vtos);
__ load_ptr(0, Z_tos);
__ push_ptr(Z_tos);
// stack: ..., a, a
}
void TemplateTable::dup_x1() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(0, Z_tos); // load b
__ load_ptr(1, Z_R0_scratch); // load a
__ store_ptr(1, Z_tos); // store b
__ store_ptr(0, Z_R0_scratch); // store a
__ push_ptr(Z_tos); // push b
// stack: ..., b, a, b
}
void TemplateTable::dup_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr(0, Z_R0_scratch); // load c
__ load_ptr(2, Z_R1_scratch); // load a
__ store_ptr(2, Z_R0_scratch); // store c in a
__ push_ptr(Z_R0_scratch); // push c
// stack: ..., c, b, c, c
__ load_ptr(2, Z_R0_scratch); // load b
__ store_ptr(2, Z_R1_scratch); // store a in b
// stack: ..., c, a, c, c
__ store_ptr(1, Z_R0_scratch); // store b in c
// stack: ..., c, a, b, c
}
void TemplateTable::dup2() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(1, Z_R0_scratch); // load a
__ push_ptr(Z_R0_scratch); // push a
__ load_ptr(1, Z_R0_scratch); // load b
__ push_ptr(Z_R0_scratch); // push b
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr(0, Z_R0_scratch); // load c
__ load_ptr(1, Z_R1_scratch); // load b
__ push_ptr(Z_R1_scratch); // push b
__ push_ptr(Z_R0_scratch); // push c
// stack: ..., a, b, c, b, c
__ store_ptr(3, Z_R0_scratch); // store c in b
// stack: ..., a, c, c, b, c
__ load_ptr( 4, Z_R0_scratch); // load a
__ store_ptr(2, Z_R0_scratch); // store a in 2nd c
// stack: ..., a, c, a, b, c
__ store_ptr(4, Z_R1_scratch); // store b in a
// stack: ..., b, c, a, b, c
}
void TemplateTable::dup2_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c, d
__ load_ptr(0, Z_R0_scratch); // load d
__ load_ptr(1, Z_R1_scratch); // load c
__ push_ptr(Z_R1_scratch); // push c
__ push_ptr(Z_R0_scratch); // push d
// stack: ..., a, b, c, d, c, d
__ load_ptr(4, Z_R1_scratch); // load b
__ store_ptr(2, Z_R1_scratch); // store b in d
__ store_ptr(4, Z_R0_scratch); // store d in b
// stack: ..., a, d, c, b, c, d
__ load_ptr(5, Z_R0_scratch); // load a
__ load_ptr(3, Z_R1_scratch); // load c
__ store_ptr(3, Z_R0_scratch); // store a in c
__ store_ptr(5, Z_R1_scratch); // store c in a
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(1, Z_R0_scratch); // load a
__ load_ptr(0, Z_R1_scratch); // load b
__ store_ptr(0, Z_R0_scratch); // store a in b
__ store_ptr(1, Z_R1_scratch); // store b in a
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op) {
transition(itos, itos);
switch (op) {
case add : __ z_ay(Z_tos, __ stackTop()); __ pop_i(); break;
case sub : __ z_sy(Z_tos, __ stackTop()); __ pop_i(); __ z_lcr(Z_tos, Z_tos); break;
case mul : __ z_msy(Z_tos, __ stackTop()); __ pop_i(); break;
case _and : __ z_ny(Z_tos, __ stackTop()); __ pop_i(); break;
case _or : __ z_oy(Z_tos, __ stackTop()); __ pop_i(); break;
case _xor : __ z_xy(Z_tos, __ stackTop()); __ pop_i(); break;
case shl : __ z_lr(Z_tmp_1, Z_tos);
__ z_nill(Z_tmp_1, 31); // Lowest 5 bits are shiftamount.
__ pop_i(Z_tos); __ z_sll(Z_tos, 0, Z_tmp_1); break;
case shr : __ z_lr(Z_tmp_1, Z_tos);
__ z_nill(Z_tmp_1, 31); // Lowest 5 bits are shiftamount.
__ pop_i(Z_tos); __ z_sra(Z_tos, 0, Z_tmp_1); break;
case ushr : __ z_lr(Z_tmp_1, Z_tos);
__ z_nill(Z_tmp_1, 31); // Lowest 5 bits are shiftamount.
__ pop_i(Z_tos); __ z_srl(Z_tos, 0, Z_tmp_1); break;
default : ShouldNotReachHere(); break;
}
return;
}
void TemplateTable::lop2(Operation op) {
transition(ltos, ltos);
switch (op) {
case add : __ z_ag(Z_tos, __ stackTop()); __ pop_l(); break;
case sub : __ z_sg(Z_tos, __ stackTop()); __ pop_l(); __ z_lcgr(Z_tos, Z_tos); break;
case mul : __ z_msg(Z_tos, __ stackTop()); __ pop_l(); break;
case _and : __ z_ng(Z_tos, __ stackTop()); __ pop_l(); break;
case _or : __ z_og(Z_tos, __ stackTop()); __ pop_l(); break;
case _xor : __ z_xg(Z_tos, __ stackTop()); __ pop_l(); break;
default : ShouldNotReachHere(); break;
}
return;
}
// Common part of idiv/irem.
static void idiv_helper(InterpreterMacroAssembler * _masm, address exception) {
NearLabel not_null;
// Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
assert(Z_tmp_1->successor() == Z_tmp_2, " need even/odd register pair for idiv/irem");
// Get dividend.
__ pop_i(Z_tmp_2);
// If divisor == 0 throw exception.
__ compare32_and_branch(Z_tos, (intptr_t) 0,
Assembler::bcondNotEqual, not_null );
__ load_absolute_address(Z_R1_scratch, exception);
__ z_br(Z_R1_scratch);
__ bind(not_null);
__ z_lgfr(Z_tmp_2, Z_tmp_2); // Sign extend dividend.
__ z_dsgfr(Z_tmp_1, Z_tos); // Do it.
}
void TemplateTable::idiv() {
transition(itos, itos);
idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
__ z_llgfr(Z_tos, Z_tmp_2); // Result is in Z_tmp_2.
}
void TemplateTable::irem() {
transition(itos, itos);
idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
__ z_llgfr(Z_tos, Z_tmp_1); // Result is in Z_tmp_1.
}
void TemplateTable::lmul() {
transition(ltos, ltos);
// Multiply with memory operand.
__ z_msg(Z_tos, __ stackTop());
__ pop_l(); // Pop operand.
}
// Common part of ldiv/lrem.
//
// Input:
// Z_tos := the divisor (dividend still on stack)
//
// Updated registers:
// Z_tmp_1 := pop_l() % Z_tos ; if is_ldiv == false
// Z_tmp_2 := pop_l() / Z_tos ; if is_ldiv == true
//
static void ldiv_helper(InterpreterMacroAssembler * _masm, address exception, bool is_ldiv) {
NearLabel not_null, done;
// Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
assert(Z_tmp_1->successor() == Z_tmp_2,
" need even/odd register pair for idiv/irem");
// Get dividend.
__ pop_l(Z_tmp_2);
// If divisor == 0 throw exception.
__ compare64_and_branch(Z_tos, (intptr_t)0, Assembler::bcondNotEqual, not_null);
__ load_absolute_address(Z_R1_scratch, exception);
__ z_br(Z_R1_scratch);
__ bind(not_null);
// Special case for dividend == 0x8000 and divisor == -1.
if (is_ldiv) {
// result := Z_tmp_2 := - dividend
__ z_lcgr(Z_tmp_2, Z_tmp_2);
} else {
// result remainder := Z_tmp_1 := 0
__ clear_reg(Z_tmp_1, true, false); // Don't set CC.
}
// if divisor == -1 goto done
__ compare64_and_branch(Z_tos, -1, Assembler::bcondEqual, done);
if (is_ldiv)
// Restore sign, because divisor != -1.
__ z_lcgr(Z_tmp_2, Z_tmp_2);
__ z_dsgr(Z_tmp_1, Z_tos); // Do it.
__ bind(done);
}
void TemplateTable::ldiv() {
transition(ltos, ltos);
ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, true /*is_ldiv*/);
__ z_lgr(Z_tos, Z_tmp_2); // Result is in Z_tmp_2.
}
void TemplateTable::lrem() {
transition(ltos, ltos);
ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, false /*is_ldiv*/);
__ z_lgr(Z_tos, Z_tmp_1); // Result is in Z_tmp_1.
}
void TemplateTable::lshl() {
transition(itos, ltos);
// Z_tos: shift amount
__ pop_l(Z_tmp_1); // Get shift value.
__ z_sllg(Z_tos, Z_tmp_1, 0, Z_tos);
}
void TemplateTable::lshr() {
transition(itos, ltos);
// Z_tos: shift amount
__ pop_l(Z_tmp_1); // Get shift value.
__ z_srag(Z_tos, Z_tmp_1, 0, Z_tos);
}
void TemplateTable::lushr() {
transition(itos, ltos);
// Z_tos: shift amount
__ pop_l(Z_tmp_1); // Get shift value.
__ z_srlg(Z_tos, Z_tmp_1, 0, Z_tos);
}
void TemplateTable::fop2(Operation op) {
transition(ftos, ftos);
switch (op) {
case add:
// Add memory operand.
__ z_aeb(Z_ftos, __ stackTop()); __ pop_f(); return;
case sub:
// Sub memory operand.
__ z_ler(Z_F1, Z_ftos); // first operand
__ pop_f(Z_ftos); // second operand from stack
__ z_sebr(Z_ftos, Z_F1);
return;
case mul:
// Multiply with memory operand.
__ z_meeb(Z_ftos, __ stackTop()); __ pop_f(); return;
case div:
__ z_ler(Z_F1, Z_ftos); // first operand
__ pop_f(Z_ftos); // second operand from stack
__ z_debr(Z_ftos, Z_F1);
return;
case rem:
// Do runtime call.
__ z_ler(Z_FARG2, Z_ftos); // divisor
__ pop_f(Z_FARG1); // dividend
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
// Result should be in the right place (Z_ftos == Z_FRET).
return;
default:
ShouldNotReachHere();
return;
}
}
void TemplateTable::dop2(Operation op) {
transition(dtos, dtos);
switch (op) {
case add:
// Add memory operand.
__ z_adb(Z_ftos, __ stackTop()); __ pop_d(); return;
case sub:
// Sub memory operand.
__ z_ldr(Z_F1, Z_ftos); // first operand
__ pop_d(Z_ftos); // second operand from stack
__ z_sdbr(Z_ftos, Z_F1);
return;
case mul:
// Multiply with memory operand.
__ z_mdb(Z_ftos, __ stackTop()); __ pop_d(); return;
case div:
__ z_ldr(Z_F1, Z_ftos); // first operand
__ pop_d(Z_ftos); // second operand from stack
__ z_ddbr(Z_ftos, Z_F1);
return;
case rem:
// Do runtime call.
