blob: e335f473d69f6d4d8040fe287f0091e786138d9b [file] [log] [blame]
//
// Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
// Copyright (c) 2017, SAP SE. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
// z/Architecture Architecture Description File
// Major contributions by AS, JL, LS.
//
// Following information is derived from private mail communication
// (Oct. 2011).
//
// General branch target alignment considerations
//
// z/Architecture does not imply a general branch target alignment requirement.
// There are side effects and side considerations, though, which may
// provide some performance benefit. These are:
// - Align branch target on octoword (32-byte) boundary
// On more recent models (from z9 on), I-fetch is done on a Octoword
// (32 bytes at a time) basis. To avoid I-fetching unnecessary
// instructions, branch targets should be 32-byte aligend. If this
// exact alingment cannot be achieved, having the branch target in
// the first doubleword still provides some benefit.
// - Avoid branch targets at the end of cache lines (> 64 bytes distance).
// Sequential instruction prefetching after the branch target starts
// immediately after having fetched the octoword containing the
// branch target. When I-fetching crosses a cache line, there may be
// a small stall. The worst case: the branch target (at the end of
// a cache line) is a L1 I-cache miss and the next line as well.
// Then, the entire target line must be filled first (to contine at the
// branch target). Only then can the next sequential line be filled.
// - Avoid multiple poorly predicted branches in a row.
//
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// architecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name (register save type, C convention save type,
// ideal register type, encoding);
//
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// z/Architecture register definitions, based on the z/Architecture Principles
// of Operation, 5th Edition, September 2005, and z/Linux Elf ABI Supplement,
// 5th Edition, March 2001.
//
// For each 64-bit register we must define two registers: the register
// itself, e.g. Z_R3, and a corresponding virtual other (32-bit-)'half',
// e.g. Z_R3_H, which is needed by the allocator, but is not used
// for stores, loads, etc.
// Integer/Long Registers
// ----------------------------
// z/Architecture has 16 64-bit integer registers.
// types: v = volatile, nv = non-volatile, s = system
reg_def Z_R0 (SOC, SOC, Op_RegI, 0, Z_R0->as_VMReg()); // v scratch1
reg_def Z_R0_H (SOC, SOC, Op_RegI, 99, Z_R0->as_VMReg()->next());
reg_def Z_R1 (SOC, SOC, Op_RegI, 1, Z_R1->as_VMReg()); // v scratch2
reg_def Z_R1_H (SOC, SOC, Op_RegI, 99, Z_R1->as_VMReg()->next());
reg_def Z_R2 (SOC, SOC, Op_RegI, 2, Z_R2->as_VMReg()); // v iarg1 & iret
reg_def Z_R2_H (SOC, SOC, Op_RegI, 99, Z_R2->as_VMReg()->next());
reg_def Z_R3 (SOC, SOC, Op_RegI, 3, Z_R3->as_VMReg()); // v iarg2
reg_def Z_R3_H (SOC, SOC, Op_RegI, 99, Z_R3->as_VMReg()->next());
reg_def Z_R4 (SOC, SOC, Op_RegI, 4, Z_R4->as_VMReg()); // v iarg3
reg_def Z_R4_H (SOC, SOC, Op_RegI, 99, Z_R4->as_VMReg()->next());
reg_def Z_R5 (SOC, SOC, Op_RegI, 5, Z_R5->as_VMReg()); // v iarg4
reg_def Z_R5_H (SOC, SOC, Op_RegI, 99, Z_R5->as_VMReg()->next());
reg_def Z_R6 (SOC, SOE, Op_RegI, 6, Z_R6->as_VMReg()); // v iarg5
reg_def Z_R6_H (SOC, SOE, Op_RegI, 99, Z_R6->as_VMReg()->next());
reg_def Z_R7 (SOC, SOE, Op_RegI, 7, Z_R7->as_VMReg());
reg_def Z_R7_H (SOC, SOE, Op_RegI, 99, Z_R7->as_VMReg()->next());
reg_def Z_R8 (SOC, SOE, Op_RegI, 8, Z_R8->as_VMReg());
reg_def Z_R8_H (SOC, SOE, Op_RegI, 99, Z_R8->as_VMReg()->next());
reg_def Z_R9 (SOC, SOE, Op_RegI, 9, Z_R9->as_VMReg());
reg_def Z_R9_H (SOC, SOE, Op_RegI, 99, Z_R9->as_VMReg()->next());
reg_def Z_R10 (SOC, SOE, Op_RegI, 10, Z_R10->as_VMReg());
reg_def Z_R10_H(SOC, SOE, Op_RegI, 99, Z_R10->as_VMReg()->next());
reg_def Z_R11 (SOC, SOE, Op_RegI, 11, Z_R11->as_VMReg());
reg_def Z_R11_H(SOC, SOE, Op_RegI, 99, Z_R11->as_VMReg()->next());
reg_def Z_R12 (SOC, SOE, Op_RegI, 12, Z_R12->as_VMReg());
reg_def Z_R12_H(SOC, SOE, Op_RegI, 99, Z_R12->as_VMReg()->next());
reg_def Z_R13 (SOC, SOE, Op_RegI, 13, Z_R13->as_VMReg());
reg_def Z_R13_H(SOC, SOE, Op_RegI, 99, Z_R13->as_VMReg()->next());
reg_def Z_R14 (NS, NS, Op_RegI, 14, Z_R14->as_VMReg()); // s return_pc
reg_def Z_R14_H(NS, NS, Op_RegI, 99, Z_R14->as_VMReg()->next());
reg_def Z_R15 (NS, NS, Op_RegI, 15, Z_R15->as_VMReg()); // s SP
reg_def Z_R15_H(NS, NS, Op_RegI, 99, Z_R15->as_VMReg()->next());
// Float/Double Registers
// The rules of ADL require that double registers be defined in pairs.
// Each pair must be two 32-bit values, but not necessarily a pair of
// single float registers. In each pair, ADLC-assigned register numbers
// must be adjacent, with the lower number even. Finally, when the
// CPU stores such a register pair to memory, the word associated with
// the lower ADLC-assigned number must be stored to the lower address.
// z/Architecture has 16 64-bit floating-point registers. Each can store a single
// or double precision floating-point value.
// types: v = volatile, nv = non-volatile, s = system
reg_def Z_F0 (SOC, SOC, Op_RegF, 0, Z_F0->as_VMReg()); // v farg1 & fret
reg_def Z_F0_H (SOC, SOC, Op_RegF, 99, Z_F0->as_VMReg()->next());
reg_def Z_F1 (SOC, SOC, Op_RegF, 1, Z_F1->as_VMReg());
reg_def Z_F1_H (SOC, SOC, Op_RegF, 99, Z_F1->as_VMReg()->next());
reg_def Z_F2 (SOC, SOC, Op_RegF, 2, Z_F2->as_VMReg()); // v farg2
reg_def Z_F2_H (SOC, SOC, Op_RegF, 99, Z_F2->as_VMReg()->next());
reg_def Z_F3 (SOC, SOC, Op_RegF, 3, Z_F3->as_VMReg());
reg_def Z_F3_H (SOC, SOC, Op_RegF, 99, Z_F3->as_VMReg()->next());
reg_def Z_F4 (SOC, SOC, Op_RegF, 4, Z_F4->as_VMReg()); // v farg3
reg_def Z_F4_H (SOC, SOC, Op_RegF, 99, Z_F4->as_VMReg()->next());
reg_def Z_F5 (SOC, SOC, Op_RegF, 5, Z_F5->as_VMReg());
reg_def Z_F5_H (SOC, SOC, Op_RegF, 99, Z_F5->as_VMReg()->next());
reg_def Z_F6 (SOC, SOC, Op_RegF, 6, Z_F6->as_VMReg());
reg_def Z_F6_H (SOC, SOC, Op_RegF, 99, Z_F6->as_VMReg()->next());
reg_def Z_F7 (SOC, SOC, Op_RegF, 7, Z_F7->as_VMReg());
reg_def Z_F7_H (SOC, SOC, Op_RegF, 99, Z_F7->as_VMReg()->next());
reg_def Z_F8 (SOC, SOE, Op_RegF, 8, Z_F8->as_VMReg());
reg_def Z_F8_H (SOC, SOE, Op_RegF, 99, Z_F8->as_VMReg()->next());
reg_def Z_F9 (SOC, SOE, Op_RegF, 9, Z_F9->as_VMReg());
reg_def Z_F9_H (SOC, SOE, Op_RegF, 99, Z_F9->as_VMReg()->next());
reg_def Z_F10 (SOC, SOE, Op_RegF, 10, Z_F10->as_VMReg());
reg_def Z_F10_H(SOC, SOE, Op_RegF, 99, Z_F10->as_VMReg()->next());
reg_def Z_F11 (SOC, SOE, Op_RegF, 11, Z_F11->as_VMReg());
reg_def Z_F11_H(SOC, SOE, Op_RegF, 99, Z_F11->as_VMReg()->next());
reg_def Z_F12 (SOC, SOE, Op_RegF, 12, Z_F12->as_VMReg());
reg_def Z_F12_H(SOC, SOE, Op_RegF, 99, Z_F12->as_VMReg()->next());
reg_def Z_F13 (SOC, SOE, Op_RegF, 13, Z_F13->as_VMReg());
reg_def Z_F13_H(SOC, SOE, Op_RegF, 99, Z_F13->as_VMReg()->next());
reg_def Z_F14 (SOC, SOE, Op_RegF, 14, Z_F14->as_VMReg());
reg_def Z_F14_H(SOC, SOE, Op_RegF, 99, Z_F14->as_VMReg()->next());
reg_def Z_F15 (SOC, SOE, Op_RegF, 15, Z_F15->as_VMReg());
reg_def Z_F15_H(SOC, SOE, Op_RegF, 99, Z_F15->as_VMReg()->next());
// Special Registers
// Condition Codes Flag Registers
// z/Architecture has the PSW (program status word) that contains
// (among other information) the condition code. We treat this
// part of the PSW as a condition register CR. It consists of 4
// bits. Floating point instructions influence the same condition register CR.
reg_def Z_CR(SOC, SOC, Op_RegFlags, 0, Z_CR->as_VMReg()); // volatile
// Specify priority of register selection within phases of register
// allocation. Highest priority is first. A useful heuristic is to
// give registers a low priority when they are required by machine
// instructions, and choose no-save registers before save-on-call, and
// save-on-call before save-on-entry. Registers which participate in
// fix calling sequences should come last. Registers which are used
// as pairs must fall on an even boundary.
// It's worth about 1% on SPEC geomean to get this right.
// Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
// in adGlobals_s390.hpp which defines the <register>_num values, e.g.
// Z_R3_num. Therefore, Z_R3_num may not be (and in reality is not)
// the same as Z_R3->encoding()! Furthermore, we cannot make any
// assumptions on ordering, e.g. Z_R3_num may be less than Z_R2_num.
// Additionally, the function
// static enum RC rc_class(OptoReg::Name reg)
// maps a given <register>_num value to its chunk type (except for flags)
// and its current implementation relies on chunk0 and chunk1 having a
// size of 64 each.
alloc_class chunk0(
// chunk0 contains *all* 32 integer registers halves.
// potential SOE regs
Z_R13,Z_R13_H,
Z_R12,Z_R12_H,
Z_R11,Z_R11_H,
Z_R10,Z_R10_H,
Z_R9,Z_R9_H,
Z_R8,Z_R8_H,
Z_R7,Z_R7_H,
Z_R1,Z_R1_H,
Z_R0,Z_R0_H,
// argument registers
Z_R6,Z_R6_H,
Z_R5,Z_R5_H,
Z_R4,Z_R4_H,
Z_R3,Z_R3_H,
Z_R2,Z_R2_H,
// special registers
Z_R14,Z_R14_H,
Z_R15,Z_R15_H
);
alloc_class chunk1(
// Chunk1 contains *all* 64 floating-point registers halves.
Z_F15,Z_F15_H,
Z_F14,Z_F14_H,
Z_F13,Z_F13_H,
Z_F12,Z_F12_H,
Z_F11,Z_F11_H,
Z_F10,Z_F10_H,
Z_F9,Z_F9_H,
Z_F8,Z_F8_H,
// scratch register
Z_F7,Z_F7_H,
Z_F5,Z_F5_H,
Z_F3,Z_F3_H,
Z_F1,Z_F1_H,
// argument registers
Z_F6,Z_F6_H,
Z_F4,Z_F4_H,
Z_F2,Z_F2_H,
Z_F0,Z_F0_H
);
alloc_class chunk2(
Z_CR
);
//-------Architecture Description Register Classes-----------------------
// Several register classes are automatically defined based upon
// information in this architecture description.