__ z_ldr(Z_FARG2, Z_ftos); // divisor
__ pop_d(Z_FARG1); // dividend
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
// Result should be in the right place (Z_ftos == Z_FRET).
return;
default:
ShouldNotReachHere();
return;
}
}
void TemplateTable::ineg() {
transition(itos, itos);
__ z_lcr(Z_tos);
}
void TemplateTable::lneg() {
transition(ltos, ltos);
__ z_lcgr(Z_tos);
}
void TemplateTable::fneg() {
transition(ftos, ftos);
__ z_lcebr(Z_ftos, Z_ftos);
}
void TemplateTable::dneg() {
transition(dtos, dtos);
__ z_lcdbr(Z_ftos, Z_ftos);
}
void TemplateTable::iinc() {
transition(vtos, vtos);
Address local;
__ z_lb(Z_R0_scratch, at_bcp(2)); // Get constant.
locals_index(Z_R1_scratch);
local = iaddress(_masm, Z_R1_scratch);
__ z_a(Z_R0_scratch, local);
__ reg2mem_opt(Z_R0_scratch, local, false);
}
void TemplateTable::wide_iinc() {
transition(vtos, vtos);
// Z_tmp_1 := increment
__ get_2_byte_integer_at_bcp(Z_tmp_1, 4, InterpreterMacroAssembler::Signed);
// Z_R1_scratch := index of local to increment
locals_index_wide(Z_tmp_2);
// Load, increment, and store.
__ access_local_int(Z_tmp_2, Z_tos);
__ z_agr(Z_tos, Z_tmp_1);
// Shifted index is still in Z_tmp_2.
__ reg2mem_opt(Z_tos, Address(Z_locals, Z_tmp_2), false);
}
void TemplateTable::convert() {
// Checking
#ifdef ASSERT
TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l:
case Bytecodes::_i2f:
case Bytecodes::_i2d:
case Bytecodes::_i2b:
case Bytecodes::_i2c:
case Bytecodes::_i2s:
tos_in = itos;
break;
case Bytecodes::_l2i:
case Bytecodes::_l2f:
case Bytecodes::_l2d:
tos_in = ltos;
break;
case Bytecodes::_f2i:
case Bytecodes::_f2l:
case Bytecodes::_f2d:
tos_in = ftos;
break;
case Bytecodes::_d2i:
case Bytecodes::_d2l:
case Bytecodes::_d2f:
tos_in = dtos;
break;
default :
ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i:
case Bytecodes::_f2i:
case Bytecodes::_d2i:
case Bytecodes::_i2b:
case Bytecodes::_i2c:
case Bytecodes::_i2s:
tos_out = itos;
break;
case Bytecodes::_i2l:
case Bytecodes::_f2l:
case Bytecodes::_d2l:
tos_out = ltos;
break;
case Bytecodes::_i2f:
case Bytecodes::_l2f:
case Bytecodes::_d2f:
tos_out = ftos;
break;
case Bytecodes::_i2d:
case Bytecodes::_l2d:
case Bytecodes::_f2d:
tos_out = dtos;
break;
default :
ShouldNotReachHere();
}
transition(tos_in, tos_out);
#endif // ASSERT
// Conversion
Label done;
switch (bytecode()) {
case Bytecodes::_i2l:
__ z_lgfr(Z_tos, Z_tos);
return;
case Bytecodes::_i2f:
__ z_cefbr(Z_ftos, Z_tos);
return;
case Bytecodes::_i2d:
__ z_cdfbr(Z_ftos, Z_tos);
return;
case Bytecodes::_i2b:
// Sign extend least significant byte.
__ move_reg_if_needed(Z_tos, T_BYTE, Z_tos, T_INT);
return;
case Bytecodes::_i2c:
// Zero extend 2 least significant bytes.
__ move_reg_if_needed(Z_tos, T_CHAR, Z_tos, T_INT);
return;
case Bytecodes::_i2s:
// Sign extend 2 least significant bytes.
__ move_reg_if_needed(Z_tos, T_SHORT, Z_tos, T_INT);
return;
case Bytecodes::_l2i:
// Sign-extend not needed here, upper 4 bytes of int value in register are ignored.
return;
case Bytecodes::_l2f:
__ z_cegbr(Z_ftos, Z_tos);
return;
case Bytecodes::_l2d:
__ z_cdgbr(Z_ftos, Z_tos);
return;
case Bytecodes::_f2i:
case Bytecodes::_f2l:
__ clear_reg(Z_tos, true, false); // Don't set CC.
__ z_cebr(Z_ftos, Z_ftos);
__ z_brno(done); // NaN -> 0
if (bytecode() == Bytecodes::_f2i)
__ z_cfebr(Z_tos, Z_ftos, Assembler::to_zero);
else // bytecode() == Bytecodes::_f2l
__ z_cgebr(Z_tos, Z_ftos, Assembler::to_zero);
break;
case Bytecodes::_f2d:
__ move_freg_if_needed(Z_ftos, T_DOUBLE, Z_ftos, T_FLOAT);
return;
case Bytecodes::_d2i:
case Bytecodes::_d2l:
__ clear_reg(Z_tos, true, false); // Ddon't set CC.
__ z_cdbr(Z_ftos, Z_ftos);
__ z_brno(done); // NaN -> 0
if (bytecode() == Bytecodes::_d2i)
__ z_cfdbr(Z_tos, Z_ftos, Assembler::to_zero);
else // Bytecodes::_d2l
__ z_cgdbr(Z_tos, Z_ftos, Assembler::to_zero);
break;
case Bytecodes::_d2f:
__ move_freg_if_needed(Z_ftos, T_FLOAT, Z_ftos, T_DOUBLE);
return;
default:
ShouldNotReachHere();
}
__ bind(done);
}
void TemplateTable::lcmp() {
transition(ltos, itos);
Label done;
Register val1 = Z_R0_scratch;
Register val2 = Z_R1_scratch;
if (VM_Version::has_LoadStoreConditional()) {
__ pop_l(val1); // pop value 1.
__ z_lghi(val2, -1); // lt value
__ z_cgr(val1, Z_tos); // Compare with Z_tos (value 2). Protect CC under all circumstances.
__ z_lghi(val1, 1); // gt value
__ z_lghi(Z_tos, 0); // eq value
__ z_locgr(Z_tos, val1, Assembler::bcondHigh);
__ z_locgr(Z_tos, val2, Assembler::bcondLow);
} else {
__ pop_l(val1); // Pop value 1.
__ z_cgr(val1, Z_tos); // Compare with Z_tos (value 2). Protect CC under all circumstances.
__ z_lghi(Z_tos, 0); // eq value
__ z_bre(done);
__ z_lghi(Z_tos, 1); // gt value
__ z_brh(done);
__ z_lghi(Z_tos, -1); // lt value
}
__ bind(done);
}
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
Label done;
if (is_float) {
__ pop_f(Z_FARG2);
__ z_cebr(Z_FARG2, Z_ftos);
} else {
__ pop_d(Z_FARG2);
__ z_cdbr(Z_FARG2, Z_ftos);
}
if (VM_Version::has_LoadStoreConditional()) {
Register one = Z_R0_scratch;
Register minus_one = Z_R1_scratch;
__ z_lghi(minus_one, -1);
__ z_lghi(one, 1);
__ z_lghi(Z_tos, 0);
__ z_locgr(Z_tos, one, unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh);
__ z_locgr(Z_tos, minus_one, unordered_result == 1 ? Assembler::bcondLow : Assembler::bcondLowOrNotOrdered);
} else {
// Z_FARG2 == Z_ftos
__ clear_reg(Z_tos, false, false);
__ z_bre(done);
// F_ARG2 > Z_Ftos, or unordered
__ z_lhi(Z_tos, 1);
__ z_brc(unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh, done);
// F_ARG2 < Z_FTOS, or unordered
__ z_lhi(Z_tos, -1);
__ bind(done);
}
}
void TemplateTable::branch(bool is_jsr, bool is_wide) {
const Register bumped_count = Z_tmp_1;
const Register method = Z_tmp_2;
const Register m_counters = Z_R1_scratch;
const Register mdo = Z_tos;
BLOCK_COMMENT("TemplateTable::branch {");
__ get_method(method);
__ profile_taken_branch(mdo, bumped_count);
const ByteSize ctr_offset = InvocationCounter::counter_offset();
const ByteSize be_offset = MethodCounters::backedge_counter_offset() + ctr_offset;
const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + ctr_offset;
// Get (wide) offset to disp.
const Register disp = Z_ARG5;
if (is_wide) {
__ get_4_byte_integer_at_bcp(disp, 1);
} else {
__ get_2_byte_integer_at_bcp(disp, 1, InterpreterMacroAssembler::Signed);
}
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the
// non-JSR normal-branch stuff occurring below.
if (is_jsr) {
// Compute return address as bci in Z_tos.
__ z_lgr(Z_R1_scratch, Z_bcp);
__ z_sg(Z_R1_scratch, Address(method, Method::const_offset()));
__ add2reg(Z_tos, (is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()), Z_R1_scratch);
// Bump bcp to target of JSR.
__ z_agr(Z_bcp, disp);
// Push return address for "ret" on stack.
__ push_ptr(Z_tos);
// And away we go!
__ dispatch_next(vtos, 0 , true);
return;
}
// Normal (non-jsr) branch handling.
// Bump bytecode pointer by displacement (take the branch).
__ z_agr(Z_bcp, disp);
assert(UseLoopCounter || !UseOnStackReplacement,
"on-stack-replacement requires loop counters");
NearLabel backedge_counter_overflow;
NearLabel profile_method;
NearLabel dispatch;
int increment = InvocationCounter::count_increment;
if (UseLoopCounter) {
// Increment backedge counter for backward branches.
// disp: target offset
// Z_bcp: target bcp
// Z_locals: locals pointer
//
// Count only if backward branch.
__ compare32_and_branch(disp, (intptr_t)0, Assembler::bcondHigh, dispatch);
if (TieredCompilation) {
Label noCounters;
if (ProfileInterpreter) {
NearLabel no_mdo;
// Are we profiling?
__ load_and_test_long(mdo, Address(method, Method::method_data_offset()));
__ branch_optimized(Assembler::bcondZero, no_mdo);
// Increment the MDO backedge counter.
const Address mdo_backedge_counter(mdo, MethodData::backedge_counter_offset() + InvocationCounter::counter_offset());
const Address mask(mdo, MethodData::backedge_mask_offset());
__ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
Z_ARG2, false, Assembler::bcondZero,
UseOnStackReplacement ? &backedge_counter_overflow : NULL);
__ z_bru(dispatch);
__ bind(no_mdo);
}
// Increment backedge counter in MethodCounters*.
__ get_method_counters(method, m_counters, noCounters);
const Address mask(m_counters, MethodCounters::backedge_mask_offset());
__ increment_mask_and_jump(Address(m_counters, be_offset),
increment, mask,
Z_ARG2, false, Assembler::bcondZero,
UseOnStackReplacement ? &backedge_counter_overflow : NULL);
__ bind(noCounters);
} else {
Register counter = Z_tos;
Label noCounters;
// Get address of MethodCounters object.
__ get_method_counters(method, m_counters, noCounters);
// Increment backedge counter.
__ increment_backedge_counter(m_counters, counter);
if (ProfileInterpreter) {
// Test to see if we should create a method data obj.
__ z_cl(counter, Address(m_counters, MethodCounters::interpreter_profile_limit_offset()));
__ z_brl(dispatch);
// If no method data exists, go to profile method.
__ test_method_data_pointer(Z_ARG4/*result unused*/, profile_method);
if (UseOnStackReplacement) {
// Check for overflow against 'bumped_count' which is the MDO taken count.
__ z_cl(bumped_count, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
__ z_brl(dispatch);
// When ProfileInterpreter is on, the backedge_count comes
// from the methodDataOop, which value does not get reset on
// the call to frequency_counter_overflow(). To avoid
// excessive calls to the overflow routine while the method is
// being compiled, add a second test to make sure the overflow
// function is called only once every overflow_frequency.
const int overflow_frequency = 1024;
__ and_imm(bumped_count, overflow_frequency - 1);
__ z_brz(backedge_counter_overflow);
}
} else {
if (UseOnStackReplacement) {
// Check for overflow against 'counter', which is the sum of the
// counters.
__ z_cl(counter, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
__ z_brh(backedge_counter_overflow);
}
}
__ bind(noCounters);
}
__ bind(dispatch);
}
// Pre-load the next target bytecode into rbx.
__ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));
// Continue with the bytecode @ target.
// Z_tos: Return bci for jsr's, unused otherwise.
// Z_bytecode: target bytecode
// Z_bcp: target bcp
__ dispatch_only(vtos, true);
// Out-of-line code runtime calls.
if (UseLoopCounter) {
if (ProfileInterpreter && !TieredCompilation) {
// Out-of-line code to allocate method data oop.
__ bind(profile_method);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0)); // Restore target bytecode.
__ set_method_data_pointer_for_bcp();
__ z_bru(dispatch);
}
if (UseOnStackReplacement) {
// invocation counter overflow
__ bind(backedge_counter_overflow);
__ z_lcgr(Z_ARG2, disp); // Z_ARG2 := -disp
__ z_agr(Z_ARG2, Z_bcp); // Z_ARG2 := branch target bcp - disp == branch bcp
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
Z_ARG2);
// Z_RET: osr nmethod (osr ok) or NULL (osr not possible).
__ compare64_and_branch(Z_RET, (intptr_t) 0, Assembler::bcondEqual, dispatch);
// Nmethod may have been invalidated (VM may block upon call_VM return).
__ z_cliy(nmethod::state_offset(), Z_RET, nmethod::in_use);
__ z_brne(dispatch);
// Migrate the interpreter frame off of the stack.
__ z_lgr(Z_tmp_1, Z_RET); // Save the nmethod.
call_VM(noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
// Z_RET is OSR buffer, move it to expected parameter location.
__ lgr_if_needed(Z_ARG1, Z_RET);
// Pop the interpreter frame ...
__ pop_interpreter_frame(Z_R14, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
// ... and begin the OSR nmethod.
__ z_lg(Z_R1_scratch, Address(Z_tmp_1, nmethod::osr_entry_point_offset()));
__ z_br(Z_R1_scratch);
}
}
BLOCK_COMMENT("} TemplateTable::branch");
}
void TemplateTable::if_0cmp(Condition cc) {
transition(itos, vtos);
// Assume branch is more often taken than not (loops use backward branches).
NearLabel not_taken;
__ compare32_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(Z_tos);
}
void TemplateTable::if_icmp(Condition cc) {
transition(itos, vtos);
// Assume branch is more often taken than not (loops use backward branches).
NearLabel not_taken;
__ pop_i(Z_R0_scratch);
__ compare32_and_branch(Z_R0_scratch, Z_tos, j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(Z_tos);
}
void TemplateTable::if_nullcmp(Condition cc) {
transition(atos, vtos);
// Assume branch is more often taken than not (loops use backward branches) .
NearLabel not_taken;
__ compare64_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(Z_tos);
}
void TemplateTable::if_acmp(Condition cc) {
transition(atos, vtos);
// Assume branch is more often taken than not (loops use backward branches).
NearLabel not_taken;
__ pop_ptr(Z_ARG2);
__ verify_oop(Z_ARG2);
__ verify_oop(Z_tos);
__ compareU64_and_branch(Z_tos, Z_ARG2, j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(Z_ARG3);
}
void TemplateTable::ret() {
transition(vtos, vtos);
locals_index(Z_tmp_1);
// Get return bci, compute return bcp. Must load 64 bits.
__ mem2reg_opt(Z_tmp_1, iaddress(_masm, Z_tmp_1));
__ profile_ret(Z_tmp_1, Z_tmp_2);
__ get_method(Z_tos);
__ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
__ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
__ dispatch_next(vtos, 0 , true);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
locals_index_wide(Z_tmp_1);
// Get return bci, compute return bcp.
__ mem2reg_opt(Z_tmp_1, aaddress(_masm, Z_tmp_1));
__ profile_ret(Z_tmp_1, Z_tmp_2);
__ get_method(Z_tos);
__ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
__ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
__ dispatch_next(vtos, 0, true);
}
void TemplateTable::tableswitch () {
transition(itos, vtos);
NearLabel default_case, continue_execution;
Register bcp = Z_ARG5;
// Align bcp.
__ load_address(bcp, at_bcp(BytesPerInt));
__ z_nill(bcp, (-BytesPerInt) & 0xffff);
// Load lo & hi.
Register low = Z_tmp_1;
Register high = Z_tmp_2;
// Load low into 64 bits, since used for address calculation.
__ mem2reg_signed_opt(low, Address(bcp, BytesPerInt));
__ mem2reg_opt(high, Address(bcp, 2 * BytesPerInt), false);
// Sign extend "label" value for address calculation.
__ z_lgfr(Z_tos, Z_tos);
// Check against lo & hi.
__ compare32_and_branch(Z_tos, low, Assembler::bcondLow, default_case);
__ compare32_and_branch(Z_tos, high, Assembler::bcondHigh, default_case);
// Lookup dispatch offset.
__ z_sgr(Z_tos, low);
Register jump_table_offset = Z_ARG3;
// Index2offset; index in Z_tos is killed by profile_switch_case.
__ z_sllg(jump_table_offset, Z_tos, LogBytesPerInt);
__ profile_switch_case(Z_tos, Z_ARG4 /*tmp for mdp*/, low/*tmp*/, Z_bytecode/*tmp*/);
Register index = Z_tmp_2;
// Load index sign extended for addressing.
__ mem2reg_signed_opt(index, Address(bcp, jump_table_offset, 3 * BytesPerInt));
// Continue execution.
__ bind(continue_execution);
// Load next bytecode.
__ z_llgc(Z_bytecode, Address(Z_bcp, index));
__ z_agr(Z_bcp, index); // Advance bcp.
__ dispatch_only(vtos, true);
// Handle default.
__ bind(default_case);
__ profile_switch_default(Z_tos);
__ mem2reg_signed_opt(index, Address(bcp));
__ z_bru(continue_execution);
}
void TemplateTable::lookupswitch () {
transition(itos, itos);
__ stop("lookupswitch bytecode should have been rewritten");
}
void TemplateTable::fast_linearswitch () {
transition(itos, vtos);
Label loop_entry, loop, found, continue_execution;
Register bcp = Z_ARG5;
// Align bcp.
__ load_address(bcp, at_bcp(BytesPerInt));
__ z_nill(bcp, (-BytesPerInt) & 0xffff);
// Start search with last case.
Register current_case_offset = Z_tmp_1;
__ mem2reg_signed_opt(current_case_offset, Address(bcp, BytesPerInt));
__ z_sllg(current_case_offset, current_case_offset, LogBytesPerWord); // index2bytes
__ z_bru(loop_entry);
// table search
__ bind(loop);
__ z_c(Z_tos, Address(bcp, current_case_offset, 2 * BytesPerInt));
__ z_bre(found);
__ bind(loop_entry);
__ z_aghi(current_case_offset, -2 * BytesPerInt); // Decrement.
__ z_brnl(loop);
// default case
Register offset = Z_tmp_2;
__ profile_switch_default(Z_tos);
// Load offset sign extended for addressing.
__ mem2reg_signed_opt(offset, Address(bcp));
__ z_bru(continue_execution);
// Entry found -> get offset.
__ bind(found);
__ mem2reg_signed_opt(offset, Address(bcp, current_case_offset, 3 * BytesPerInt));
// Profile that this case was taken.
Register current_case_idx = Z_ARG4;
__ z_srlg(current_case_idx, current_case_offset, LogBytesPerWord); // bytes2index
__ profile_switch_case(current_case_idx, Z_tos, bcp, Z_bytecode);
// Continue execution.
__ bind(continue_execution);
// Load next bytecode.
__ z_llgc(Z_bytecode, Address(Z_bcp, offset, 0));
__ z_agr(Z_bcp, offset); // Advance bcp.
__ dispatch_only(vtos, true);
}
void TemplateTable::fast_binaryswitch() {
transition(itos, vtos);
// Implementation using the following core algorithm:
//
// int binary_search(int key, LookupswitchPair* array, int n) {
// // Binary search according to "Methodik des Programmierens" by
// // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
// int i = 0;
// int j = n;
// while (i+1 < j) {
// // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
// // with Q: for all i: 0 <= i < n: key < a[i]
// // where a stands for the array and assuming that the (inexisting)
// // element a[n] is infinitely big.
// int h = (i + j) >> 1;
// // i < h < j
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// }
// // R: a[i] <= key < a[i+1] or Q
// // (i.e., if key is within array, i is the correct index)
// return i;
// }
// Register allocation
// Note: Since we use the indices in address operands, we do all the
// computation in 64 bits.
const Register key = Z_tos; // Already set (tosca).
const Register array = Z_tmp_1;
const Register i = Z_tmp_2;
const Register j = Z_ARG5;
const Register h = Z_ARG4;
const Register temp = Z_R1_scratch;
// Find array start.
__ load_address(array, at_bcp(3 * BytesPerInt));
__ z_nill(array, (-BytesPerInt) & 0xffff); // align
// Initialize i & j.
__ clear_reg(i, true, false); // i = 0; Don't set CC.
__ mem2reg_signed_opt(j, Address(array, -BytesPerInt)); // j = length(array);
// And start.
Label entry;
__ z_bru(entry);
// binary search loop
{
NearLabel loop;
__ bind(loop);
// int h = (i + j) >> 1;
__ add2reg_with_index(h, 0, i, j); // h = i + j;
__ z_srag(h, h, 1); // h = (i + j) >> 1;
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// Convert array[h].match to native byte-ordering before compare.
__ z_sllg(temp, h, LogBytesPerWord); // index2bytes
__ mem2reg_opt(temp, Address(array, temp), false);
NearLabel else_;
__ compare32_and_branch(key, temp, Assembler::bcondNotLow, else_);
// j = h if (key < array[h].fast_match())
__ z_lgr(j, h);
__ z_bru(entry); // continue
__ bind(else_);
// i = h if (key >= array[h].fast_match())
__ z_lgr(i, h); // and fallthrough
// while (i+1 < j)
__ bind(entry);
// if (i + 1 < j) continue search
__ add2reg(h, 1, i);
__ compare64_and_branch(h, j, Assembler::bcondLow, loop);
}
// End of binary search, result index is i (must check again!).
NearLabel default_case;
// h is no longer needed, so use it to hold the byte offset.
__ z_sllg(h, i, LogBytesPerWord); // index2bytes
__ mem2reg_opt(temp, Address(array, h), false);
__ compare32_and_branch(key, temp, Assembler::bcondNotEqual, default_case);
// entry found -> j = offset
__ mem2reg_signed_opt(j, Address(array, h, BytesPerInt));
__ profile_switch_case(i, key, array, Z_bytecode);
// Load next bytecode.
__ z_llgc(Z_bytecode, Address(Z_bcp, j));
__ z_agr(Z_bcp, j); // Advance bcp.
__ dispatch_only(vtos, true);
// default case -> j = default offset
__ bind(default_case);
__ profile_switch_default(i);
__ mem2reg_signed_opt(j, Address(array, -2 * BytesPerInt));
// Load next bytecode.