// 1) reg_class inline_cache_reg (as defined in frame section)
// 2) reg_class compiler_method_oop_reg (as defined in frame section)
// 2) reg_class interpreter_method_oop_reg (as defined in frame section)
// 3) reg_class stack_slots(/* one chunk of stack-based "registers" */)
// Integer Register Classes
reg_class z_int_reg(
/*Z_R0*/ // R0
/*Z_R1*/
Z_R2,
Z_R3,
Z_R4,
Z_R5,
Z_R6,
Z_R7,
/*Z_R8,*/ // Z_thread
Z_R9,
Z_R10,
Z_R11,
Z_R12,
Z_R13
/*Z_R14*/ // return_pc
/*Z_R15*/ // SP
);
reg_class z_no_odd_int_reg(
/*Z_R0*/ // R0
/*Z_R1*/
Z_R2,
Z_R3,
Z_R4,
/*Z_R5,*/ // odd part of fix register pair
Z_R6,
Z_R7,
/*Z_R8,*/ // Z_thread
Z_R9,
Z_R10,
Z_R11,
Z_R12,
Z_R13
/*Z_R14*/ // return_pc
/*Z_R15*/ // SP
);
reg_class z_no_arg_int_reg(
/*Z_R0*/ // R0
/*Z_R1*/ // scratch
/*Z_R2*/
/*Z_R3*/
/*Z_R4*/
/*Z_R5*/
/*Z_R6*/
Z_R7,
/*Z_R8*/ // Z_thread
Z_R9,
Z_R10,
Z_R11,
Z_R12,
Z_R13
/*Z_R14*/ // return_pc
/*Z_R15*/ // SP
);
reg_class z_rarg1_int_reg(Z_R2);
reg_class z_rarg2_int_reg(Z_R3);
reg_class z_rarg3_int_reg(Z_R4);
reg_class z_rarg4_int_reg(Z_R5);
reg_class z_rarg5_int_reg(Z_R6);
// Pointer Register Classes
// 64-bit build means 64-bit pointers means hi/lo pairs.
reg_class z_rarg5_ptrN_reg(Z_R6);
reg_class z_rarg1_ptr_reg(Z_R2_H,Z_R2);
reg_class z_rarg2_ptr_reg(Z_R3_H,Z_R3);
reg_class z_rarg3_ptr_reg(Z_R4_H,Z_R4);
reg_class z_rarg4_ptr_reg(Z_R5_H,Z_R5);
reg_class z_rarg5_ptr_reg(Z_R6_H,Z_R6);
reg_class z_thread_ptr_reg(Z_R8_H,Z_R8);
reg_class z_ptr_reg(
/*Z_R0_H,Z_R0*/ // R0
/*Z_R1_H,Z_R1*/
Z_R2_H,Z_R2,
Z_R3_H,Z_R3,
Z_R4_H,Z_R4,
Z_R5_H,Z_R5,
Z_R6_H,Z_R6,
Z_R7_H,Z_R7,
/*Z_R8_H,Z_R8,*/ // Z_thread
Z_R9_H,Z_R9,
Z_R10_H,Z_R10,
Z_R11_H,Z_R11,
Z_R12_H,Z_R12,
Z_R13_H,Z_R13
/*Z_R14_H,Z_R14*/ // return_pc
/*Z_R15_H,Z_R15*/ // SP
);
reg_class z_lock_ptr_reg(
/*Z_R0_H,Z_R0*/ // R0
/*Z_R1_H,Z_R1*/
Z_R2_H,Z_R2,
Z_R3_H,Z_R3,
Z_R4_H,Z_R4,
/*Z_R5_H,Z_R5,*/
/*Z_R6_H,Z_R6,*/
Z_R7_H,Z_R7,
/*Z_R8_H,Z_R8,*/ // Z_thread
Z_R9_H,Z_R9,
Z_R10_H,Z_R10,
Z_R11_H,Z_R11,
Z_R12_H,Z_R12,
Z_R13_H,Z_R13
/*Z_R14_H,Z_R14*/ // return_pc
/*Z_R15_H,Z_R15*/ // SP
);
reg_class z_no_arg_ptr_reg(
/*Z_R0_H,Z_R0*/ // R0
/*Z_R1_H,Z_R1*/ // scratch
/*Z_R2_H,Z_R2*/
/*Z_R3_H,Z_R3*/
/*Z_R4_H,Z_R4*/
/*Z_R5_H,Z_R5*/
/*Z_R6_H,Z_R6*/
Z_R7_H, Z_R7,
/*Z_R8_H,Z_R8*/ // Z_thread
Z_R9_H,Z_R9,
Z_R10_H,Z_R10,
Z_R11_H,Z_R11,
Z_R12_H,Z_R12,
Z_R13_H,Z_R13
/*Z_R14_H,Z_R14*/ // return_pc
/*Z_R15_H,Z_R15*/ // SP
);
// Special class for storeP instructions, which can store SP or RPC to
// TLS. (Note: Do not generalize this to "any_reg". If you add
// another register, such as FP, to this mask, the allocator may try
// to put a temp in it.)
// Register class for memory access base registers,
// This class is a superset of z_ptr_reg including Z_thread.
reg_class z_memory_ptr_reg(
/*Z_R0_H,Z_R0*/ // R0
/*Z_R1_H,Z_R1*/
Z_R2_H,Z_R2,
Z_R3_H,Z_R3,
Z_R4_H,Z_R4,
Z_R5_H,Z_R5,
Z_R6_H,Z_R6,
Z_R7_H,Z_R7,
Z_R8_H,Z_R8, // Z_thread
Z_R9_H,Z_R9,
Z_R10_H,Z_R10,
Z_R11_H,Z_R11,
Z_R12_H,Z_R12,
Z_R13_H,Z_R13
/*Z_R14_H,Z_R14*/ // return_pc
/*Z_R15_H,Z_R15*/ // SP
);
// Other special pointer regs.
reg_class z_r1_regP(Z_R1_H,Z_R1);
reg_class z_r9_regP(Z_R9_H,Z_R9);
// Long Register Classes
reg_class z_rarg1_long_reg(Z_R2_H,Z_R2);
reg_class z_rarg2_long_reg(Z_R3_H,Z_R3);
reg_class z_rarg3_long_reg(Z_R4_H,Z_R4);
reg_class z_rarg4_long_reg(Z_R5_H,Z_R5);
reg_class z_rarg5_long_reg(Z_R6_H,Z_R6);
// Longs in 1 register. Aligned adjacent hi/lo pairs.
reg_class z_long_reg(
/*Z_R0_H,Z_R0*/ // R0
/*Z_R1_H,Z_R1*/
Z_R2_H,Z_R2,
Z_R3_H,Z_R3,
Z_R4_H,Z_R4,
Z_R5_H,Z_R5,
Z_R6_H,Z_R6,
Z_R7_H,Z_R7,
/*Z_R8_H,Z_R8,*/ // Z_thread
Z_R9_H,Z_R9,
Z_R10_H,Z_R10,
Z_R11_H,Z_R11,
Z_R12_H,Z_R12,
Z_R13_H,Z_R13
/*Z_R14_H,Z_R14,*/ // return_pc
/*Z_R15_H,Z_R15*/ // SP
);
// Special Class for Condition Code Flags Register
reg_class z_condition_reg(
Z_CR
);
// Scratch register for late profiling. Callee saved.
reg_class z_rscratch2_bits64_reg(Z_R2_H, Z_R2);
// Float Register Classes
reg_class z_flt_reg(
Z_F0,
/*Z_F1,*/ // scratch
Z_F2,
Z_F3,
Z_F4,
Z_F5,
Z_F6,
Z_F7,
Z_F8,
Z_F9,
Z_F10,
Z_F11,
Z_F12,
Z_F13,
Z_F14,
Z_F15
);
reg_class z_rscratch1_flt_reg(Z_F1);
// Double precision float registers have virtual `high halves' that
// are needed by the allocator.
reg_class z_dbl_reg(
Z_F0,Z_F0_H,
/*Z_F1,Z_F1_H,*/ // scratch
Z_F2,Z_F2_H,
Z_F3,Z_F3_H,
Z_F4,Z_F4_H,
Z_F5,Z_F5_H,
Z_F6,Z_F6_H,
Z_F7,Z_F7_H,
Z_F8,Z_F8_H,
Z_F9,Z_F9_H,
Z_F10,Z_F10_H,
Z_F11,Z_F11_H,
Z_F12,Z_F12_H,
Z_F13,Z_F13_H,
Z_F14,Z_F14_H,
Z_F15,Z_F15_H
);
reg_class z_rscratch1_dbl_reg(Z_F1,Z_F1_H);
%}
//----------DEFINITION BLOCK---------------------------------------------------
// Define 'name --> value' mappings to inform the ADLC of an integer valued name.
// Current support includes integer values in the range [0, 0x7FFFFFFF].
// Format:
// int_def <name> (<int_value>, <expression>);
// Generated Code in ad_<arch>.hpp
// #define <name> (<expression>)
// // value == <int_value>
// Generated code in ad_<arch>.cpp adlc_verification()
// assert(<name> == <int_value>, "Expect (<expression>) to equal <int_value>");
//
definitions %{
// The default cost (of an ALU instruction).
int_def DEFAULT_COST ( 100, 100);
int_def DEFAULT_COST_LOW ( 80, 80);
int_def DEFAULT_COST_HIGH ( 120, 120);
int_def HUGE_COST (1000000, 1000000);
// Put an advantage on REG_MEM vs. MEM+REG_REG operations.
int_def ALU_REG_COST ( 100, DEFAULT_COST);
int_def ALU_MEMORY_COST ( 150, 150);
// Memory refs are twice as expensive as run-of-the-mill.
int_def MEMORY_REF_COST_HI ( 220, 2 * DEFAULT_COST+20);
int_def MEMORY_REF_COST ( 200, 2 * DEFAULT_COST);
int_def MEMORY_REF_COST_LO ( 180, 2 * DEFAULT_COST-20);
// Branches are even more expensive.
int_def BRANCH_COST ( 300, DEFAULT_COST * 3);
int_def CALL_COST ( 300, DEFAULT_COST * 3);
%}
source %{
#ifdef PRODUCT
#define BLOCK_COMMENT(str)
#define BIND(label) __ bind(label)
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
#endif
#define __ _masm.
#define Z_DISP_SIZE Immediate::is_uimm12((long)opnd_array(1)->disp(ra_,this,2)) ? 4 : 6
#define Z_DISP3_SIZE 6
// Tertiary op of a LoadP or StoreP encoding.
#define REGP_OP true
// Given a register encoding, produce an Integer Register object.
static Register reg_to_register_object(int register_encoding);
// ****************************************************************************
// REQUIRED FUNCTIONALITY
// !!!!! Special hack to get all type of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
int MachCallStaticJavaNode::ret_addr_offset() {
if (_method) {
return 8;
} else {
return MacroAssembler::call_far_patchable_ret_addr_offset();
}
}
int MachCallDynamicJavaNode::ret_addr_offset() {
// Consider size of receiver type profiling (C2 tiers).
int profile_receiver_type_size = 0;
int vtable_index = this->_vtable_index;
if (vtable_index == -4) {
return 14 + profile_receiver_type_size;
} else {
assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
return 36 + profile_receiver_type_size;
}
}
int MachCallRuntimeNode::ret_addr_offset() {
return 12 + MacroAssembler::call_far_patchable_ret_addr_offset();
}
// Compute padding required for nodes which need alignment
//
// The addresses of the call instructions needs to be 4-byte aligned to
// ensure that they don't span a cache line so that they are atomically patchable.
// The actual calls get emitted at different offsets within the node emitters.
// ins_alignment needs to be set to 2 which means that up to 1 nop may get inserted.
int CallStaticJavaDirect_dynTOCNode::compute_padding(int current_offset) const {
return (0 - current_offset) & 2;
}
int CallDynamicJavaDirect_dynTOCNode::compute_padding(int current_offset) const {
return (6 - current_offset) & 2;
}
int CallRuntimeDirectNode::compute_padding(int current_offset) const {
return (12 - current_offset) & 2;
}
int CallLeafDirectNode::compute_padding(int current_offset) const {
return (12 - current_offset) & 2;
}
int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
return (12 - current_offset) & 2;
}
// Indicate if the safepoint node needs the polling page as an input.