__ z_llgc(Z_bytecode, Address(Z_bcp, j));
__ z_agr(Z_bcp, j); // Advance bcp.
__ dispatch_only(vtos, true);
}
void TemplateTable::_return(TosState state) {
transition(state, state);
assert(_desc->calls_vm(),
"inconsistent calls_vm information"); // call in remove_activation
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
Register Rthis = Z_ARG2;
Register Rklass = Z_ARG5;
Label skip_register_finalizer;
assert(state == vtos, "only valid state");
__ z_lg(Rthis, aaddress(0));
__ load_klass(Rklass, Rthis);
__ testbit(Address(Rklass, Klass::access_flags_offset()), exact_log2(JVM_ACC_HAS_FINALIZER));
__ z_bfalse(skip_register_finalizer);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Rthis);
__ bind(skip_register_finalizer);
}
if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
Label no_safepoint;
const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
__ z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
__ z_braz(no_safepoint);
__ push(state);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
__ pop(state);
__ bind(no_safepoint);
}
if (state == itos) {
// Narrow result if state is itos but result type is smaller.
// Need to narrow in the return bytecode rather than in generate_return_entry
// since compiled code callers expect the result to already be narrowed.
__ narrow(Z_tos, Z_tmp_1); /* fall through */
}
__ remove_activation(state, Z_R14);
__ z_br(Z_R14);
}
// ----------------------------------------------------------------------------
// NOTE: Cpe_offset is already computed as byte offset, so we must not
// shift it afterwards!
void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache,
Register cpe_offset,
size_t index_size) {
BLOCK_COMMENT("resolve_cache_and_index {");
NearLabel resolved;
const Register bytecode_in_cpcache = Z_R1_scratch;
const int total_f1_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f1_offset());
assert_different_registers(Rcache, cpe_offset, bytecode_in_cpcache);
Bytecodes::Code code = bytecode();
switch (code) {
case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
}
{
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
__ get_cache_and_index_and_bytecode_at_bcp(Rcache, cpe_offset, bytecode_in_cpcache, byte_no, 1, index_size);
// Have we resolved this bytecode?
__ compare32_and_branch(bytecode_in_cpcache, (int)code, Assembler::bcondEqual, resolved);
}
// Resolve first time through.
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
__ load_const_optimized(Z_ARG2, (int) code);
__ call_VM(noreg, entry, Z_ARG2);
// Update registers with resolved info.
__ get_cache_and_index_at_bcp(Rcache, cpe_offset, 1, index_size);
__ bind(resolved);
BLOCK_COMMENT("} resolve_cache_and_index");
}
// The Rcache and index registers must be set before call.
// Index is already a byte offset, don't shift!
void TemplateTable::load_field_cp_cache_entry(Register obj,
Register cache,
Register index,
Register off,
Register flags,
bool is_static = false) {
assert_different_registers(cache, index, flags, off);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
// Field offset
__ mem2reg_opt(off, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
// Flags. Must load 64 bits.
__ mem2reg_opt(flags, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
// klass overwrite register
if (is_static) {
__ mem2reg_opt(obj, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
__ mem2reg_opt(obj, Address(obj, Klass::java_mirror_offset()));
__ resolve_oop_handle(obj);
}
}
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register method,
Register itable_index,
Register flags,
bool is_invokevirtual,
bool is_invokevfinal, // unused
bool is_invokedynamic) {
BLOCK_COMMENT("load_invoke_cp_cache_entry {");
// Setup registers.
const Register cache = Z_ARG1;
const Register cpe_offset= flags;
const ByteSize base_off = ConstantPoolCache::base_offset();
const ByteSize f1_off = ConstantPoolCacheEntry::f1_offset();
const ByteSize f2_off = ConstantPoolCacheEntry::f2_offset();
const ByteSize flags_off = ConstantPoolCacheEntry::flags_offset();
const int method_offset = in_bytes(base_off + ((byte_no == f2_byte) ? f2_off : f1_off));
const int flags_offset = in_bytes(base_off + flags_off);
// Access constant pool cache fields.
const int index_offset = in_bytes(base_off + f2_off);
assert_different_registers(method, itable_index, flags, cache);
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
if (is_invokevfinal) {
// Already resolved.
assert(itable_index == noreg, "register not used");
__ get_cache_and_index_at_bcp(cache, cpe_offset, 1);
} else {
// Need to resolve.
resolve_cache_and_index(byte_no, cache, cpe_offset, is_invokedynamic ? sizeof(u4) : sizeof(u2));
}
__ z_lg(method, Address(cache, cpe_offset, method_offset));
if (itable_index != noreg) {
__ z_lg(itable_index, Address(cache, cpe_offset, index_offset));
}
// Only load the lower 4 bytes and fill high bytes of flags with zeros.
// Callers depend on this zero-extension!!!
// Attention: overwrites cpe_offset == flags
__ z_llgf(flags, Address(cache, cpe_offset, flags_offset + (BytesPerLong-BytesPerInt)));
BLOCK_COMMENT("} load_invoke_cp_cache_entry");
}
// The registers cache and index expected to be set before call.
// Correct values of the cache and index registers are preserved.
void TemplateTable::jvmti_post_field_access(Register cache, Register index,
bool is_static, bool has_tos) {
// Do the JVMTI work here to avoid disturbing the register state below.
// We use c_rarg registers here because we want to use the register used in
// the call to the VM
if (!JvmtiExport::can_post_field_access()) {
return;
}
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label exit;
assert_different_registers(cache, index, Z_tos);
__ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_access_count_addr());
__ load_and_test_int(Z_R0, Address(Z_tos));
__ z_brz(exit);
// Index is returned as byte offset, do not shift!
__ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
// cache entry pointer
__ add2reg_with_index(Z_ARG3,
in_bytes(ConstantPoolCache::base_offset()),
Z_ARG3, Z_R1_scratch);
if (is_static) {
__ clear_reg(Z_ARG2, true, false); // NULL object reference. Don't set CC.
} else {
__ mem2reg_opt(Z_ARG2, at_tos()); // Get object pointer without popping it.
__ verify_oop(Z_ARG2);
}
// Z_ARG2: object pointer or NULL
// Z_ARG3: cache entry pointer
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
Z_ARG2, Z_ARG3);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(exit);
}
void TemplateTable::pop_and_check_object(Register r) {
__ pop_ptr(r);
__ null_check(r); // for field access must check obj.
__ verify_oop(r);
}
void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
const Register cache = Z_tmp_1;
const Register index = Z_tmp_2;
const Register obj = Z_tmp_1;
const Register off = Z_ARG2;
const Register flags = Z_ARG1;
const Register bc = Z_tmp_1; // Uses same reg as obj, so don't mix them.
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_access(cache, index, is_static, false);
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
if (!is_static) {
// Obj is on the stack.
pop_and_check_object(obj);
}
// Displacement is 0, so any store instruction will be fine on any CPU.
const Address field(obj, off);
Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
is_Long, is_Float, is_Object, is_Double;
Label is_badState8, is_badState9, is_badStateA, is_badStateB,
is_badStateC, is_badStateD, is_badStateE, is_badStateF,
is_badState;
Label branchTable, atosHandler, Done;
Register br_tab = Z_R1_scratch;
bool do_rewrite = !is_static && (rc == may_rewrite);
bool dont_rewrite = (is_static || (rc == may_not_rewrite));
assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
assert(btos == 0, "change code, btos != 0");
// Calculate branch table size. Generated code size depends on ASSERT and on bytecode rewriting.
#ifdef ASSERT
const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
#else
const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
#endif
// Calculate address of branch table entry and branch there.
{
const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
const int r_bitpos = 63 - bit_shift;
const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
const int n_rotate = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
__ z_larl(br_tab, branchTable);
__ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
}
__ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
__ align_address(bsize);
BIND(branchTable);
// btos
BTB_BEGIN(is_Byte, bsize, "getfield_or_static:is_Byte");
__ z_lb(Z_tos, field);
__ push(btos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Byte, bsize, "getfield_or_static:is_Byte");
// ztos
BTB_BEGIN(is_Bool, bsize, "getfield_or_static:is_Bool");
__ z_lb(Z_tos, field);
__ push(ztos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
// Use btos rewriting, no truncating to t/f bit is needed for getfield.
patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Bool, bsize, "getfield_or_static:is_Bool");
// ctos
BTB_BEGIN(is_Char, bsize, "getfield_or_static:is_Char");
// Load into 64 bits, works on all CPUs.
__ z_llgh(Z_tos, field);
__ push(ctos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_cgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Char, bsize, "getfield_or_static:is_Char");
// stos
BTB_BEGIN(is_Short, bsize, "getfield_or_static:is_Short");
__ z_lh(Z_tos, field);
__ push(stos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_sgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Short, bsize, "getfield_or_static:is_Short");
// itos
BTB_BEGIN(is_Int, bsize, "getfield_or_static:is_Int");
__ mem2reg_opt(Z_tos, field, false);
__ push(itos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_igetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Int, bsize, "getfield_or_static:is_Int");
// ltos
BTB_BEGIN(is_Long, bsize, "getfield_or_static:is_Long");
__ mem2reg_opt(Z_tos, field);
__ push(ltos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_lgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Long, bsize, "getfield_or_static:is_Long");
// ftos
BTB_BEGIN(is_Float, bsize, "getfield_or_static:is_Float");
__ mem2freg_opt(Z_ftos, field, false);
__ push(ftos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_fgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Float, bsize, "getfield_or_static:is_Float");
// dtos
BTB_BEGIN(is_Double, bsize, "getfield_or_static:is_Double");
__ mem2freg_opt(Z_ftos, field);
__ push(dtos);
// Rewrite bytecode to be faster.
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_dgetfield, bc, Z_ARG5);
}
__ z_bru(Done);
BTB_END(is_Double, bsize, "getfield_or_static:is_Double");
// atos
BTB_BEGIN(is_Object, bsize, "getfield_or_static:is_Object");
__ z_bru(atosHandler);
BTB_END(is_Object, bsize, "getfield_or_static:is_Object");
// Bad state detection comes at no extra runtime cost.
BTB_BEGIN(is_badState8, bsize, "getfield_or_static:is_badState8");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badState8, bsize, "getfield_or_static:is_badState8");
BTB_BEGIN(is_badState9, bsize, "getfield_or_static:is_badState9");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badState9, bsize, "getfield_or_static:is_badState9");
BTB_BEGIN(is_badStateA, bsize, "getfield_or_static:is_badStateA");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateA, bsize, "getfield_or_static:is_badStateA");
BTB_BEGIN(is_badStateB, bsize, "getfield_or_static:is_badStateB");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateB, bsize, "getfield_or_static:is_badStateB");
BTB_BEGIN(is_badStateC, bsize, "getfield_or_static:is_badStateC");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateC, bsize, "getfield_or_static:is_badStateC");
BTB_BEGIN(is_badStateD, bsize, "getfield_or_static:is_badStateD");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateD, bsize, "getfield_or_static:is_badStateD");
BTB_BEGIN(is_badStateE, bsize, "getfield_or_static:is_badStateE");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateE, bsize, "getfield_or_static:is_badStateE");
BTB_BEGIN(is_badStateF, bsize, "getfield_or_static:is_badStateF");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateF, bsize, "getfield_or_static:is_badStateF");
__ align_address(64);
BIND(is_badState); // Do this outside branch table. Needs a lot of space.