// Since z/Architecture does not have absolute addressing, it does.
bool SafePointNode::needs_polling_address_input() {
return true;
}
void emit_nop(CodeBuffer &cbuf) {
MacroAssembler _masm(&cbuf);
__ z_nop();
}
// Emit an interrupt that is caught by the debugger (for debugging compiler).
void emit_break(CodeBuffer &cbuf) {
MacroAssembler _masm(&cbuf);
__ z_illtrap();
}
#if !defined(PRODUCT)
void MachBreakpointNode::format(PhaseRegAlloc *, outputStream *os) const {
os->print("TA");
}
#endif
void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
emit_break(cbuf);
}
uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
return MachNode::size(ra_);
}
static inline void z_emit16(CodeBuffer &cbuf, long value) {
// 32bit instructions may become sign extended.
assert(value >= 0, "unintended sign extension (int->long)");
assert(value < (1L << 16), "instruction too large");
*((unsigned short*)(cbuf.insts_end())) = (unsigned short)value;
cbuf.set_insts_end(cbuf.insts_end() + sizeof(unsigned short));
}
static inline void z_emit32(CodeBuffer &cbuf, long value) {
// 32bit instructions may become sign extended.
assert(value < (1L << 32), "instruction too large");
*((unsigned int*)(cbuf.insts_end())) = (unsigned int)value;
cbuf.set_insts_end(cbuf.insts_end() + sizeof(unsigned int));
}
static inline void z_emit48(CodeBuffer &cbuf, long value) {
// 32bit instructions may become sign extended.
assert(value >= 0, "unintended sign extension (int->long)");
assert(value < (1L << 48), "instruction too large");
value = value<<16;
memcpy(cbuf.insts_end(), (unsigned char*)&value, 6);
cbuf.set_insts_end(cbuf.insts_end() + 6);
}
static inline unsigned int z_emit_inst(CodeBuffer &cbuf, long value) {
if (value < 0) {
// There obviously has been an unintended sign extension (int->long). Revert it.
value = (long)((unsigned long)((unsigned int)value));
}
if (value < (1L << 16)) { // 2-byte instruction
z_emit16(cbuf, value);
return 2;
}
if (value < (1L << 32)) { // 4-byte instruction, might be unaligned store
z_emit32(cbuf, value);
return 4;
}
// 6-byte instruction, probably unaligned store.
z_emit48(cbuf, value);
return 6;
}
// Check effective address (at runtime) for required alignment.
static inline void z_assert_aligned(CodeBuffer &cbuf, int disp, Register index, Register base, int alignment) {
MacroAssembler _masm(&cbuf);
__ z_lay(Z_R0, disp, index, base);
__ z_nill(Z_R0, alignment-1);
__ z_brc(Assembler::bcondEqual, +3);
__ z_illtrap();
}
int emit_call_reloc(MacroAssembler &_masm, intptr_t entry_point, relocInfo::relocType rtype,
PhaseRegAlloc* ra_, bool is_native_call = false) {
__ set_inst_mark(); // Used in z_enc_java_static_call() and emit_java_to_interp().
address old_mark = __ inst_mark();
unsigned int start_off = __ offset();
if (is_native_call) {
ShouldNotReachHere();
}
if (rtype == relocInfo::runtime_call_w_cp_type) {
assert((__ offset() & 2) == 0, "misaligned emit_call_reloc");
address call_addr = __ call_c_opt((address)entry_point);
if (call_addr == NULL) {
Compile::current()->env()->record_out_of_memory_failure();
return -1;
}
} else {
assert(rtype == relocInfo::none || rtype == relocInfo::opt_virtual_call_type ||
rtype == relocInfo::static_call_type, "unexpected rtype");
__ relocate(rtype);
// BRASL must be prepended with a nop to identify it in the instruction stream.
__ z_nop();
__ z_brasl(Z_R14, (address)entry_point);
}
unsigned int ret_off = __ offset();
return (ret_off - start_off);
}
static int emit_call_reloc(MacroAssembler &_masm, intptr_t entry_point, RelocationHolder const& rspec) {
__ set_inst_mark(); // Used in z_enc_java_static_call() and emit_java_to_interp().
address old_mark = __ inst_mark();
unsigned int start_off = __ offset();
relocInfo::relocType rtype = rspec.type();
assert(rtype == relocInfo::opt_virtual_call_type || rtype == relocInfo::static_call_type,
"unexpected rtype");
__ relocate(rspec);
__ z_nop();
__ z_brasl(Z_R14, (address)entry_point);
unsigned int ret_off = __ offset();
return (ret_off - start_off);
}
//=============================================================================
const RegMask& MachConstantBaseNode::_out_RegMask = _Z_PTR_REG_mask;
int Compile::ConstantTable::calculate_table_base_offset() const {
return 0; // absolute addressing, no offset
}
bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
ShouldNotReachHere();
}
// Even with PC-relative TOC addressing, we still need this node.
// Float loads/stores do not support PC-relative addresses.
void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
MacroAssembler _masm(&cbuf);
Register Rtoc = as_Register(ra_->get_encode(this));
__ load_toc(Rtoc);
}
uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
// PCrelative TOC access.
return 6; // sizeof(LARL)
}
#if !defined(PRODUCT)
void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
Register r = as_Register(ra_->get_encode(this));
st->print("LARL %s,&constant_pool # MachConstantBaseNode", r->name());
}
#endif
//=============================================================================
#if !defined(PRODUCT)
void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
Compile* C = ra_->C;
st->print_cr("--- MachPrologNode ---");
st->print("\t");
for (int i = 0; i < OptoPrologueNops; i++) {
st->print_cr("NOP"); st->print("\t");
}
if (VerifyThread) {
st->print_cr("Verify_Thread");
st->print("\t");
}
long framesize = C->frame_size_in_bytes();
int bangsize = C->bang_size_in_bytes();
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be
// careful, because some VM calls (such as call site linkage) can
// use several kilobytes of stack. But the stack safety zone should
// account for that. See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(bangsize) && UseStackBanging) {
st->print_cr("# stack bang"); st->print("\t");
}
st->print_cr("push_frame %d", (int)-framesize);
st->print("\t");
}
#endif
void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
Compile* C = ra_->C;
MacroAssembler _masm(&cbuf);
__ verify_thread();
size_t framesize = C->frame_size_in_bytes();
size_t bangsize = C->bang_size_in_bytes();
assert(framesize % wordSize == 0, "must preserve wordSize alignment");
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be
// careful, because some VM calls (such as call site linkage) can
// use several kilobytes of stack. But the stack safety zone should
// account for that. See bugs 4446381, 4468289, 4497237.
if (C->need_stack_bang(bangsize) && UseStackBanging) {
__ generate_stack_overflow_check(bangsize);
}
assert(Immediate::is_uimm32((long)framesize), "to do: choose suitable types!");
__ save_return_pc();
// The z/Architecture abi is already accounted for in `framesize' via the
// 'out_preserve_stack_slots' declaration.
__ push_frame((unsigned int)framesize/*includes JIT ABI*/);
if (C->has_mach_constant_base_node()) {
// NOTE: We set the table base offset here because users might be
// emitted before MachConstantBaseNode.
Compile::ConstantTable& constant_table = C->constant_table();
constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
}
}
uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
// Variable size. Determine dynamically.
return MachNode::size(ra_);
}
int MachPrologNode::reloc() const {
// Return number of relocatable values contained in this instruction.
return 1; // One reloc entry for load_const(toc).
}
//=============================================================================
#if !defined(PRODUCT)
void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *os) const {
os->print_cr("epilog");
os->print("\t");
if (do_polling() && ra_->C->is_method_compilation()) {
os->print_cr("load_from_polling_page Z_R1_scratch");
os->print("\t");
}
}
#endif
void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
Compile* C = ra_->C;
__ verify_thread();
// If this does safepoint polling, then do it here.
bool need_polling = do_polling() && C->is_method_compilation();
// Pop frame, restore return_pc, and all stuff needed by interpreter.
int frame_size_in_bytes = Assembler::align((C->frame_slots() << LogBytesPerInt), frame::alignment_in_bytes);
__ pop_frame_restore_retPC(frame_size_in_bytes);
if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
__ reserved_stack_check(Z_R14);
}
// Touch the polling page.
if (need_polling) {
if (SafepointMechanism::uses_thread_local_poll()) {
__ z_lg(Z_R1_scratch, Address(Z_thread, Thread::polling_page_offset()));
} else {
AddressLiteral pp(os::get_polling_page());
__ load_const_optimized(Z_R1_scratch, pp);
}
// We need to mark the code position where the load from the safepoint
// polling page was emitted as relocInfo::poll_return_type here.
__ relocate(relocInfo::poll_return_type);
__ load_from_polling_page(Z_R1_scratch);
}
}
uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
// Variable size. determine dynamically.
return MachNode::size(ra_);
}
int MachEpilogNode::reloc() const {
// Return number of relocatable values contained in this instruction.
return 1; // One for load_from_polling_page.
}
const Pipeline * MachEpilogNode::pipeline() const {
return MachNode::pipeline_class();
}
int MachEpilogNode::safepoint_offset() const {
assert(do_polling(), "no return for this epilog node");
return 0;
}
//=============================================================================
// Figure out which register class each belongs in: rc_int, rc_float, rc_stack.
enum RC { rc_bad, rc_int, rc_float, rc_stack };
static enum RC rc_class(OptoReg::Name reg) {
// Return the register class for the given register. The given register
// reg is a <register>_num value, which is an index into the MachRegisterNumbers
// enumeration in adGlobals_s390.hpp.
if (reg == OptoReg::Bad) {
return rc_bad;
}
// We have 32 integer register halves, starting at index 0.
if (reg < 32) {
return rc_int;
}
// We have 32 floating-point register halves, starting at index 32.
if (reg < 32+32) {
return rc_float;
}
// Between float regs & stack are the flags regs.
assert(reg >= OptoReg::stack0(), "blow up if spilling flags");
return rc_stack;
}
// Returns size as obtained from z_emit_instr.
static unsigned int z_ld_st_helper(CodeBuffer *cbuf, const char *op_str, unsigned long opcode,
int reg, int offset, bool do_print, outputStream *os) {
if (cbuf) {
if (opcode > (1L<<32)) {
return z_emit_inst(*cbuf, opcode | Assembler::reg(Matcher::_regEncode[reg], 8, 48) |
Assembler::simm20(offset) | Assembler::reg(Z_R0, 12, 48) | Assembler::regz(Z_SP, 16, 48));
} else {
return z_emit_inst(*cbuf, opcode | Assembler::reg(Matcher::_regEncode[reg], 8, 32) |
Assembler::uimm12(offset, 20, 32) | Assembler::reg(Z_R0, 12, 32) | Assembler::regz(Z_SP, 16, 32));
}
}
#if !defined(PRODUCT)
if (do_print) {
os->print("%s %s,#%d[,SP]\t # MachCopy spill code",op_str, Matcher::regName[reg], offset);
}
#endif
return (opcode > (1L << 32)) ? 6 : 4;
}
static unsigned int z_mvc_helper(CodeBuffer *cbuf, int len, int dst_off, int src_off, bool do_print, outputStream *os) {
if (cbuf) {
MacroAssembler _masm(cbuf);
__ z_mvc(dst_off, len-1, Z_SP, src_off, Z_SP);
}
#if !defined(PRODUCT)
else if (do_print) {
os->print("MVC %d(%d,SP),%d(SP)\t # MachCopy spill code",dst_off, len, src_off);
}
#endif
return 6;
}
uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *os) const {
// Get registers to move.
OptoReg::Name src_hi = ra_->get_reg_second(in(1));
OptoReg::Name src_lo = ra_->get_reg_first(in(1));
OptoReg::Name dst_hi = ra_->get_reg_second(this);
OptoReg::Name dst_lo = ra_->get_reg_first(this);
enum RC src_hi_rc = rc_class(src_hi);
enum RC src_lo_rc = rc_class(src_lo);
enum RC dst_hi_rc = rc_class(dst_hi);
enum RC dst_lo_rc = rc_class(dst_lo);
assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
bool is64 = (src_hi_rc != rc_bad);
assert(!is64 ||
((src_lo&1) == 0 && src_lo+1 == src_hi && (dst_lo&1) == 0 && dst_lo+1 == dst_hi),
"expected aligned-adjacent pairs");
// Generate spill code!
if (src_lo == dst_lo && src_hi == dst_hi) {
return 0; // Self copy, no move.
}
int src_offset = ra_->reg2offset(src_lo);
int dst_offset = ra_->reg2offset(dst_lo);
bool print = !do_size;
bool src12 = Immediate::is_uimm12(src_offset);
bool dst12 = Immediate::is_uimm12(dst_offset);
const char *mnemo = NULL;
unsigned long opc = 0;
// Memory->Memory Spill. Use Z_R0 to hold the value.
if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
assert(!is64 || (src_hi_rc==rc_stack && dst_hi_rc==rc_stack),
"expected same type of move for high parts");
if (src12 && dst12) {
return z_mvc_helper(cbuf, is64 ? 8 : 4, dst_offset, src_offset, print, os);
}
int r0 = Z_R0_num;
if (is64) {
return z_ld_st_helper(cbuf, "LG ", LG_ZOPC, r0, src_offset, print, os) +
z_ld_st_helper(cbuf, "STG ", STG_ZOPC, r0, dst_offset, print, os);
}
return z_ld_st_helper(cbuf, "LY ", LY_ZOPC, r0, src_offset, print, os) +
z_ld_st_helper(cbuf, "STY ", STY_ZOPC, r0, dst_offset, print, os);
}
// Check for float->int copy. Requires a trip through memory.
if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
Unimplemented(); // Unsafe, do not remove!