{
unsigned int b_off = __ offset();
if (is_static) {
__ stop_static("Bad state in getstatic");
} else {
__ stop_static("Bad state in getfield");
}
unsigned int e_off = __ offset();
}
__ align_address(64);
BIND(atosHandler); // Oops are really complicated to handle.
// There is a lot of code generated.
// Therefore: generate the handler outside of branch table.
// There is no performance penalty. The additional branch
// to here is compensated for by the fallthru to "Done".
{
unsigned int b_off = __ offset();
do_oop_load(_masm, field, Z_tos, Z_tmp_2, Z_tmp_3, IN_HEAP);
__ verify_oop(Z_tos);
__ push(atos);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_agetfield, bc, Z_ARG5);
}
unsigned int e_off = __ offset();
}
BIND(Done);
}
void TemplateTable::getfield(int byte_no) {
BLOCK_COMMENT("getfield {");
getfield_or_static(byte_no, false);
BLOCK_COMMENT("} getfield");
}
void TemplateTable::nofast_getfield(int byte_no) {
getfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::getstatic(int byte_no) {
BLOCK_COMMENT("getstatic {");
getfield_or_static(byte_no, true);
BLOCK_COMMENT("} getstatic");
}
// The registers cache and index expected to be set before call. The
// function may destroy various registers, just not the cache and
// index registers.
void TemplateTable::jvmti_post_field_mod(Register cache,
Register index, bool is_static) {
transition(vtos, vtos);
if (!JvmtiExport::can_post_field_modification()) {
return;
}
BLOCK_COMMENT("jvmti_post_field_mod {");
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L1;
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
assert_different_registers(cache, index, Z_tos);
__ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_modification_count_addr());
__ load_and_test_int(Z_R0, Address(Z_tos));
__ z_brz(L1);
// Index is returned as byte offset, do not shift!
__ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
if (is_static) {
// Life is simple. Null out the object pointer.
__ clear_reg(Z_ARG2, true, false); // Don't set CC.
} else {
// Life is harder. The stack holds the value on top, followed by
// the object. We don't know the size of the value, though. It
// could be one or two words depending on its type. As a result,
// we must find the type to determine where the object is.
__ mem2reg_opt(Z_ARG4,
Address(Z_ARG3, Z_R1_scratch,
in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()) +
(BytesPerLong - BytesPerInt)),
false);
__ z_srl(Z_ARG4, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask Z_ARG4 for tos_state after the above shift.
ConstantPoolCacheEntry::verify_tos_state_shift();
__ mem2reg_opt(Z_ARG2, at_tos(1)); // Initially assume a one word jvalue.
NearLabel load_dtos, cont;
__ compareU32_and_branch(Z_ARG4, (intptr_t) ltos,
Assembler::bcondNotEqual, load_dtos);
__ mem2reg_opt(Z_ARG2, at_tos(2)); // ltos (two word jvalue)
__ z_bru(cont);
__ bind(load_dtos);
__ compareU32_and_branch(Z_ARG4, (intptr_t)dtos, Assembler::bcondNotEqual, cont);
__ mem2reg_opt(Z_ARG2, at_tos(2)); // dtos (two word jvalue)
__ bind(cont);
}
// cache entry pointer
__ add2reg_with_index(Z_ARG3, in_bytes(cp_base_offset), Z_ARG3, Z_R1_scratch);
// object(tos)
__ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
// Z_ARG2: object pointer set up above (NULL if static)
// Z_ARG3: cache entry pointer
// Z_ARG4: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
Z_ARG2, Z_ARG3, Z_ARG4);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
BLOCK_COMMENT("} jvmti_post_field_mod");
}
void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
const Register cache = Z_tmp_1;
const Register index = Z_ARG5;
const Register obj = Z_tmp_1;
const Register off = Z_tmp_2;
const Register flags = Z_R1_scratch;
const Register br_tab = Z_ARG5;
const Register bc = Z_tmp_1;
const Register oopStore_tmp1 = Z_R1_scratch;
const Register oopStore_tmp2 = Z_ARG5;
const Register oopStore_tmp3 = Z_R0_scratch;
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_mod(cache, index, is_static);
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
// begin of life for:
// obj, off long life range
// flags short life range, up to branch into branch table
// end of life for:
// cache, index
const Address field(obj, off);
Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
is_Long, is_Float, is_Object, is_Double;
Label is_badState8, is_badState9, is_badStateA, is_badStateB,
is_badStateC, is_badStateD, is_badStateE, is_badStateF,
is_badState;
Label branchTable, atosHandler, Done;
bool do_rewrite = !is_static && (rc == may_rewrite);
bool dont_rewrite = (is_static || (rc == may_not_rewrite));
assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
assert(btos == 0, "change code, btos != 0");
#ifdef ASSERT
const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
#else
const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*8;
#endif
// Calculate address of branch table entry and branch there.
{
const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
const int r_bitpos = 63 - bit_shift;
const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
const int n_rotate = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
__ z_larl(br_tab, branchTable);
__ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
__ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
}
// end of life for:
// flags, br_tab
__ align_address(bsize);
BIND(branchTable);
// btos
BTB_BEGIN(is_Byte, bsize, "putfield_or_static:is_Byte");
__ pop(btos);
if (!is_static) {
pop_and_check_object(obj);
}
__ z_stc(Z_tos, field);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_bputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Byte, bsize, "putfield_or_static:is_Byte");
// ztos
BTB_BEGIN(is_Bool, bsize, "putfield_or_static:is_Bool");
__ pop(ztos);
if (!is_static) {
pop_and_check_object(obj);
}
__ z_nilf(Z_tos, 0x1);
__ z_stc(Z_tos, field);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_zputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END(is_Bool, bsize, "putfield_or_static:is_Bool");
// ctos
BTB_BEGIN(is_Char, bsize, "putfield_or_static:is_Char");
__ pop(ctos);
if (!is_static) {
pop_and_check_object(obj);
}
__ z_sth(Z_tos, field);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_cputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Char, bsize, "putfield_or_static:is_Char");
// stos
BTB_BEGIN(is_Short, bsize, "putfield_or_static:is_Short");
__ pop(stos);
if (!is_static) {
pop_and_check_object(obj);
}
__ z_sth(Z_tos, field);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_sputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Short, bsize, "putfield_or_static:is_Short");
// itos
BTB_BEGIN(is_Int, bsize, "putfield_or_static:is_Int");
__ pop(itos);
if (!is_static) {
pop_and_check_object(obj);
}
__ reg2mem_opt(Z_tos, field, false);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_iputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Int, bsize, "putfield_or_static:is_Int");
// ltos
BTB_BEGIN(is_Long, bsize, "putfield_or_static:is_Long");
__ pop(ltos);
if (!is_static) {
pop_and_check_object(obj);
}
__ reg2mem_opt(Z_tos, field);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_lputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Long, bsize, "putfield_or_static:is_Long");
// ftos
BTB_BEGIN(is_Float, bsize, "putfield_or_static:is_Float");
__ pop(ftos);
if (!is_static) {
pop_and_check_object(obj);
}
__ freg2mem_opt(Z_ftos, field, false);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_fputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Float, bsize, "putfield_or_static:is_Float");
// dtos
BTB_BEGIN(is_Double, bsize, "putfield_or_static:is_Double");
__ pop(dtos);
if (!is_static) {
pop_and_check_object(obj);
}
__ freg2mem_opt(Z_ftos, field);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_dputfield, bc, Z_ARG5, true, byte_no);
}
__ z_bru(Done);
BTB_END( is_Double, bsize, "putfield_or_static:is_Double");
// atos
BTB_BEGIN(is_Object, bsize, "putfield_or_static:is_Object");
__ z_bru(atosHandler);
BTB_END( is_Object, bsize, "putfield_or_static:is_Object");
// Bad state detection comes at no extra runtime cost.
BTB_BEGIN(is_badState8, bsize, "putfield_or_static:is_badState8");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badState8, bsize, "putfield_or_static:is_badState8");
BTB_BEGIN(is_badState9, bsize, "putfield_or_static:is_badState9");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badState9, bsize, "putfield_or_static:is_badState9");
BTB_BEGIN(is_badStateA, bsize, "putfield_or_static:is_badStateA");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateA, bsize, "putfield_or_static:is_badStateA");
BTB_BEGIN(is_badStateB, bsize, "putfield_or_static:is_badStateB");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateB, bsize, "putfield_or_static:is_badStateB");
BTB_BEGIN(is_badStateC, bsize, "putfield_or_static:is_badStateC");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateC, bsize, "putfield_or_static:is_badStateC");
BTB_BEGIN(is_badStateD, bsize, "putfield_or_static:is_badStateD");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateD, bsize, "putfield_or_static:is_badStateD");
BTB_BEGIN(is_badStateE, bsize, "putfield_or_static:is_badStateE");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateE, bsize, "putfield_or_static:is_badStateE");
BTB_BEGIN(is_badStateF, bsize, "putfield_or_static:is_badStateF");
__ z_illtrap();
__ z_bru(is_badState);
BTB_END( is_badStateF, bsize, "putfield_or_static:is_badStateF");
__ align_address(64);
BIND(is_badState); // Do this outside branch table. Needs a lot of space.
{
unsigned int b_off = __ offset();
if (is_static) __ stop_static("Bad state in putstatic");
else __ stop_static("Bad state in putfield");
unsigned int e_off = __ offset();
}
__ align_address(64);
BIND(atosHandler); // Oops are really complicated to handle.
// There is a lot of code generated.
// Therefore: generate the handler outside of branch table.
// There is no performance penalty. The additional branch
// to here is compensated for by the fallthru to "Done".
{
unsigned int b_off = __ offset();
__ pop(atos);
if (!is_static) {
pop_and_check_object(obj);
}
// Store into the field
do_oop_store(_masm, Address(obj, off), Z_tos,
oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, IN_HEAP);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, bc, Z_ARG5, true, byte_no);
}
// __ z_bru(Done); // fallthru
unsigned int e_off = __ offset();
}
BIND(Done);
// Check for volatile store.
Label notVolatile;
__ testbit(Z_ARG4, ConstantPoolCacheEntry::is_volatile_shift);
__ z_brz(notVolatile);
__ z_fence();
BIND(notVolatile);
}
void TemplateTable::putfield(int byte_no) {
BLOCK_COMMENT("putfield {");
putfield_or_static(byte_no, false);
BLOCK_COMMENT("} putfield");
}
void TemplateTable::nofast_putfield(int byte_no) {
putfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::putstatic(int byte_no) {
BLOCK_COMMENT("putstatic {");
putfield_or_static(byte_no, true);
BLOCK_COMMENT("} putstatic");
}
// Push the tos value back to the stack.
// gc will find oops there and update.
void TemplateTable::jvmti_post_fast_field_mod() {
if (!JvmtiExport::can_post_field_modification()) {
return;
}
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label exit;
BLOCK_COMMENT("jvmti_post_fast_field_mod {");
__ load_absolute_address(Z_R1_scratch,
(address) JvmtiExport::get_field_modification_count_addr());
__ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
__ z_brz(exit);
Register obj = Z_tmp_1;
__ pop_ptr(obj); // Copy the object pointer from tos.
__ verify_oop(obj);
__ push_ptr(obj); // Put the object pointer back on tos.
// Save tos values before call_VM() clobbers them. Since we have
// to do it for every data type, we use the saved values as the
// jvalue object.
switch (bytecode()) { // Load values into the jvalue object.
case Bytecodes::_fast_aputfield:
__ push_ptr(Z_tos);
break;
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_sputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_iputfield:
__ push_i(Z_tos);
break;
case Bytecodes::_fast_dputfield:
__ push_d();
break;
case Bytecodes::_fast_fputfield:
__ push_f();
break;
case Bytecodes::_fast_lputfield:
__ push_l(Z_tos);
break;
default:
ShouldNotReachHere();
}
// jvalue on the stack
__ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
// Access constant pool cache entry.
__ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tos, 1);
__ verify_oop(obj);
// obj : object pointer copied above
// Z_ARG3: cache entry pointer
// Z_ARG4: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
obj, Z_ARG3, Z_ARG4);
switch (bytecode()) { // Restore tos values.
case Bytecodes::_fast_aputfield:
__ pop_ptr(Z_tos);
break;
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_sputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_iputfield:
__ pop_i(Z_tos);
break;
case Bytecodes::_fast_dputfield:
__ pop_d(Z_ftos);
break;
case Bytecodes::_fast_fputfield:
__ pop_f(Z_ftos);
break;
case Bytecodes::_fast_lputfield:
__ pop_l(Z_tos);
break;
}
__ bind(exit);
BLOCK_COMMENT("} jvmti_post_fast_field_mod");
}
void TemplateTable::fast_storefield(TosState state) {
transition(state, vtos);
ByteSize base = ConstantPoolCache::base_offset();
jvmti_post_fast_field_mod();
// Access constant pool cache.
Register cache = Z_tmp_1;
Register index = Z_tmp_2;
Register flags = Z_ARG5;
// Index comes in bytes, don't shift afterwards!
__ get_cache_and_index_at_bcp(cache, index, 1);
// Test for volatile.
assert(!flags->is_volatile(), "do_oop_store could perform leaf RT call");
__ z_lg(flags, Address(cache, index, base + ConstantPoolCacheEntry::flags_offset()));
// Replace index with field offset from cache entry.
Register field_offset = index;
__ z_lg(field_offset, Address(cache, index, base + ConstantPoolCacheEntry::f2_offset()));
// Get object from stack.
Register obj = cache;
pop_and_check_object(obj);
// field address
const Address field(obj, field_offset);
// access field
switch (bytecode()) {
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, Address(obj, field_offset), Z_tos,
Z_ARG2, Z_ARG3, Z_ARG4, IN_HEAP);
break;
case Bytecodes::_fast_lputfield:
__ reg2mem_opt(Z_tos, field);
break;
case Bytecodes::_fast_iputfield:
__ reg2mem_opt(Z_tos, field, false);
break;
case Bytecodes::_fast_zputfield:
__ z_nilf(Z_tos, 0x1);
// fall through to bputfield
case Bytecodes::_fast_bputfield:
__ z_stc(Z_tos, field);
break;
case Bytecodes::_fast_sputfield:
// fall through
case Bytecodes::_fast_cputfield:
__ z_sth(Z_tos, field);
break;
case Bytecodes::_fast_fputfield:
__ freg2mem_opt(Z_ftos, field, false);
break;
case Bytecodes::_fast_dputfield:
__ freg2mem_opt(Z_ftos, field);
break;
default:
ShouldNotReachHere();
}
// Check for volatile store.
Label notVolatile;
__ testbit(flags, ConstantPoolCacheEntry::is_volatile_shift);
__ z_brz(notVolatile);
__ z_fence();
__ bind(notVolatile);
}
void TemplateTable::fast_accessfield(TosState state) {
transition(atos, state);
Register obj = Z_tos;
// Do the JVMTI work here to avoid disturbing the register state below
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label cont;
__ load_absolute_address(Z_R1_scratch,
(address)JvmtiExport::get_field_access_count_addr());
__ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
__ z_brz(cont);
// Access constant pool cache entry.
__ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tmp_1, 1);
__ verify_oop(obj);
__ push_ptr(obj); // Save object pointer before call_VM() clobbers it.
__ z_lgr(Z_ARG2, obj);
// Z_ARG2: object pointer copied above
// Z_ARG3: cache entry pointer
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
Z_ARG2, Z_ARG3);
__ pop_ptr(obj); // Restore object pointer.
__ bind(cont);
}
// Access constant pool cache.
Register cache = Z_tmp_1;
Register index = Z_tmp_2;
// Index comes in bytes, don't shift afterwards!
__ get_cache_and_index_at_bcp(cache, index, 1);
// Replace index with field offset from cache entry.
__ mem2reg_opt(index,
Address(cache, index,
ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
__ verify_oop(obj);
__ null_check(obj);
Address field(obj, index);
// access field
switch (bytecode()) {
case Bytecodes::_fast_agetfield:
do_oop_load(_masm, field, Z_tos, Z_tmp_1, Z_tmp_2, IN_HEAP);
__ verify_oop(Z_tos);
return;
case Bytecodes::_fast_lgetfield:
__ mem2reg_opt(Z_tos, field);
return;
case Bytecodes::_fast_igetfield:
__ mem2reg_opt(Z_tos, field, false);
return;
case Bytecodes::_fast_bgetfield:
__ z_lb(Z_tos, field);
return;
case Bytecodes::_fast_sgetfield:
__ z_lh(Z_tos, field);
return;
case Bytecodes::_fast_cgetfield:
__ z_llgh(Z_tos, field); // Load into 64 bits, works on all CPUs.
return;
case Bytecodes::_fast_fgetfield:
__ mem2freg_opt(Z_ftos, field, false);
return;
case Bytecodes::_fast_dgetfield:
__ mem2freg_opt(Z_ftos, field);
return;
default:
ShouldNotReachHere();
}
}
void TemplateTable::fast_xaccess(TosState state) {
transition(vtos, state);
Register receiver = Z_tos;
// Get receiver.
__ mem2reg_opt(Z_tos, aaddress(0));
// Access constant pool cache.
Register cache = Z_tmp_1;
Register index = Z_tmp_2;
// Index comes in bytes, don't shift afterwards!
__ get_cache_and_index_at_bcp(cache, index, 2);
// Replace index with field offset from cache entry.
__ mem2reg_opt(index,
Address(cache, index,
ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
// Make sure exception is reported in correct bcp range (getfield is
// next instruction).
__ add2reg(Z_bcp, 1);
__ null_check(receiver);
switch (state) {
case itos:
__ mem2reg_opt(Z_tos, Address(receiver, index), false);
break;
case atos:
do_oop_load(_masm, Address(receiver, index), Z_tos, Z_tmp_1, Z_tmp_2, IN_HEAP);
__ verify_oop(Z_tos);
break;
case ftos:
__ mem2freg_opt(Z_ftos, Address(receiver, index));
break;
default:
ShouldNotReachHere();
}
// Reset bcp to original position.
__ add2reg(Z_bcp, -1);
}
//-----------------------------------------------------------------------------
// Calls
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // If caller wants to see it.
Register flags) { // If caller wants to test it.
// Determine flags.
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
// Setup registers & access constant pool cache.
if (recv == noreg) { recv = Z_ARG1; }
if (flags == noreg) { flags = Z_ARG2; }
assert_different_registers(method, Z_R14, index, recv, flags);
BLOCK_COMMENT("prepare_invoke {");
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// Maybe push appendix to arguments.
if (is_invokedynamic || is_invokehandle) {
Label L_no_push;
Register resolved_reference = Z_R1_scratch;
__ testbit(flags, ConstantPoolCacheEntry::has_appendix_shift);
__ z_bfalse(L_no_push);
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ load_resolved_reference_at_index(resolved_reference, index);
__ verify_oop(resolved_reference);
__ push_ptr(resolved_reference); // Push appendix (MethodType, CallSite, etc.).
__ bind(L_no_push);
}
// Load receiver if needed (after appendix is pushed so parameter size is correct).
if (load_receiver) {
assert(!is_invokedynamic, "");
// recv := int2long(flags & ConstantPoolCacheEntry::parameter_size_mask) << 3
// Flags is zero-extended int2long when loaded during load_invoke_cp_cache_entry().
// Only the least significant byte (psize) of flags is used.
{
const unsigned int logSES = Interpreter::logStackElementSize;
const int bit_shift = logSES;
const int r_bitpos = 63 - bit_shift;
const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::parameter_size_bits + 1;
const int n_rotate = bit_shift;
assert(ConstantPoolCacheEntry::parameter_size_mask == 255, "adapt bitpositions");
__ rotate_then_insert(recv, flags, l_bitpos, r_bitpos, n_rotate, true);
}
// Recv now contains #arguments * StackElementSize.
Address recv_addr(Z_esp, recv);
__ z_lg(recv, recv_addr);
__ verify_oop(recv);
}
// Compute return type.
// ret_type is used by callers (invokespecial, invokestatic) at least.
Register ret_type = Z_R1_scratch;
assert_different_registers(ret_type, method);
const address table_addr = (address)Interpreter::invoke_return_entry_table_for(code);
__ load_absolute_address(Z_R14, table_addr);
{
const int bit_shift = LogBytesPerWord; // Size of each table entry.
const int r_bitpos = 63 - bit_shift;
const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
const int n_rotate = bit_shift-ConstantPoolCacheEntry::tos_state_shift;
__ rotate_then_insert(ret_type, flags, l_bitpos, r_bitpos, n_rotate, true);
// Make sure we don't need to mask flags for tos_state after the above shift.
ConstantPoolCacheEntry::verify_tos_state_shift();
}
__ z_lg(Z_R14, Address(Z_R14, ret_type)); // Load return address.
BLOCK_COMMENT("} prepare_invoke");
}
void TemplateTable::invokevirtual_helper(Register index,
Register recv,
Register flags) {
// Uses temporary registers Z_tmp_2, Z_ARG4.
assert_different_registers(index, recv, Z_tmp_2, Z_ARG4);
// Test for an invoke of a final method.
Label notFinal;
BLOCK_COMMENT("invokevirtual_helper {");
__ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
__ z_brz(notFinal);
const Register method = index; // Method must be Z_ARG3.
assert(method == Z_ARG3, "method must be second argument for interpreter calling convention");
// Do the call - the index is actually the method to call.
// That is, f2 is a vtable index if !is_vfinal, else f2 is a method.
// It's final, need a null check here!
__ null_check(recv);
// Profile this call.
__ profile_final_call(Z_tmp_2);
__ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true); // Argument type profiling.
__ jump_from_interpreted(method, Z_tmp_2);
__ bind(notFinal);
// Get receiver klass.
__ null_check(recv, Z_R0_scratch, oopDesc::klass_offset_in_bytes());
__ load_klass(Z_tmp_2, recv);
// Profile this call.
__ profile_virtual_call(Z_tmp_2, Z_ARG4, Z_ARG5);
// Get target method & entry point.
__ z_sllg(index, index, exact_log2(vtableEntry::size_in_bytes()));
__ mem2reg_opt(method,
Address(Z_tmp_2, index,
Klass::vtable_start_offset() + in_ByteSize(vtableEntry::method_offset_in_bytes())));
__ profile_arguments_type(Z_ARG4, method, Z_ARG5, true);
__ jump_from_interpreted(method, Z_ARG4);
BLOCK_COMMENT("} invokevirtual_helper");
}
void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
prepare_invoke(byte_no,
Z_ARG3, // method or vtable index
noreg, // unused itable index
Z_ARG1, // recv
Z_ARG2); // flags
// Z_ARG3 : index
// Z_ARG1 : receiver
// Z_ARG2 : flags
invokevirtual_helper(Z_ARG3, Z_ARG1, Z_ARG2);
}
void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
Register Rmethod = Z_tmp_2;
prepare_invoke(byte_no, Rmethod, noreg, // Get f1 method.