}
// Check for integer reg-reg copy.
if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
if (cbuf) {
MacroAssembler _masm(cbuf);
Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
__ z_lgr(Rdst, Rsrc);
return 4;
}
#if !defined(PRODUCT)
// else
if (print) {
os->print("LGR %s,%s\t # MachCopy spill code", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
}
#endif
return 4;
}
// Check for integer store.
if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
assert(!is64 || (src_hi_rc==rc_int && dst_hi_rc==rc_stack),
"expected same type of move for high parts");
if (is64) {
return z_ld_st_helper(cbuf, "STG ", STG_ZOPC, src_lo, dst_offset, print, os);
}
// else
mnemo = dst12 ? "ST " : "STY ";
opc = dst12 ? ST_ZOPC : STY_ZOPC;
return z_ld_st_helper(cbuf, mnemo, opc, src_lo, dst_offset, print, os);
}
// Check for integer load
// Always load cOops zero-extended. That doesn't hurt int loads.
if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
assert(!is64 || (dst_hi_rc==rc_int && src_hi_rc==rc_stack),
"expected same type of move for high parts");
mnemo = is64 ? "LG " : "LLGF";
opc = is64 ? LG_ZOPC : LLGF_ZOPC;
return z_ld_st_helper(cbuf, mnemo, opc, dst_lo, src_offset, print, os);
}
// Check for float reg-reg copy.
if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
if (cbuf) {
MacroAssembler _masm(cbuf);
FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
__ z_ldr(Rdst, Rsrc);
return 2;
}
#if !defined(PRODUCT)
// else
if (print) {
os->print("LDR %s,%s\t # MachCopy spill code", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
}
#endif
return 2;
}
// Check for float store.
if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
assert(!is64 || (src_hi_rc==rc_float && dst_hi_rc==rc_stack),
"expected same type of move for high parts");
if (is64) {
mnemo = dst12 ? "STD " : "STDY ";
opc = dst12 ? STD_ZOPC : STDY_ZOPC;
return z_ld_st_helper(cbuf, mnemo, opc, src_lo, dst_offset, print, os);
}
// else
mnemo = dst12 ? "STE " : "STEY ";
opc = dst12 ? STE_ZOPC : STEY_ZOPC;
return z_ld_st_helper(cbuf, mnemo, opc, src_lo, dst_offset, print, os);
}
// Check for float load.
if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
assert(!is64 || (dst_hi_rc==rc_float && src_hi_rc==rc_stack),
"expected same type of move for high parts");
if (is64) {
mnemo = src12 ? "LD " : "LDY ";
opc = src12 ? LD_ZOPC : LDY_ZOPC;
return z_ld_st_helper(cbuf, mnemo, opc, dst_lo, src_offset, print, os);
}
// else
mnemo = src12 ? "LE " : "LEY ";
opc = src12 ? LE_ZOPC : LEY_ZOPC;
return z_ld_st_helper(cbuf, mnemo, opc, dst_lo, src_offset, print, os);
}
// --------------------------------------------------------------------
// Check for hi bits still needing moving. Only happens for misaligned
// arguments to native calls.
if (src_hi == dst_hi) {
return 0; // Self copy, no move.
}
assert(is64 && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
Unimplemented(); // Unsafe, do not remove!
return 0; // never reached, but make the compiler shut up!
}
#if !defined(PRODUCT)
void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *os) const {
if (ra_ && ra_->node_regs_max_index() > 0) {
implementation(NULL, ra_, false, os);
} else {
if (req() == 2 && in(1)) {
os->print("N%d = N%d\n", _idx, in(1)->_idx);
} else {
const char *c = "(";
os->print("N%d = ", _idx);
for (uint i = 1; i < req(); ++i) {
os->print("%sN%d", c, in(i)->_idx);
c = ", ";
}
os->print(")");
}
}
}
#endif
void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
implementation(&cbuf, ra_, false, NULL);
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
return implementation(NULL, ra_, true, NULL);
}
//=============================================================================
#if !defined(PRODUCT)
void MachNopNode::format(PhaseRegAlloc *, outputStream *os) const {
os->print("NOP # pad for alignment (%d nops, %d bytes)", _count, _count*MacroAssembler::nop_size());
}
#endif
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ra_) const {
MacroAssembler _masm(&cbuf);
int rem_space = 0;
if (!(ra_->C->in_scratch_emit_size())) {
rem_space = cbuf.insts()->remaining();
if (rem_space <= _count*2 + 8) {
tty->print("NopNode: _count = %3.3d, remaining space before = %d", _count, rem_space);
}
}
for (int i = 0; i < _count; i++) {
__ z_nop();
}
if (!(ra_->C->in_scratch_emit_size())) {
if (rem_space <= _count*2 + 8) {
int rem_space2 = cbuf.insts()->remaining();
tty->print_cr(", after = %d", rem_space2);
}
}
}
uint MachNopNode::size(PhaseRegAlloc *ra_) const {
return 2 * _count;
}
#if !defined(PRODUCT)
void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *os) const {
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
if (ra_ && ra_->node_regs_max_index() > 0) {
int reg = ra_->get_reg_first(this);
os->print("ADDHI %s, SP, %d\t//box node", Matcher::regName[reg], offset);
} else {
os->print("ADDHI N%d = SP + %d\t// box node", _idx, offset);
}
}
#endif
// Take care of the size function, if you make changes here!
void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
int reg = ra_->get_encode(this);
__ z_lay(as_Register(reg), offset, Z_SP);
}
uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
// BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
return 6;
}
%} // end source section
//----------SOURCE BLOCK-------------------------------------------------------
// This is a block of C++ code which provides values, functions, and
// definitions necessary in the rest of the architecture description
source_hpp %{
// Header information of the source block.
// Method declarations/definitions which are used outside
// the ad-scope can conveniently be defined here.
//
// To keep related declarations/definitions/uses close together,
// we switch between source %{ }% and source_hpp %{ }% freely as needed.
//--------------------------------------------------------------
// Used for optimization in Compile::Shorten_branches
//--------------------------------------------------------------
class CallStubImpl {
public:
// call trampolines
// Size of call trampoline stub. For add'l comments, see size_java_to_interp().
static uint size_call_trampoline() {
return 0; // no call trampolines on this platform
}
// call trampolines
// Number of relocations needed by a call trampoline stub.
static uint reloc_call_trampoline() {
return 0; // No call trampolines on this platform.
}
};
%} // end source_hpp section
source %{
#if !defined(PRODUCT)
void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *os) const {
os->print_cr("---- MachUEPNode ----");
os->print_cr("\tTA");
os->print_cr("\tload_const Z_R1, SharedRuntime::get_ic_miss_stub()");
os->print_cr("\tBR(Z_R1)");
os->print_cr("\tTA # pad with illtraps");
os->print_cr("\t...");
os->print_cr("\tTA");
os->print_cr("\tLTGR Z_R2, Z_R2");
os->print_cr("\tBRU ic_miss");
}
#endif
void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
MacroAssembler _masm(&cbuf);
const int ic_miss_offset = 2;
// Inline_cache contains a klass.
Register ic_klass = as_Register(Matcher::inline_cache_reg_encode());
// ARG1 is the receiver oop.
Register R2_receiver = Z_ARG1;
int klass_offset = oopDesc::klass_offset_in_bytes();
AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
Register R1_ic_miss_stub_addr = Z_R1_scratch;
// Null check of receiver.
// This is the null check of the receiver that actually should be
// done in the caller. It's here because in case of implicit null
// checks we get it for free.
assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
"second word in oop should not require explicit null check.");
if (!ImplicitNullChecks) {
Label valid;
if (VM_Version::has_CompareBranch()) {
__ z_cgij(R2_receiver, 0, Assembler::bcondNotEqual, valid);
} else {
__ z_ltgr(R2_receiver, R2_receiver);
__ z_bre(valid);
}
// The ic_miss_stub will handle the null pointer exception.
__ load_const_optimized(R1_ic_miss_stub_addr, icmiss);
__ z_br(R1_ic_miss_stub_addr);
__ bind(valid);
}
// Check whether this method is the proper implementation for the class of
// the receiver (ic miss check).
{
Label valid;
// Compare cached class against klass from receiver.
// This also does an implicit null check!
__ compare_klass_ptr(ic_klass, klass_offset, R2_receiver, false);
__ z_bre(valid);
// The inline cache points to the wrong method. Call the
// ic_miss_stub to find the proper method.
__ load_const_optimized(R1_ic_miss_stub_addr, icmiss);
__ z_br(R1_ic_miss_stub_addr);
__ bind(valid);
}
}
uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
// Determine size dynamically.
return MachNode::size(ra_);
}
//=============================================================================
%} // interrupt source section
source_hpp %{ // Header information of the source block.
class HandlerImpl {
public:
static int emit_exception_handler(CodeBuffer &cbuf);
static int emit_deopt_handler(CodeBuffer& cbuf);
static uint size_exception_handler() {
return NativeJump::max_instruction_size();
}
static uint size_deopt_handler() {
return NativeCall::max_instruction_size();
}
};
%} // end source_hpp section
source %{
// This exception handler code snippet is placed after the method's
// code. It is the return point if an exception occurred. it jumps to
// the exception blob.
//
// If the method gets deoptimized, the method and this code snippet
// get patched.
//
// 1) Trampoline code gets patched into the end of this exception
// handler. the trampoline code jumps to the deoptimization blob.
//
// 2) The return address in the method's code will get patched such
// that it jumps to the trampoline.
//
// 3) The handler will get patched such that it does not jump to the
// exception blob, but to an entry in the deoptimization blob being
// aware of the exception.
int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
Register temp_reg = Z_R1;
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_exception_handler());
if (base == NULL) {
return 0; // CodeBuffer::expand failed
}
int offset = __ offset();
// Use unconditional pc-relative jump with 32-bit range here.
__ load_const_optimized(temp_reg, (address)OptoRuntime::exception_blob()->content_begin());
__ z_br(temp_reg);
assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
__ end_a_stub();
return offset;
}
// Emit deopt handler code.
int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
MacroAssembler _masm(&cbuf);
address base = __ start_a_stub(size_deopt_handler());
if (base == NULL) {
return 0; // CodeBuffer::expand failed
}
int offset = __ offset();
// Size_deopt_handler() must be exact on zarch, so for simplicity
// we do not use load_const_opt here.
__ load_const(Z_R1, SharedRuntime::deopt_blob()->unpack());
__ call(Z_R1);
assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
__ end_a_stub();
return offset;
}
//=============================================================================
// Given a register encoding, produce an Integer Register object.
static Register reg_to_register_object(int register_encoding) {
assert(Z_R12->encoding() == Z_R12_enc, "wrong coding");
return as_Register(register_encoding);
}
const bool Matcher::match_rule_supported(int opcode) {
if (!has_match_rule(opcode)) return false;
switch (opcode) {
case Op_CountLeadingZerosI:
case Op_CountLeadingZerosL:
case Op_CountTrailingZerosI:
case Op_CountTrailingZerosL:
// Implementation requires FLOGR instruction, which is available since z9.
return true;
case Op_ReverseBytesI:
case Op_ReverseBytesL:
return UseByteReverseInstruction;
// PopCount supported by H/W from z/Architecture G5 (z196) on.
case Op_PopCountI:
case Op_PopCountL:
return UsePopCountInstruction && VM_Version::has_PopCount();
case Op_StrComp:
return SpecialStringCompareTo;
case Op_StrEquals:
return SpecialStringEquals;
case Op_StrIndexOf:
case Op_StrIndexOfChar:
return SpecialStringIndexOf;
case Op_GetAndAddI:
case Op_GetAndAddL:
return true;
// return VM_Version::has_AtomicMemWithImmALUOps();
case Op_GetAndSetI:
case Op_GetAndSetL:
case Op_GetAndSetP:
case Op_GetAndSetN:
return true; // General CAS implementation, always available.
default:
return true; // Per default match rules are supported.
// BUT: make sure match rule is not disabled by a false predicate!
}
return true; // Per default match rules are supported.
// BUT: make sure match rule is not disabled by a false predicate!
}
const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
// TODO
// Identify extra cases that we might want to provide match rules for
// e.g. Op_ vector nodes and other intrinsics while guarding with vlen.
bool ret_value = match_rule_supported(opcode);
// Add rules here.
return ret_value; // Per default match rules are supported.
}
int Matcher::regnum_to_fpu_offset(int regnum) {
ShouldNotReachHere();
return regnum - 32; // The FP registers are in the second chunk.
}
const bool Matcher::has_predicated_vectors(void) {
return false;
}
const int Matcher::float_pressure(int default_pressure_threshold) {
return default_pressure_threshold;
}
const bool Matcher::convL2FSupported(void) {
return true; // False means that conversion is done by runtime call.
}
//----------SUPERWORD HELPERS----------------------------------------
// Vector width in bytes.
const int Matcher::vector_width_in_bytes(BasicType bt) {
assert(MaxVectorSize == 8, "");
return 8;
}
// Vector ideal reg.
const uint Matcher::vector_ideal_reg(int size) {
assert(MaxVectorSize == 8 && size == 8, "");
return Op_RegL;
}
// Limits on vector size (number of elements) loaded into vector.
const int Matcher::max_vector_size(const BasicType bt) {
assert(is_java_primitive(bt), "only primitive type vectors");
return vector_width_in_bytes(bt)/type2aelembytes(bt);
}
const int Matcher::min_vector_size(const BasicType bt) {
return max_vector_size(bt); // Same as max.
}
const uint Matcher::vector_shift_count_ideal_reg(int size) {
fatal("vector shift is not supported");
return Node::NotAMachineReg;
}
// z/Architecture does support misaligned store/load at minimal extra cost.
const bool Matcher::misaligned_vectors_ok() {
return true;
}
// Not yet ported to z/Architecture.
const bool Matcher::pass_original_key_for_aes() {
return false;
}
// RETURNS: whether this branch offset is short enough that a short
// branch can be used.
//
// If the platform does not provide any short branch variants, then
// this method should return `false' for offset 0.
//
// `Compile::Fill_buffer' will decide on basis of this information
// whether to do the pass `Compile::Shorten_branches' at all.
//
// And `Compile::Shorten_branches' will decide on basis of this
// information whether to replace particular branch sites by short
// ones.
bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
// On zarch short branches use a 16 bit signed immediate that
// is the pc-relative offset in halfword (= 2 bytes) units.
return Assembler::is_within_range_of_RelAddr16((address)((long)offset), (address)0);
}
const bool Matcher::isSimpleConstant64(jlong value) {
// Probably always true, even if a temp register is required.
return true;
}
// Should correspond to setting above
const bool Matcher::init_array_count_is_in_bytes = false;
// Suppress CMOVL. Conditional move available on z/Architecture only from z196 onwards. Not exploited yet.
const int Matcher::long_cmove_cost() { return ConditionalMoveLimit; }
// Suppress CMOVF. Conditional move available on z/Architecture only from z196 onwards. Not exploited yet.
const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
// Does the CPU require postalloc expand (see block.cpp for description of postalloc expand)?
const bool Matcher::require_postalloc_expand = false;
// Do we need to mask the count passed to shift instructions or does
// the cpu only look at the lower 5/6 bits anyway?
// 32bit shifts mask in emitter, 64bit shifts need no mask.
// Constant shift counts are handled in Ideal phase.
const bool Matcher::need_masked_shift_count = false;
// Set this as clone_shift_expressions.
bool Matcher::narrow_oop_use_complex_address() {
if (Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0) return true;
return false;
}
bool Matcher::narrow_klass_use_complex_address() {
NOT_LP64(ShouldNotCallThis());
assert(UseCompressedClassPointers, "only for compressed klass code");
// TODO HS25: z port if (MatchDecodeNodes) return true;
return false;
}
bool Matcher::const_oop_prefer_decode() {
// Prefer ConN+DecodeN over ConP in simple compressed oops mode.
return Universe::narrow_oop_base() == NULL;
}
bool Matcher::const_klass_prefer_decode() {
// Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
return Universe::narrow_klass_base() == NULL;
}
// Is it better to copy float constants, or load them directly from memory?
// Most RISCs will have to materialize an address into a
// register first, so they would do better to copy the constant from stack.
const bool Matcher::rematerialize_float_constants = false;
// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed. Else we split the double into 2 integer pieces and move it
// piece-by-piece. Only happens when passing doubles into C code as the
// Java calling convention forces doubles to be aligned.
const bool Matcher::misaligned_doubles_ok = true;
// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = false;
// Do floats take an entire double register or just half?
//
// A float in resides in a zarch double register. When storing it by
// z_std, it cannot be restored in C-code by reloading it as a double
// and casting it into a float afterwards.
bool Matcher::float_in_double() { return false; }
// Do ints take an entire long register or just half?
// The relevant question is how the int is callee-saved:
// the whole long is written but de-opt'ing will have to extract
// the relevant 32 bits.
const bool Matcher::int_in_long = true;
// Constants for c2c and c calling conventions.
const MachRegisterNumbers z_iarg_reg[5] = {
Z_R2_num, Z_R3_num, Z_R4_num, Z_R5_num, Z_R6_num
};
const MachRegisterNumbers z_farg_reg[4] = {
Z_F0_num, Z_F2_num, Z_F4_num, Z_F6_num
};
const int z_num_iarg_registers = sizeof(z_iarg_reg) / sizeof(z_iarg_reg[0]);
const int z_num_farg_registers = sizeof(z_farg_reg) / sizeof(z_farg_reg[0]);
// Return whether or not this register is ever used as an argument. This
// function is used on startup to build the trampoline stubs in generateOptoStub.
// Registers not mentioned will be killed by the VM call in the trampoline, and
// arguments in those registers not be available to the callee.
bool Matcher::can_be_java_arg(int reg) {
// We return true for all registers contained in z_iarg_reg[] and
// z_farg_reg[] and their virtual halves.
// We must include the virtual halves in order to get STDs and LDs
// instead of STWs and LWs in the trampoline stubs.
if (reg == Z_R2_num || reg == Z_R2_H_num ||
reg == Z_R3_num || reg == Z_R3_H_num ||
reg == Z_R4_num || reg == Z_R4_H_num ||
reg == Z_R5_num || reg == Z_R5_H_num ||
reg == Z_R6_num || reg == Z_R6_H_num) {
return true;
}
if (reg == Z_F0_num || reg == Z_F0_H_num ||
reg == Z_F2_num || reg == Z_F2_H_num ||
reg == Z_F4_num || reg == Z_F4_H_num ||
reg == Z_F6_num || reg == Z_F6_H_num) {
return true;
}
return false;
}
bool Matcher::is_spillable_arg(int reg) {
return can_be_java_arg(reg);
}
bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
return false;
}
// Register for DIVI projection of divmodI
RegMask Matcher::divI_proj_mask() {
return _Z_RARG4_INT_REG_mask;
}
// Register for MODI projection of divmodI
RegMask Matcher::modI_proj_mask() {
return _Z_RARG3_INT_REG_mask;
}
// Register for DIVL projection of divmodL
RegMask Matcher::divL_proj_mask() {
return _Z_RARG4_LONG_REG_mask;
}
// Register for MODL projection of divmodL
RegMask Matcher::modL_proj_mask() {
return _Z_RARG3_LONG_REG_mask;
}
// Copied from sparc.
const RegMask Matcher::method_handle_invoke_SP_save_mask() {
return RegMask();
}
const bool Matcher::convi2l_type_required = true;
// Should the Matcher clone shifts on addressing modes, expecting them
// to be subsumed into complex addressing expressions or compute them
// into registers?
bool Matcher::clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
return clone_base_plus_offset_address(m, mstack, address_visited);
}
void Compile::reshape_address(AddPNode* addp) {
}
%} // source
//----------ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams. Encoding classes are parameterized macros used by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction. Operands specify their base encoding interface with the
// interface keyword. There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
// operand to generate a function which returns its register number when
// queried. CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried. MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried. COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
//
// Instructions specify two basic values for encoding. Again, a function
// is available to check if the constant displacement is an oop. They use the
// ins_encode keyword to specify their encoding classes (which must be
// a sequence of enc_class names, and their parameters, specified in
// the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
enc_class enc_unimplemented %{
MacroAssembler _masm(&cbuf);
__ unimplemented("Unimplemented mach node encoding in AD file.", 13);
%}
enc_class enc_untested %{
#ifdef ASSERT
MacroAssembler _masm(&cbuf);
__ untested("Untested mach node encoding in AD file.");
#endif
%}
enc_class z_rrform(iRegI dst, iRegI src) %{
assert((($primary >> 14) & 0x03) == 0, "Instruction format error");
assert( ($primary >> 16) == 0, "Instruction format error");
z_emit16(cbuf, $primary |
Assembler::reg($dst$$reg,8,16) |
Assembler::reg($src$$reg,12,16));
%}
enc_class z_rreform(iRegI dst1, iRegI src2) %{
assert((($primary >> 30) & 0x03) == 2, "Instruction format error");
z_emit32(cbuf, $primary |
Assembler::reg($dst1$$reg,24,32) |
Assembler::reg($src2$$reg,28,32));
%}
enc_class z_rrfform(iRegI dst1, iRegI src2, iRegI src3) %{
assert((($primary >> 30) & 0x03) == 2, "Instruction format error");
z_emit32(cbuf, $primary |
Assembler::reg($dst1$$reg,24,32) |
Assembler::reg($src2$$reg,28,32) |
Assembler::reg($src3$$reg,16,32));
%}
enc_class z_riform_signed(iRegI dst, immI16 src) %{
assert((($primary>>30) & 0x03) == 2, "Instruction format error");
z_emit32(cbuf, $primary |
Assembler::reg($dst$$reg,8,32) |
Assembler::simm16($src$$constant,16,32));
%}
enc_class z_riform_unsigned(iRegI dst, uimmI16 src) %{
assert((($primary>>30) & 0x03) == 2, "Instruction format error");
z_emit32(cbuf, $primary |
Assembler::reg($dst$$reg,8,32) |
Assembler::uimm16($src$$constant,16,32));
%}
enc_class z_rieform_d(iRegI dst1, iRegI src3, immI src2) %{
assert((($primary>>46) & 0x03) == 3, "Instruction format error");
z_emit48(cbuf, $primary |
Assembler::reg($dst1$$reg,8,48) |
Assembler::reg($src3$$reg,12,48) |
Assembler::simm16($src2$$constant,16,48));
%}
enc_class z_rilform_signed(iRegI dst, immL32 src) %{
assert((($primary>>46) & 0x03) == 3, "Instruction format error");
z_emit48(cbuf, $primary |
Assembler::reg($dst$$reg,8,48) |
Assembler::simm32($src$$constant,16,48));
%}
enc_class z_rilform_unsigned(iRegI dst, uimmL32 src) %{
assert((($primary>>46) & 0x03) == 3, "Instruction format error");
z_emit48(cbuf, $primary |
Assembler::reg($dst$$reg,8,48) |
Assembler::uimm32($src$$constant,16,48));
%}
enc_class z_rsyform_const(iRegI dst, iRegI src1, immI src2) %{
z_emit48(cbuf, $primary |
Assembler::reg($dst$$reg,8,48) |
Assembler::reg($src1$$reg,12,48) |
Assembler::simm20($src2$$constant));
%}
enc_class z_rsyform_reg_reg(iRegI dst, iRegI src, iRegI shft) %{
z_emit48(cbuf, $primary |
Assembler::reg($dst$$reg,8,48) |
Assembler::reg($src$$reg,12,48) |
Assembler::reg($shft$$reg,16,48) |
Assembler::simm20(0));
%}
enc_class z_rxform_imm_reg_reg(iRegL dst, immL con, iRegL src1, iRegL src2) %{
assert((($primary>>30) & 0x03) == 1, "Instruction format error");
z_emit32(cbuf, $primary |
Assembler::reg($dst$$reg,8,32) |
Assembler::reg($src1$$reg,12,32) |
Assembler::reg($src2$$reg,16,32) |
Assembler::uimm12($con$$constant,20,32));
%}
enc_class z_rxform_imm_reg(iRegL dst, immL con, iRegL src) %{
assert((($primary>>30) & 0x03) == 1, "Instruction format error");
z_emit32(cbuf, $primary |
Assembler::reg($dst$$reg,8,32) |
Assembler::reg($src$$reg,16,32) |
Assembler::uimm12($con$$constant,20,32));
%}
enc_class z_rxyform_imm_reg_reg(iRegL dst, immL con, iRegL src1, iRegL src2) %{
z_emit48(cbuf, $primary |
Assembler::reg($dst$$reg,8,48) |
Assembler::reg($src1$$reg,12,48) |
Assembler::reg($src2$$reg,16,48) |
Assembler::simm20($con$$constant));
%}
enc_class z_rxyform_imm_reg(iRegL dst, immL con, iRegL src) %{
z_emit48(cbuf, $primary |
Assembler::reg($dst$$reg,8,48) |
Assembler::reg($src$$reg,16,48) |
Assembler::simm20($con$$constant));
%}
// Direct memory arithmetic.