Z_ARG3); // Get receiver also for null check.
__ verify_oop(Z_ARG3);
__ null_check(Z_ARG3);
// Do the call.
__ profile_call(Z_ARG2);
__ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
__ jump_from_interpreted(Rmethod, Z_R1_scratch);
}
void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
Register Rmethod = Z_tmp_2;
prepare_invoke(byte_no, Rmethod); // Get f1 method.
// Do the call.
__ profile_call(Z_ARG2);
__ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
__ jump_from_interpreted(Rmethod, Z_R1_scratch);
}
// Outdated feature, and we don't support it.
void TemplateTable::fast_invokevfinal(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
__ stop("fast_invokevfinal not used on linuxs390x");
}
void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
Register klass = Z_ARG2,
method = Z_ARG3,
interface = Z_ARG4,
flags = Z_ARG5,
receiver = Z_tmp_1;
BLOCK_COMMENT("invokeinterface {");
prepare_invoke(byte_no, interface, method, // Get f1 klassOop, f2 Method*.
receiver, flags);
// Z_R14 (== Z_bytecode) : return entry
// First check for Object case, then private interface method,
// then regular interface method.
// Special case of invokeinterface called for virtual method of
// java.lang.Object. See cpCache.cpp for details.
NearLabel notObjectMethod, no_such_method;
__ testbit(flags, ConstantPoolCacheEntry::is_forced_virtual_shift);
__ z_brz(notObjectMethod);
invokevirtual_helper(method, receiver, flags);
__ bind(notObjectMethod);
// Check for private method invocation - indicated by vfinal
NearLabel notVFinal;
__ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
__ z_brz(notVFinal);
// Get receiver klass into klass - also a null check.
__ load_klass(klass, receiver);
NearLabel subtype, no_such_interface;
__ check_klass_subtype(klass, interface, Z_tmp_2, flags/*scratch*/, subtype);
// If we get here the typecheck failed
__ z_bru(no_such_interface);
__ bind(subtype);
// do the call
__ profile_final_call(Z_tmp_2);
__ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true);
__ jump_from_interpreted(method, Z_tmp_2);
__ bind(notVFinal);
// Get receiver klass into klass - also a null check.
__ load_klass(klass, receiver);
__ lookup_interface_method(klass, interface, noreg, noreg, /*temp*/Z_ARG1,
no_such_interface, /*return_method=*/false);
// Profile this call.
__ profile_virtual_call(klass, Z_ARG1/*mdp*/, flags/*scratch*/);
// Find entry point to call.
// Get declaring interface class from method
__ z_lg(interface, Address(method, Method::const_offset()));
__ z_lg(interface, Address(interface, ConstMethod::constants_offset()));
__ z_lg(interface, Address(interface, ConstantPool::pool_holder_offset_in_bytes()));
// Get itable index from method
Register index = receiver,
method2 = flags;
__ z_lgf(index, Address(method, Method::itable_index_offset()));
__ z_aghi(index, -Method::itable_index_max);
__ z_lcgr(index, index);
__ lookup_interface_method(klass, interface, index, method2, Z_tmp_2,
no_such_interface);
// Check for abstract method error.
// Note: This should be done more efficiently via a throw_abstract_method_error
// interpreter entry point and a conditional jump to it in case of a null
// method.
__ compareU64_and_branch(method2, (intptr_t) 0,
Assembler::bcondZero, no_such_method);
__ profile_arguments_type(Z_tmp_1, method2, Z_tmp_2, true);
// Do the call.
__ jump_from_interpreted(method2, Z_tmp_2);
__ should_not_reach_here();
// exception handling code follows...
// Note: Must restore interpreter registers to canonical
// state for exception handling to work correctly!
__ bind(no_such_method);
// Throw exception.
// Pass arguments for generating a verbose error message.
__ z_lgr(Z_tmp_1, method); // Prevent register clash.
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_AbstractMethodErrorVerbose),
klass, Z_tmp_1);
// The call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
__ bind(no_such_interface);
// Throw exception.
// Pass arguments for generating a verbose error message.
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
klass, interface);
// The call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
BLOCK_COMMENT("} invokeinterface");
return;
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
const Register method = Z_tmp_2;
const Register recv = Z_ARG5;
const Register mtype = Z_tmp_1;
prepare_invoke(byte_no,
method, mtype, // Get f2 method, f1 MethodType.
recv);
__ verify_method_ptr(method);
__ verify_oop(recv);
__ null_check(recv);
// Note: Mtype is already pushed (if necessary) by prepare_invoke.
// FIXME: profile the LambdaForm also.
__ profile_final_call(Z_ARG2);
__ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
__ jump_from_interpreted(method, Z_ARG3);
}
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
const Register Rmethod = Z_tmp_2;
const Register Rcallsite = Z_tmp_1;
prepare_invoke(byte_no, Rmethod, Rcallsite);
// Rmethod: CallSite object (from f1)
// Rcallsite: MH.linkToCallSite method (from f2)
// Note: Callsite is already pushed by prepare_invoke.
// TODO: should make a type profile for any invokedynamic that takes a ref argument.
// Profile this call.
__ profile_call(Z_ARG2);
__ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
__ jump_from_interpreted(Rmethod, Z_ARG2);
}
//-----------------------------------------------------------------------------
// Allocation
// Original comment on "allow_shared_alloc":
// Always go the slow path.
// + Eliminated optimization within the template-based interpreter:
// If an allocation is done within the interpreter without using
// tlabs, the interpreter tries to do the allocation directly
// on the heap.
// + That means the profiling hooks are not considered and allocations
// get lost for the profiling framework.
// + However, we do not think that this optimization is really needed,
// so we always go now the slow path through the VM in this case --
// spec jbb2005 shows no measurable performance degradation.
void TemplateTable::_new() {
transition(vtos, atos);
address prev_instr_address = NULL;
Register tags = Z_tmp_1;
Register RallocatedObject = Z_tos;
Register cpool = Z_ARG2;
Register tmp = Z_ARG3; // RobjectFields==tmp and Rsize==offset must be a register pair.
Register offset = Z_ARG4;
Label slow_case;
Label done;
Label initialize_header;
Label allocate_shared;
BLOCK_COMMENT("TemplateTable::_new {");
__ get_2_byte_integer_at_bcp(offset/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
__ get_cpool_and_tags(cpool, tags);
// Make sure the class we're about to instantiate has been resolved.
// This is done before loading InstanceKlass to be consistent with the order
// how Constant Pool is updated (see ConstantPool::klass_at_put).
const int tags_offset = Array<u1>::base_offset_in_bytes();
__ load_address(tmp, Address(tags, offset, tags_offset));
__ z_cli(0, tmp, JVM_CONSTANT_Class);
__ z_brne(slow_case);
__ z_sllg(offset, offset, LogBytesPerWord); // Convert to to offset.
// Get InstanceKlass.
Register iklass = cpool;
__ load_resolved_klass_at_offset(cpool, offset, iklass);
// Make sure klass is initialized & doesn't have finalizer.
// Make sure klass is fully initialized.
const int state_offset = in_bytes(InstanceKlass::init_state_offset());
if (Immediate::is_uimm12(state_offset)) {
__ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
} else {
__ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
}
__ z_brne(slow_case);
// Get instance_size in InstanceKlass (scaled to a count of bytes).
Register Rsize = offset;
__ z_llgf(Rsize, Address(iklass, Klass::layout_helper_offset()));
__ z_tmll(Rsize, Klass::_lh_instance_slow_path_bit);
__ z_btrue(slow_case);
// Allocate the instance
// 1) Try to allocate in the TLAB.
// 2) If the above fails (or is not applicable), go to a slow case
// (creates a new TLAB, etc.).
// Note: compared to other architectures, s390's implementation always goes
// to the slow path if TLAB is used and fails.
if (UseTLAB) {
Register RoldTopValue = RallocatedObject;
Register RnewTopValue = tmp;
__ z_lg(RoldTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
__ load_address(RnewTopValue, Address(RoldTopValue, Rsize));
__ z_cg(RnewTopValue, Address(Z_thread, JavaThread::tlab_end_offset()));
__ z_brh(slow_case);
__ z_stg(RnewTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
Register RobjectFields = tmp;
Register Rzero = Z_R1_scratch;
__ clear_reg(Rzero, true /*whole reg*/, false); // Load 0L into Rzero. Don't set CC.
if (!ZeroTLAB) {
// The object is initialized before the header. If the object size is
// zero, go directly to the header initialization.
__ z_aghi(Rsize, (int)-sizeof(oopDesc)); // Subtract header size, set CC.
__ z_bre(initialize_header); // Jump if size of fields is zero.
// Initialize object fields.
// See documentation for MVCLE instruction!!!
assert(RobjectFields->encoding() % 2 == 0, "RobjectFields must be an even register");
assert(Rsize->encoding() == (RobjectFields->encoding()+1),
"RobjectFields and Rsize must be a register pair");
assert(Rzero->encoding() % 2 == 1, "Rzero must be an odd register");
// Set Rzero to 0 and use it as src length, then mvcle will copy nothing
// and fill the object with the padding value 0.
__ add2reg(RobjectFields, sizeof(oopDesc), RallocatedObject);
__ move_long_ext(RobjectFields, as_Register(Rzero->encoding() - 1), 0);
}
// Initialize object header only.
__ bind(initialize_header);
if (UseBiasedLocking) {
Register prototype = RobjectFields;
__ z_lg(prototype, Address(iklass, Klass::prototype_header_offset()));
__ z_stg(prototype, Address(RallocatedObject, oopDesc::mark_offset_in_bytes()));
} else {
__ store_const(Address(RallocatedObject, oopDesc::mark_offset_in_bytes()),
(long)markOopDesc::prototype());
}
__ store_klass_gap(Rzero, RallocatedObject); // Zero klass gap for compressed oops.
__ store_klass(iklass, RallocatedObject); // Store klass last.
{
SkipIfEqual skip(_masm, &DTraceAllocProbes, false, Z_ARG5 /*scratch*/);
// Trigger dtrace event for fastpath.
__ push(atos); // Save the return value.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), RallocatedObject);
__ pop(atos); // Restore the return value.
}
__ z_bru(done);
}
// slow case
__ bind(slow_case);
__ get_constant_pool(Z_ARG2);
__ get_2_byte_integer_at_bcp(Z_ARG3/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Z_ARG2, Z_ARG3);
__ verify_oop(Z_tos);
// continue
__ bind(done);
BLOCK_COMMENT("} TemplateTable::_new");
}
void TemplateTable::newarray() {
transition(itos, atos);
// Call runtime.
__ z_llgc(Z_ARG2, at_bcp(1)); // type
__ z_lgfr(Z_ARG3, Z_tos); // size
call_VM(Z_RET,
CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
Z_ARG2, Z_ARG3);
}
void TemplateTable::anewarray() {
transition(itos, atos);
__ get_2_byte_integer_at_bcp(Z_ARG3, 1, InterpreterMacroAssembler::Unsigned);
__ get_constant_pool(Z_ARG2);
__ z_lgfr(Z_ARG4, Z_tos);
call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
Z_ARG2, Z_ARG3, Z_ARG4);
}
void TemplateTable::arraylength() {
transition(atos, itos);
int offset = arrayOopDesc::length_offset_in_bytes();
__ null_check(Z_tos, Z_R0_scratch, offset);
__ mem2reg_opt(Z_tos, Address(Z_tos, offset), false);
}
void TemplateTable::checkcast() {
transition(atos, atos);
NearLabel done, is_null, ok_is_subtype, quicked, resolved;
BLOCK_COMMENT("checkcast {");
// If object is NULL, we are almost done.
__ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
// Get cpool & tags index.
Register cpool = Z_tmp_1;
Register tags = Z_tmp_2;
Register index = Z_ARG5;
__ get_cpool_and_tags(cpool, tags);
__ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
// See if bytecode has already been quicked.
// Note: For CLI, we would have to add the index to the tags pointer first,
// thus load and compare in a "classic" manner.
__ z_llgc(Z_R0_scratch,
Address(tags, index, Array<u1>::base_offset_in_bytes()));
__ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class,
Assembler::bcondEqual, quicked);
__ push(atos); // Save receiver for result, and for GC.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
__ get_vm_result_2(Z_tos);
Register receiver = Z_ARG4;
Register klass = Z_tos;
Register subklass = Z_ARG5;
__ pop_ptr(receiver); // restore receiver
__ z_bru(resolved);
// Get superklass in klass and subklass in subklass.
__ bind(quicked);
__ z_lgr(Z_ARG4, Z_tos); // Save receiver.
__ z_sllg(index, index, LogBytesPerWord); // index2bytes for addressing
__ load_resolved_klass_at_offset(cpool, index, klass);
__ bind(resolved);
__ load_klass(subklass, receiver);
// Generate subtype check. Object in receiver.
// Superklass in klass. Subklass in subklass.
__ gen_subtype_check(subklass, klass, Z_ARG3, Z_tmp_1, ok_is_subtype);
// Come here on failure.
__ push_ptr(receiver);
// Object is at TOS, target klass oop expected in rax by convention.
__ z_brul((address) Interpreter::_throw_ClassCastException_entry);
// Come here on success.
__ bind(ok_is_subtype);
__ z_lgr(Z_tos, receiver); // Restore object.
// Collect counts on whether this test sees NULLs a lot or not.
if (ProfileInterpreter) {
__ z_bru(done);
__ bind(is_null);
__ profile_null_seen(Z_tmp_1);
} else {
__ bind(is_null); // Same as 'done'.
}
__ bind(done);
BLOCK_COMMENT("} checkcast");
}
void TemplateTable::instanceof() {
transition(atos, itos);
NearLabel done, is_null, ok_is_subtype, quicked, resolved;
BLOCK_COMMENT("instanceof {");
// If object is NULL, we are almost done.
__ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
// Get cpool & tags index.
Register cpool = Z_tmp_1;
Register tags = Z_tmp_2;
Register index = Z_ARG5;
__ get_cpool_and_tags(cpool, tags);
__ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
// See if bytecode has already been quicked.
// Note: For CLI, we would have to add the index to the tags pointer first,
// thus load and compare in a "classic" manner.
__ z_llgc(Z_R0_scratch,
Address(tags, index, Array<u1>::base_offset_in_bytes()));
__ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class, Assembler::bcondEqual, quicked);
__ push(atos); // Save receiver for result, and for GC.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
__ get_vm_result_2(Z_tos);
Register receiver = Z_tmp_2;
Register klass = Z_tos;
Register subklass = Z_tmp_2;
__ pop_ptr(receiver); // Restore receiver.
__ verify_oop(receiver);
__ load_klass(subklass, subklass);
__ z_bru(resolved);
// Get superklass in klass and subklass in subklass.
__ bind(quicked);
__ load_klass(subklass, Z_tos);
__ z_sllg(index, index, LogBytesPerWord); // index2bytes for addressing
__ load_resolved_klass_at_offset(cpool, index, klass);
__ bind(resolved);
// Generate subtype check.
// Superklass in klass. Subklass in subklass.
__ gen_subtype_check(subklass, klass, Z_ARG4, Z_ARG5, ok_is_subtype);
// Come here on failure.
__ clear_reg(Z_tos, true, false);
__ z_bru(done);
// Come here on success.
__ bind(ok_is_subtype);
__ load_const_optimized(Z_tos, 1);
// Collect counts on whether this test sees NULLs a lot or not.
if (ProfileInterpreter) {
__ z_bru(done);
__ bind(is_null);
__ profile_null_seen(Z_tmp_1);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
// tos = 0: obj == NULL or obj is not an instanceof the specified klass
// tos = 1: obj != NULL and obj is an instanceof the specified klass
BLOCK_COMMENT("} instanceof");
}
//-----------------------------------------------------------------------------
// Breakpoints
void TemplateTable::_breakpoint() {
// Note: We get here even if we are single stepping.
// Jbug insists on setting breakpoints at every bytecode
// even if we are in single step mode.
transition(vtos, vtos);
// Get the unpatched byte code.
__ get_method(Z_ARG2);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at),
Z_ARG2, Z_bcp);
// Save the result to a register that is preserved over C-function calls.
__ z_lgr(Z_tmp_1, Z_RET);
// Post the breakpoint event.
__ get_method(Z_ARG2);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
Z_ARG2, Z_bcp);
// Must restore the bytecode, because call_VM destroys Z_bytecode.
__ z_lgr(Z_bytecode, Z_tmp_1);
// Complete the execution of original bytecode.
__ dispatch_only_normal(vtos);
}
// Exceptions
void TemplateTable::athrow() {
transition(atos, vtos);
__ null_check(Z_tos);
__ load_absolute_address(Z_ARG2, Interpreter::throw_exception_entry());
__ z_br(Z_ARG2);
}
// Synchronization
//
// Note: monitorenter & exit are symmetric routines; which is reflected
// in the assembly code structure as well
//
// Stack layout:
//
// callers_sp <- Z_SP (callers_sp == Z_fp (own fp))
// return_pc
// [rest of ABI_160]
// /slot o: free
// / ... free
// oper. | slot n+1: free <- Z_esp points to first free slot
// stack | slot n: val caches IJAVA_STATE.esp
// | ...
// \slot 0: val
// /slot m <- IJAVA_STATE.monitors = monitor block top
// | ...
// monitors| slot 2
// | slot 1
// \slot 0
// /slot l <- monitor block bot
// ijava_state | ...
// | slot 2
// \slot 0
// <- Z_fp
void TemplateTable::monitorenter() {
transition(atos, vtos);
BLOCK_COMMENT("monitorenter {");
// Check for NULL object.
__ null_check(Z_tos);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
NearLabel allocated;
// Initialize entry pointer.
const Register Rfree_slot = Z_tmp_1;
__ clear_reg(Rfree_slot, true, false); // Points to free slot or NULL. Don't set CC.
// Find a free slot in the monitor block from top to bot (result in Rfree_slot).
{
const Register Rcurr_monitor = Z_ARG2;
const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
const Register Rlocked_obj = Z_ARG4;
NearLabel loop, exit, not_free;
// Starting with top-most entry.
__ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
__ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
#ifdef ASSERT
address reentry = NULL;
{ NearLabel ok;
__ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
__ bind(ok);
}
{ NearLabel ok;
__ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
__ bind(ok);
}
#endif
// Check if bottom reached, i.e. if there is at least one monitor.
__ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, exit);
__ bind(loop);
// Check if current entry is used.
__ load_and_test_long(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
__ z_brne(not_free);
// If not used then remember entry in Rfree_slot.
__ z_lgr(Rfree_slot, Rcurr_monitor);
__ bind(not_free);
// Exit if current entry is for same object; this guarantees, that new monitor
// used for recursive lock is above the older one.
__ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, exit);
// otherwise advance to next entry
__ add2reg(Rcurr_monitor, entry_size);
// Check if bottom reached, if not at bottom then check this entry.
__ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
__ bind(exit);
}
// Rfree_slot != NULL -> found one
__ compareU64_and_branch(Rfree_slot, (intptr_t)0L, Assembler::bcondNotEqual, allocated);
// Allocate one if there's no free slot.
__ add_monitor_to_stack(false, Z_ARG3, Z_ARG4, Z_ARG5);
__ get_monitors(Rfree_slot);
// Rfree_slot: points to monitor entry.
__ bind(allocated);
// Increment bcp to point to the next bytecode, so exception
// handling for async. exceptions work correctly.
// The object has already been poped from the stack, so the
// expression stack looks correct.
__ add2reg(Z_bcp, 1, Z_bcp);
// Store object.
__ z_stg(Z_tos, BasicObjectLock::obj_offset_in_bytes(), Rfree_slot);
__ lock_object(Rfree_slot, Z_tos);
// Check to make sure this monitor doesn't cause stack overflow after locking.
__ save_bcp(); // in case of exception
__ generate_stack_overflow_check(0);
// The bcp has already been incremented. Just need to dispatch to
// next instruction.
__ dispatch_next(vtos);
BLOCK_COMMENT("} monitorenter");
}
void TemplateTable::monitorexit() {
transition(atos, vtos);
BLOCK_COMMENT("monitorexit {");
// Check for NULL object.
__ null_check(Z_tos);
NearLabel found, not_found;
const Register Rcurr_monitor = Z_ARG2;
// Find matching slot.
{
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
NearLabel entry, loop;
const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
const Register Rlocked_obj = Z_ARG4;
// Starting with top-most entry.
__ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
__ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
#ifdef ASSERT
address reentry = NULL;
{ NearLabel ok;
__ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
__ bind(ok);
}
{ NearLabel ok;
__ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
__ bind(ok);
}
#endif
// Check if bottom reached, i.e. if there is at least one monitor.
__ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, not_found);
__ bind(loop);
// Check if current entry is for same object.
__ z_lg(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
// If same object then stop searching.
__ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, found);
// Otherwise advance to next entry.
__ add2reg(Rcurr_monitor, entry_size);
// Check if bottom reached, if not at bottom then check this entry.
__ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
}
__ bind(not_found);
// Error handling. Unlocking was not block-structured.
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
__ bind(found);
__ push_ptr(Z_tos); // Make sure object is on stack (contract with oopMaps).
__ unlock_object(Rcurr_monitor, Z_tos);
__ pop_ptr(Z_tos); // Discard object.
BLOCK_COMMENT("} monitorexit");
}
// Wide instructions
void TemplateTable::wide() {
transition(vtos, vtos);
__ z_llgc(Z_R1_scratch, at_bcp(1));
__ z_sllg(Z_R1_scratch, Z_R1_scratch, LogBytesPerWord);
__ load_absolute_address(Z_tmp_1, (address) Interpreter::_wentry_point);
__ mem2reg_opt(Z_tmp_1, Address(Z_tmp_1, Z_R1_scratch));
__ z_br(Z_tmp_1);
// Note: the bcp increment step is part of the individual wide
// bytecode implementations.
}
// Multi arrays
void TemplateTable::multianewarray() {
transition(vtos, atos);
__ z_llgc(Z_tmp_1, at_bcp(3)); // Get number of dimensions.
// Slot count to byte offset.
__ z_sllg(Z_tmp_1, Z_tmp_1, Interpreter::logStackElementSize);
// Z_esp points past last_dim, so set to Z_ARG2 to first_dim address.
__ load_address(Z_ARG2, Address(Z_esp, Z_tmp_1));
call_VM(Z_RET,
CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
Z_ARG2);
// Pop dimensions from expression stack.
__ z_agr(Z_esp, Z_tmp_1);
}