enc_class z_siyform(memoryRSY mem, immI8 src) %{
int disp = $mem$$disp;
Register base = reg_to_register_object($mem$$base);
int con = $src$$constant;
assert(VM_Version::has_MemWithImmALUOps(), "unsupported CPU");
z_emit_inst(cbuf, $primary |
Assembler::regz(base,16,48) |
Assembler::simm20(disp) |
Assembler::simm8(con,8,48));
%}
enc_class z_silform(memoryRS mem, immI16 src) %{
z_emit_inst(cbuf, $primary |
Assembler::regz(reg_to_register_object($mem$$base),16,48) |
Assembler::uimm12($mem$$disp,20,48) |
Assembler::simm16($src$$constant,32,48));
%}
// Encoder for FP ALU reg/mem instructions (support only short displacements).
enc_class z_form_rt_memFP(RegF dst, memoryRX mem) %{
Register Ridx = $mem$$index$$Register;
if (Ridx == noreg) { Ridx = Z_R0; } // Index is 0.
if ($primary > (1L << 32)) {
z_emit_inst(cbuf, $primary |
Assembler::reg($dst$$reg, 8, 48) |
Assembler::uimm12($mem$$disp, 20, 48) |
Assembler::reg(Ridx, 12, 48) |
Assembler::regz(reg_to_register_object($mem$$base), 16, 48));
} else {
z_emit_inst(cbuf, $primary |
Assembler::reg($dst$$reg, 8, 32) |
Assembler::uimm12($mem$$disp, 20, 32) |
Assembler::reg(Ridx, 12, 32) |
Assembler::regz(reg_to_register_object($mem$$base), 16, 32));
}
%}
enc_class z_form_rt_mem(iRegI dst, memory mem) %{
Register Ridx = $mem$$index$$Register;
if (Ridx == noreg) { Ridx = Z_R0; } // Index is 0.
if ($primary > (1L<<32)) {
z_emit_inst(cbuf, $primary |
Assembler::reg($dst$$reg, 8, 48) |
Assembler::simm20($mem$$disp) |
Assembler::reg(Ridx, 12, 48) |
Assembler::regz(reg_to_register_object($mem$$base), 16, 48));
} else {
z_emit_inst(cbuf, $primary |
Assembler::reg($dst$$reg, 8, 32) |
Assembler::uimm12($mem$$disp, 20, 32) |
Assembler::reg(Ridx, 12, 32) |
Assembler::regz(reg_to_register_object($mem$$base), 16, 32));
}
%}
enc_class z_form_rt_mem_opt(iRegI dst, memory mem) %{
int isize = $secondary > 1L << 32 ? 48 : 32;
Register Ridx = $mem$$index$$Register;
if (Ridx == noreg) { Ridx = Z_R0; } // Index is 0.
if (Displacement::is_shortDisp((long)$mem$$disp)) {
z_emit_inst(cbuf, $secondary |
Assembler::reg($dst$$reg, 8, isize) |
Assembler::uimm12($mem$$disp, 20, isize) |
Assembler::reg(Ridx, 12, isize) |
Assembler::regz(reg_to_register_object($mem$$base), 16, isize));
} else if (Displacement::is_validDisp((long)$mem$$disp)) {
z_emit_inst(cbuf, $primary |
Assembler::reg($dst$$reg, 8, 48) |
Assembler::simm20($mem$$disp) |
Assembler::reg(Ridx, 12, 48) |
Assembler::regz(reg_to_register_object($mem$$base), 16, 48));
} else {
MacroAssembler _masm(&cbuf);
__ load_const_optimized(Z_R1_scratch, $mem$$disp);
if (Ridx != Z_R0) { __ z_agr(Z_R1_scratch, Ridx); }
z_emit_inst(cbuf, $secondary |
Assembler::reg($dst$$reg, 8, isize) |
Assembler::uimm12(0, 20, isize) |
Assembler::reg(Z_R1_scratch, 12, isize) |
Assembler::regz(reg_to_register_object($mem$$base), 16, isize));
}
%}
enc_class z_enc_brul(Label lbl) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
__ z_brul(l);
%}
enc_class z_enc_bru(Label lbl) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
__ z_bru(l);
%}
enc_class z_enc_branch_con_far(cmpOp cmp, Label lbl) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
__ z_brcl((Assembler::branch_condition)$cmp$$cmpcode, l);
%}
enc_class z_enc_branch_con_short(cmpOp cmp, Label lbl) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
__ z_brc((Assembler::branch_condition)$cmp$$cmpcode, l);
%}
enc_class z_enc_cmpb_regreg(iRegI src1, iRegI src2, Label lbl, cmpOpT cmp) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
Assembler::branch_condition cc = (Assembler::branch_condition)$cmp$$cmpcode;
unsigned long instr = $primary;
if (instr == CRJ_ZOPC) {
__ z_crj($src1$$Register, $src2$$Register, cc, l);
} else if (instr == CLRJ_ZOPC) {
__ z_clrj($src1$$Register, $src2$$Register, cc, l);
} else if (instr == CGRJ_ZOPC) {
__ z_cgrj($src1$$Register, $src2$$Register, cc, l);
} else {
guarantee(instr == CLGRJ_ZOPC, "opcode not implemented");
__ z_clgrj($src1$$Register, $src2$$Register, cc, l);
}
%}
enc_class z_enc_cmpb_regregFar(iRegI src1, iRegI src2, Label lbl, cmpOpT cmp) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
unsigned long instr = $primary;
if (instr == CR_ZOPC) {
__ z_cr($src1$$Register, $src2$$Register);
} else if (instr == CLR_ZOPC) {
__ z_clr($src1$$Register, $src2$$Register);
} else if (instr == CGR_ZOPC) {
__ z_cgr($src1$$Register, $src2$$Register);
} else {
guarantee(instr == CLGR_ZOPC, "opcode not implemented");
__ z_clgr($src1$$Register, $src2$$Register);
}
__ z_brcl((Assembler::branch_condition)$cmp$$cmpcode, l);
%}
enc_class z_enc_cmpb_regimm(iRegI src1, immI8 src2, Label lbl, cmpOpT cmp) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
Assembler::branch_condition cc = (Assembler::branch_condition)$cmp$$cmpcode;
unsigned long instr = $primary;
if (instr == CIJ_ZOPC) {
__ z_cij($src1$$Register, $src2$$constant, cc, l);
} else if (instr == CLIJ_ZOPC) {
__ z_clij($src1$$Register, $src2$$constant, cc, l);
} else if (instr == CGIJ_ZOPC) {
__ z_cgij($src1$$Register, $src2$$constant, cc, l);
} else {
guarantee(instr == CLGIJ_ZOPC, "opcode not implemented");
__ z_clgij($src1$$Register, $src2$$constant, cc, l);
}
%}
enc_class z_enc_cmpb_regimmFar(iRegI src1, immI8 src2, Label lbl, cmpOpT cmp) %{
MacroAssembler _masm(&cbuf);
Label* p = $lbl$$label;
// 'p' is `NULL' when this encoding class is used only to
// determine the size of the encoded instruction.
// Use a bound dummy label in that case.
Label d;
__ bind(d);
Label& l = (NULL == p) ? d : *(p);
unsigned long instr = $primary;
if (instr == CHI_ZOPC) {
__ z_chi($src1$$Register, $src2$$constant);
} else if (instr == CLFI_ZOPC) {
__ z_clfi($src1$$Register, $src2$$constant);
} else if (instr == CGHI_ZOPC) {
__ z_cghi($src1$$Register, $src2$$constant);
} else {
guarantee(instr == CLGFI_ZOPC, "opcode not implemented");
__ z_clgfi($src1$$Register, $src2$$constant);
}
__ z_brcl((Assembler::branch_condition)$cmp$$cmpcode, l);
%}
// Call from Java to runtime.
enc_class z_enc_java_to_runtime_call(method meth) %{
MacroAssembler _masm(&cbuf);
// Save return pc before call to the place where we need it, since
// callee doesn't.
unsigned int start_off = __ offset();
// Compute size of "larl + stg + call_c_opt".
const int size_of_code = 6 + 6 + MacroAssembler::call_far_patchable_size();
__ get_PC(Z_R14, size_of_code);
__ save_return_pc();
assert(__ offset() - start_off == 12, "bad prelude len: %d", __ offset() - start_off);
assert((__ offset() & 2) == 0, "misaligned z_enc_java_to_runtime_call");
address call_addr = __ call_c_opt((address)$meth$$method);
if (call_addr == NULL) {
Compile::current()->env()->record_out_of_memory_failure();
return;
}
#ifdef ASSERT
// Plausibility check for size_of_code assumptions.
unsigned int actual_ret_off = __ offset();
assert(start_off + size_of_code == actual_ret_off, "wrong return_pc");
#endif
%}
enc_class z_enc_java_static_call(method meth) %{
// Call to fixup routine. Fixup routine uses ScopeDesc info to determine
// whom we intended to call.
MacroAssembler _masm(&cbuf);
int ret_offset = 0;
if (!_method) {
ret_offset = emit_call_reloc(_masm, $meth$$method,
relocInfo::runtime_call_w_cp_type, ra_);
} else {
int method_index = resolved_method_index(cbuf);
if (_optimized_virtual) {
ret_offset = emit_call_reloc(_masm, $meth$$method,
opt_virtual_call_Relocation::spec(method_index));
} else {
ret_offset = emit_call_reloc(_masm, $meth$$method,
static_call_Relocation::spec(method_index));
}
}
assert(__ inst_mark() != NULL, "emit_call_reloc must set_inst_mark()");
if (_method) { // Emit stub for static call.
address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
if (stub == NULL) {
ciEnv::current()->record_failure("CodeCache is full");
return;
}
}
%}
// Java dynamic call
enc_class z_enc_java_dynamic_call(method meth) %{
MacroAssembler _masm(&cbuf);
unsigned int start_off = __ offset();
int vtable_index = this->_vtable_index;
if (vtable_index == -4) {
Register ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
address virtual_call_oop_addr = NULL;
AddressLiteral empty_ic((address) Universe::non_oop_word());
virtual_call_oop_addr = __ pc();
bool success = __ load_const_from_toc(ic_reg, empty_ic);
if (!success) {
Compile::current()->env()->record_out_of_memory_failure();
return;
}
// Call to fixup routine. Fixup routine uses ScopeDesc info
// to determine who we intended to call.
int method_index = resolved_method_index(cbuf);
__ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr, method_index));
unsigned int ret_off = __ offset();
assert(__ offset() - start_off == 6, "bad prelude len: %d", __ offset() - start_off);
ret_off += emit_call_reloc(_masm, $meth$$method, relocInfo::none, ra_);
assert(_method, "lazy_constant may be wrong when _method==null");
} else {
assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
// Go through the vtable. Get receiver klass. Receiver already
// checked for non-null. If we'll go thru a C2I adapter, the
// interpreter expects method in Z_method.
// Use Z_method to temporarily hold the klass oop.
// Z_R1_scratch is destroyed.
__ load_klass(Z_method, Z_R2);
int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index * vtableEntry::size_in_bytes();
int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
if (Displacement::is_validDisp(v_off) ) {
// Can use load instruction with large offset.
__ z_lg(Z_method, Address(Z_method /*class oop*/, v_off /*method offset*/));
} else {
// Worse case, must load offset into register.
__ load_const(Z_R1_scratch, v_off);
__ z_lg(Z_method, Address(Z_method /*class oop*/, Z_R1_scratch /*method offset*/));
}
// NOTE: for vtable dispatches, the vtable entry will never be
// null. However it may very well end up in handle_wrong_method
// if the method is abstract for the particular class.
__ z_lg(Z_R1_scratch, Address(Z_method, Method::from_compiled_offset()));
// Call target. Either compiled code or C2I adapter.
__ z_basr(Z_R14, Z_R1_scratch);
unsigned int ret_off = __ offset();
}
%}
enc_class z_enc_cmov_reg(cmpOp cmp, iRegI dst, iRegI src) %{
MacroAssembler _masm(&cbuf);
Register Rdst = reg_to_register_object($dst$$reg);
Register Rsrc = reg_to_register_object($src$$reg);
// Don't emit code if operands are identical (same register).
if (Rsrc != Rdst) {
Assembler::branch_condition cc = (Assembler::branch_condition)$cmp$$cmpcode;
if (VM_Version::has_LoadStoreConditional()) {
__ z_locgr(Rdst, Rsrc, cc);
} else {
// Branch if not (cmp cr).
Label done;
__ z_brc(Assembler::inverse_condition(cc), done);
__ z_lgr(Rdst, Rsrc); // Used for int and long+ptr.
__ bind(done);
}
}
%}
enc_class z_enc_cmov_imm(cmpOp cmp, iRegI dst, immI16 src) %{
MacroAssembler _masm(&cbuf);
Register Rdst = reg_to_register_object($dst$$reg);
int Csrc = $src$$constant;
Assembler::branch_condition cc = (Assembler::branch_condition)$cmp$$cmpcode;
Label done;
// Branch if not (cmp cr).
__ z_brc(Assembler::inverse_condition(cc), done);
if (Csrc == 0) {
// Don't set CC.
__ clear_reg(Rdst, true, false); // Use for int, long & ptr.
} else {
__ z_lghi(Rdst, Csrc); // Use for int, long & ptr.
}
__ bind(done);
%}
enc_class z_enc_cctobool(iRegI res) %{
MacroAssembler _masm(&cbuf);
Register Rres = reg_to_register_object($res$$reg);
if (VM_Version::has_LoadStoreConditional()) {
__ load_const_optimized(Z_R0_scratch, 0L); // false (failed)
__ load_const_optimized(Rres, 1L); // true (succeed)
__ z_locgr(Rres, Z_R0_scratch, Assembler::bcondNotEqual);
} else {
Label done;
__ load_const_optimized(Rres, 0L); // false (failed)
__ z_brne(done); // Assume true to be the common case.
__ load_const_optimized(Rres, 1L); // true (succeed)
__ bind(done);
}
%}
enc_class z_enc_casI(iRegI compare_value, iRegI exchange_value, iRegP addr_ptr) %{
MacroAssembler _masm(&cbuf);
Register Rcomp = reg_to_register_object($compare_value$$reg);
Register Rnew = reg_to_register_object($exchange_value$$reg);
Register Raddr = reg_to_register_object($addr_ptr$$reg);
__ z_cs(Rcomp, Rnew, 0, Raddr);
%}
enc_class z_enc_casL(iRegL compare_value, iRegL exchange_value, iRegP addr_ptr) %{
MacroAssembler _masm(&cbuf);
Register Rcomp = reg_to_register_object($compare_value$$reg);
Register Rnew = reg_to_register_object($exchange_value$$reg);
Register Raddr = reg_to_register_object($addr_ptr$$reg);
__ z_csg(Rcomp, Rnew, 0, Raddr);
%}
enc_class z_enc_SwapI(memoryRSY mem, iRegI dst, iRegI tmp) %{
MacroAssembler _masm(&cbuf);
Register Rdst = reg_to_register_object($dst$$reg);
Register Rtmp = reg_to_register_object($tmp$$reg);
guarantee(Rdst != Rtmp, "Fix match rule to use TEMP_DEF");
Label retry;
// Iterate until swap succeeds.
__ z_llgf(Rtmp, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
__ z_csy(Rtmp, Rdst, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
__ z_lgr(Rdst, Rtmp); // Exchanged value from memory is return value.
%}
enc_class z_enc_SwapL(memoryRSY mem, iRegL dst, iRegL tmp) %{
MacroAssembler _masm(&cbuf);
Register Rdst = reg_to_register_object($dst$$reg);
Register Rtmp = reg_to_register_object($tmp$$reg);
guarantee(Rdst != Rtmp, "Fix match rule to use TEMP_DEF");
Label retry;
// Iterate until swap succeeds.
__ z_lg(Rtmp, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
__ z_csg(Rtmp, Rdst, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
__ z_lgr(Rdst, Rtmp); // Exchanged value from memory is return value.
%}
%} // encode
source %{
// Check whether outs are all Stores. If so, we can omit clearing the upper
// 32 bits after encoding.
static bool all_outs_are_Stores(const Node *n) {
for (DUIterator_Fast imax, k = n->fast_outs(imax); k < imax; k++) {
Node *out = n->fast_out(k);
if (!out->is_Mach() || out->as_Mach()->ideal_Opcode() != Op_StoreN) {
// Most other outs are SpillCopy, but there are various other.
// jvm98 has arond 9% Encodes where we return false.
return false;
}
}
return true;
}
%} // source
//----------FRAME--------------------------------------------------------------
// Definition of frame structure and management information.
frame %{
// What direction does stack grow in (assumed to be same for native & Java).
stack_direction(TOWARDS_LOW);
// These two registers define part of the calling convention between
// compiled code and the interpreter.
// Inline Cache Register
inline_cache_reg(Z_R9); // Z_inline_cache
// Argument pointer for I2C adapters
//
// Tos is loaded in run_compiled_code to Z_ARG5=Z_R6.
// interpreter_arg_ptr_reg(Z_R6);
// Temporary in compiled entry-points
// compiler_method_oop_reg(Z_R1);//Z_R1_scratch
// Method Oop Register when calling interpreter
interpreter_method_oop_reg(Z_R9);//Z_method
// Optional: name the operand used by cisc-spilling to access
// [stack_pointer + offset].
cisc_spilling_operand_name(indOffset12);
// Number of stack slots consumed by a Monitor enter.
sync_stack_slots(frame::jit_monitor_size_in_4_byte_units);
// Compiled code's Frame Pointer
//
// z/Architecture stack pointer
frame_pointer(Z_R15); // Z_SP
// Interpreter stores its frame pointer in a register which is
// stored to the stack by I2CAdaptors. I2CAdaptors convert from
// interpreted java to compiled java.
//
// Z_state holds pointer to caller's cInterpreter.
interpreter_frame_pointer(Z_R7); // Z_state
// Use alignment_in_bytes instead of log_2_of_alignment_in_bits.
stack_alignment(frame::alignment_in_bytes);
in_preserve_stack_slots(frame::jit_in_preserve_size_in_4_byte_units);
// A `slot' is assumed 4 bytes here!
// out_preserve_stack_slots(frame::jit_out_preserve_size_in_4_byte_units);
// Number of outgoing stack slots killed above the
// out_preserve_stack_slots for calls to C. Supports the var-args
// backing area for register parms.
varargs_C_out_slots_killed(((frame::z_abi_160_size - frame::z_jit_out_preserve_size) / VMRegImpl::stack_slot_size));
// The after-PROLOG location of the return address. Location of
// return address specifies a type (REG or STACK) and a number
// representing the register number (i.e. - use a register name) or
// stack slot.
return_addr(REG Z_R14);
// This is the body of the function
//
// void Matcher::calling_convention(OptoRegPair* sig /* array of ideal regs */,
// uint length /* length of array */,
// bool is_outgoing)
//
// The `sig' array is to be updated. Sig[j] represents the location
// of the j-th argument, either a register or a stack slot.
// Body of function which returns an integer array locating
// arguments either in registers or in stack slots. Passed an array
// of ideal registers called "sig" and a "length" count. Stack-slot
// offsets are based on outgoing arguments, i.e. a CALLER setting up
// arguments for a CALLEE. Incoming stack arguments are
// automatically biased by the preserve_stack_slots field above.
calling_convention %{
// No difference between ingoing/outgoing just pass false.
SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
%}
// Body of function which returns an integer array locating
// arguments either in registers or in stack slots. Passed an array
// of ideal registers called "sig" and a "length" count. Stack-slot
// offsets are based on outgoing arguments, i.e. a CALLER setting up
// arguments for a CALLEE. Incoming stack arguments are
// automatically biased by the preserve_stack_slots field above.
c_calling_convention %{
// This is obviously always outgoing.
// C argument must be in register AND stack slot.
(void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
%}
// Location of native (C/C++) and interpreter return values. This
// is specified to be the same as Java. In the 32-bit VM, long
// values are actually returned from native calls in O0:O1 and
// returned to the interpreter in I0:I1. The copying to and from
// the register pairs is done by the appropriate call and epilog
// opcodes. This simplifies the register allocator.
//
// Use register pair for c return value.
c_return_value %{
assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values");
static int typeToRegLo[Op_RegL+1] = { 0, 0, Z_R2_num, Z_R2_num, Z_R2_num, Z_F0_num, Z_F0_num, Z_R2_num };
static int typeToRegHi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, Z_R2_H_num, OptoReg::Bad, Z_F0_H_num, Z_R2_H_num };
return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
%}
// Use register pair for return value.
// Location of compiled Java return values. Same as C
return_value %{
assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values");
static int typeToRegLo[Op_RegL+1] = { 0, 0, Z_R2_num, Z_R2_num, Z_R2_num, Z_F0_num, Z_F0_num, Z_R2_num };
static int typeToRegHi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, Z_R2_H_num, OptoReg::Bad, Z_F0_H_num, Z_R2_H_num };
return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
%}
%}
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1); // Required cost attribute
//----------Instruction Attributes---------------------------------------------
// Cost attribute. required.
ins_attrib ins_cost(DEFAULT_COST);
// Is this instruction a non-matching short branch variant of some
// long branch? Not required.
ins_attrib ins_short_branch(0);
// Indicates this is a trap based check node and final control-flow fixup
// must generate a proper fall through.
ins_attrib ins_is_TrapBasedCheckNode(true);
// Attribute of instruction to tell how many constants the instruction will generate.
// (optional attribute). Default: 0.
ins_attrib ins_num_consts(0);
// Required alignment attribute (must be a power of 2)
// specifies the alignment that some part of the instruction (not
// necessarily the start) requires. If > 1, a compute_padding()
// function must be provided for the instruction.
//
// WARNING: Don't use size(FIXED_SIZE) or size(VARIABLE_SIZE) in
// instructions which depend on the proper alignment, because the
// desired alignment isn't guaranteed for the call to "emit()" during
// the size computation.
ins_attrib ins_alignment(1);
// Enforce/prohibit rematerializations.
// - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
// then rematerialization of that instruction is prohibited and the
// instruction's value will be spilled if necessary.
// - If an instruction is attributed with 'ins_should_rematerialize(true)'
// then rematerialization is enforced and the instruction's value will
// never get spilled. a copy of the instruction will be inserted if
// necessary.
// Note: this may result in rematerializations in front of every use.
// (optional attribute)
ins_attrib ins_cannot_rematerialize(false);
ins_attrib ins_should_rematerialize(false);
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct
// parsing in the ADLC because operands constitute user defined types
// which are used in instruction definitions.
//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Please note:
// Formats are generated automatically for constants and base registers.
//----------------------------------------------
// SIGNED (shorter than INT) immediate operands
//----------------------------------------------
// Byte Immediate: constant 'int -1'
operand immB_minus1() %{
// sign-ext constant zero-ext constant
predicate((n->get_int() == -1) || ((n->get_int()&0x000000ff) == 0x000000ff));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Byte Immediate: constant, but not 'int 0' nor 'int -1'.
operand immB_n0m1() %{
// sign-ext constant zero-ext constant
predicate(n->get_int() != 0 && n->get_int() != -1 && (n->get_int()&0x000000ff) != 0x000000ff);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Short Immediate: constant 'int -1'
operand immS_minus1() %{
// sign-ext constant zero-ext constant
predicate((n->get_int() == -1) || ((n->get_int()&0x0000ffff) == 0x0000ffff));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Short Immediate: constant, but not 'int 0' nor 'int -1'.
operand immS_n0m1() %{
// sign-ext constant zero-ext constant
predicate(n->get_int() != 0 && n->get_int() != -1 && (n->get_int()&0x0000ffff) != 0x0000ffff);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//-----------------------------------------
// SIGNED INT immediate operands
//-----------------------------------------
// Integer Immediate: 32-bit
operand immI() %{
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Int Immediate: 20-bit
operand immI20() %{
predicate(Immediate::is_simm20(n->get_int()));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 16-bit
operand immI16() %{
predicate(Immediate::is_simm16(n->get_int()));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 8-bit
operand immI8() %{
predicate(Immediate::is_simm8(n->get_int()));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: constant 'int 0'
operand immI_0() %{
predicate(n->get_int() == 0);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: constant 'int -1'
operand immI_minus1() %{
predicate(n->get_int() == -1);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: constant, but not 'int 0' nor 'int -1'.
operand immI_n0m1() %{
predicate(n->get_int() != 0 && n->get_int() != -1);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//-------------------------------------------
// UNSIGNED INT immediate operands
//-------------------------------------------
// Unsigned Integer Immediate: 32-bit
operand uimmI() %{
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Integer Immediate: 16-bit
operand uimmI16() %{
predicate(Immediate::is_uimm16(n->get_int()));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Integer Immediate: 12-bit
operand uimmI12() %{
predicate(Immediate::is_uimm12(n->get_int()));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Integer Immediate: 12-bit
operand uimmI8() %{
predicate(Immediate::is_uimm8(n->get_int()));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 6-bit
operand uimmI6() %{
predicate(Immediate::is_uimm(n->get_int(), 6));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: 5-bit
operand uimmI5() %{
predicate(Immediate::is_uimm(n->get_int(), 5));
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Length for SS instructions, given in DWs,
// possible range [1..512], i.e. [8..4096] Bytes
// used range [1..256], i.e. [8..2048] Bytes
// operand type int
// Unsigned Integer Immediate: 9-bit
operand SSlenDW() %{
predicate(Immediate::is_uimm8(n->get_long()-1));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//------------------------------------------
// (UN)SIGNED INT specific values
//------------------------------------------
// Integer Immediate: the value 1
operand immI_1() %{
predicate(n->get_int() == 1);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 16.
operand immI_16() %{
predicate(n->get_int() == 16);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 24.
operand immI_24() %{
predicate(n->get_int() == 24);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the value 255
operand immI_255() %{
predicate(n->get_int() == 255);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Integer Immediate: the values 32-63
operand immI_32_63() %{
predicate(n->get_int() >= 32 && n->get_int() <= 63);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Integer Immediate: LL-part, extended by 1s.
operand uimmI_LL1() %{
predicate((n->get_int() & 0xFFFF0000) == 0xFFFF0000);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Integer Immediate: LH-part, extended by 1s.
operand uimmI_LH1() %{
predicate((n->get_int() & 0xFFFF) == 0xFFFF);
match(ConI);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//------------------------------------------
// SIGNED LONG immediate operands
//------------------------------------------
operand immL() %{
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 32-bit
operand immL32() %{
predicate(Immediate::is_simm32(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 20-bit
operand immL20() %{
predicate(Immediate::is_simm20(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 16-bit
operand immL16() %{
predicate(Immediate::is_simm16(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 8-bit
operand immL8() %{
predicate(Immediate::is_simm8(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//--------------------------------------------
// UNSIGNED LONG immediate operands
//--------------------------------------------
operand uimmL32() %{
predicate(Immediate::is_uimm32(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: 16-bit
operand uimmL16() %{
predicate(Immediate::is_uimm16(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: 12-bit
operand uimmL12() %{
predicate(Immediate::is_uimm12(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: 8-bit
operand uimmL8() %{
predicate(Immediate::is_uimm8(n->get_long()));
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//-------------------------------------------
// (UN)SIGNED LONG specific values
//-------------------------------------------
// Long Immediate: the value FF
operand immL_FF() %{
predicate(n->get_long() == 0xFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: the value FFFF
operand immL_FFFF() %{
predicate(n->get_long() == 0xFFFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: the value FFFFFFFF
operand immL_FFFFFFFF() %{
predicate(n->get_long() == 0xFFFFFFFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
operand immL_0() %{
predicate(n->get_long() == 0L);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: LL-part, extended by 1s.
operand uimmL_LL1() %{
predicate((n->get_long() & 0xFFFFFFFFFFFF0000L) == 0xFFFFFFFFFFFF0000L);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: LH-part, extended by 1s.
operand uimmL_LH1() %{
predicate((n->get_long() & 0xFFFFFFFF0000FFFFL) == 0xFFFFFFFF0000FFFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: HL-part, extended by 1s.
operand uimmL_HL1() %{
predicate((n->get_long() & 0xFFFF0000FFFFFFFFL) == 0xFFFF0000FFFFFFFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Unsigned Long Immediate: HH-part, extended by 1s.
operand uimmL_HH1() %{
predicate((n->get_long() & 0xFFFFFFFFFFFFL) == 0xFFFFFFFFFFFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: low 32-bit mask
operand immL_32bits() %{
predicate(n->get_long() == 0xFFFFFFFFL);
match(ConL);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//--------------------------------------
// POINTER immediate operands
//--------------------------------------
// Pointer Immediate: 64-bit
operand immP() %{
match(ConP);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate: 32-bit
operand immP32() %{
predicate(Immediate::is_uimm32(n->get_ptr()));
match(ConP);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate: 16-bit
operand immP16() %{
predicate(Immediate::is_uimm16(n->get_ptr()));
match(ConP);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Pointer Immediate: 8-bit
operand immP8() %{
predicate(Immediate::is_uimm8(n->get_ptr()));
match(ConP);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//-----------------------------------
// POINTER specific values
//-----------------------------------
// Pointer Immediate: NULL
operand immP0() %{
predicate(n->get_ptr() == 0);
match(ConP);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
//---------------------------------------------
// NARROW POINTER immediate operands
//---------------------------------------------
// Narrow Pointer Immediate
operand immN() %{
match(ConN);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
operand immNKlass() %{
match(ConNKlass);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Narrow Pointer Immediate
operand immN8() %{
predicate(Immediate::is_uimm8(n->get_narrowcon()));
match(ConN);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Narrow NULL Pointer Immediate
operand immN0() %{
predicate(n->get_narrowcon() == 0);
match(ConN);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// FLOAT and DOUBLE immediate operands
// Double Immediate
operand immD() %{
match(ConD);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate: +-0
operand immDpm0() %{
predicate(n->getd() == 0);
match(ConD);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Double Immediate: +0
operand immDp0() %{
predicate(jlong_cast(n->getd()) == 0);
match(ConD);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate
operand immF() %{
match(ConF);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate: +-0
operand immFpm0() %{
predicate(n->getf() == 0);
match(ConF);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// Float Immediate: +0
operand immFp0() %{
predicate(jint_cast(n->getf()) == 0);
match(ConF);
op_cost(1);
format %{ %}
interface(CONST_INTER);
%}
// End of Immediate Operands
// Integer Register Operands
// Integer Register
operand iRegI() %{
constraint(ALLOC_IN_RC(z_int_reg));
match(RegI);
match(noArg_iRegI);
match(rarg1RegI);
match(rarg2RegI);
match(rarg3RegI);
match(rarg4RegI);
match(rarg5RegI);
match(noOdd_iRegI);
match(revenRegI);
match(roddRegI);
format %{ %}
interface(REG_INTER);
%}
operand noArg_iRegI() %{
constraint(ALLOC_IN_RC(z_no_arg_int_reg));
match(RegI);
format %{ %}
interface(REG_INTER);
%}
// revenRegI and roddRegI constitute and even-odd-pair.
operand revenRegI() %{
constraint(ALLOC_IN_RC(z_rarg3_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
// revenRegI and roddRegI constitute and even-odd-pair.
operand roddRegI() %{
constraint(ALLOC_IN_RC(z_rarg4_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand rarg1RegI() %{
constraint(ALLOC_IN_RC(z_rarg1_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand rarg2RegI() %{
constraint(ALLOC_IN_RC(z_rarg2_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand rarg3RegI() %{
constraint(ALLOC_IN_RC(z_rarg3_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand rarg4RegI() %{
constraint(ALLOC_IN_RC(z_rarg4_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand rarg5RegI() %{
constraint(ALLOC_IN_RC(z_rarg5_int_reg));
match(iRegI);
format %{ %}
interface(REG_INTER);
%}
operand noOdd_iRegI() %{
constraint(ALLOC_IN_RC(z_no_odd_int_reg));
match(RegI);
match(revenRegI);
format %{ %}
interface(REG_INTER);
%}
// Pointer Register
operand iRegP() %{
constraint(ALLOC_IN_RC(z_ptr_reg));
match(RegP);
match(noArg_iRegP);
match(rarg1RegP);
match(rarg2RegP);
match(rarg3RegP);
match(rarg4RegP);
match(rarg5RegP);
match(revenRegP);
match(roddRegP);
format %{ %}
interface(REG_INTER);
%}
// thread operand
operand threadRegP() %{
constraint(ALLOC_IN_RC(z_thread_ptr_reg));
match(RegP);
format %{ "Z_THREAD" %}
interface(REG_INTER);
%}
operand noArg_iRegP() %{
constraint(ALLOC_IN_RC(z_no_arg_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand rarg1RegP() %{
constraint(ALLOC_IN_RC(z_rarg1_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand rarg2RegP() %{
constraint(ALLOC_IN_RC(z_rarg2_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand rarg3RegP() %{
constraint(ALLOC_IN_RC(z_rarg3_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand rarg4RegP() %{
constraint(ALLOC_IN_RC(z_rarg4_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand rarg5RegP() %{
constraint(ALLOC_IN_RC(z_rarg5_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand memoryRegP() %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(RegP);
match(iRegP);
match(threadRegP);
format %{ %}
interface(REG_INTER);
%}
// revenRegP and roddRegP constitute and even-odd-pair.
operand revenRegP() %{
constraint(ALLOC_IN_RC(z_rarg3_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
// revenRegP and roddRegP constitute and even-odd-pair.
operand roddRegP() %{
constraint(ALLOC_IN_RC(z_rarg4_ptr_reg));
match(iRegP);
format %{ %}
interface(REG_INTER);
%}
operand lock_ptr_RegP() %{
constraint(ALLOC_IN_RC(z_lock_ptr_reg));
match(RegP);
format %{ %}
interface(REG_INTER);
%}
operand rscratch2RegP() %{
constraint(ALLOC_IN_RC(z_rscratch2_bits64_reg));
match(RegP);
format %{ %}
interface(REG_INTER);
%}
operand iRegN() %{
constraint(ALLOC_IN_RC(z_int_reg));
match(RegN);
match(noArg_iRegN);
match(rarg1RegN);
match(rarg2RegN);
match(rarg3RegN);
match(rarg4RegN);
match(rarg5RegN);
format %{ %}
interface(REG_INTER);
%}
operand noArg_iRegN() %{
constraint(ALLOC_IN_RC(z_no_arg_int_reg));
match(iRegN);
format %{ %}
interface(REG_INTER);
%}
operand rarg1RegN() %{
constraint(ALLOC_IN_RC(z_rarg1_int_reg));
match(iRegN);
format %{ %}
interface(REG_INTER);
%}
operand rarg2RegN() %{
constraint(ALLOC_IN_RC(z_rarg2_int_reg));
match(iRegN);
format %{ %}
interface(REG_INTER);
%}
operand rarg3RegN() %{
constraint(ALLOC_IN_RC(z_rarg3_int_reg));
match(iRegN);
format %{ %}
interface(REG_INTER);
%}
operand rarg4RegN() %{
constraint(ALLOC_IN_RC(z_rarg4_int_reg));
match(iRegN);
format %{ %}
interface(REG_INTER);
%}
operand rarg5RegN() %{
constraint(ALLOC_IN_RC(z_rarg5_ptrN_reg));
match(iRegN);
format %{ %}
interface(REG_INTER);
%}
// Long Register
operand iRegL() %{
constraint(ALLOC_IN_RC(z_long_reg));
match(RegL);
match(revenRegL);
match(roddRegL);
match(rarg1RegL);
match(rarg5RegL);
format %{ %}
interface(REG_INTER);
%}
// revenRegL and roddRegL constitute and even-odd-pair.
operand revenRegL() %{
constraint(ALLOC_IN_RC(z_rarg3_long_reg));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
// revenRegL and roddRegL constitute and even-odd-pair.
operand roddRegL() %{
constraint(ALLOC_IN_RC(z_rarg4_long_reg));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
operand rarg1RegL() %{
constraint(ALLOC_IN_RC(z_rarg1_long_reg));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
operand rarg5RegL() %{
constraint(ALLOC_IN_RC(z_rarg5_long_reg));
match(iRegL);
format %{ %}
interface(REG_INTER);
%}
// Condition Code Flag Registers
operand flagsReg() %{
constraint(ALLOC_IN_RC(z_condition_reg));
match(RegFlags);
format %{ "CR" %}
interface(REG_INTER);
%}
// Condition Code Flag Registers for rules with result tuples
operand TD_flagsReg() %{
constraint(ALLOC_IN_RC(z_condition_reg));
match(RegFlags);
format %{ "CR" %}
interface(REG_TUPLE_DEST_INTER);
%}
operand regD() %{
constraint(ALLOC_IN_RC(z_dbl_reg));
match(RegD);
format %{ %}
interface(REG_INTER);
%}
operand rscratchRegD() %{
constraint(ALLOC_IN_RC(z_rscratch1_dbl_reg));
match(RegD);
format %{ %}
interface(REG_INTER);
%}
operand regF() %{
constraint(ALLOC_IN_RC(z_flt_reg));
match(RegF);
format %{ %}
interface(REG_INTER);
%}
operand rscratchRegF() %{
constraint(ALLOC_IN_RC(z_rscratch1_flt_reg));
match(RegF);
format %{ %}
interface(REG_INTER);
%}
// Special Registers
// Method Register
operand inline_cache_regP(iRegP reg) %{
constraint(ALLOC_IN_RC(z_r9_regP)); // inline_cache_reg
match(reg);
format %{ %}
interface(REG_INTER);
%}
operand compiler_method_oop_regP(iRegP reg) %{
constraint(ALLOC_IN_RC(z_r1_RegP)); // compiler_method_oop_reg
match(reg);
format %{ %}
interface(REG_INTER);
%}
operand interpreter_method_oop_regP(iRegP reg) %{
constraint(ALLOC_IN_RC(z_r9_regP)); // interpreter_method_oop_reg
match(reg);
format %{ %}
interface(REG_INTER);
%}
// Operands to remove register moves in unscaled mode.
// Match read/write registers with an EncodeP node if neither shift nor add are required.
operand iRegP2N(iRegP reg) %{
predicate(Universe::narrow_oop_shift() == 0 && _leaf->as_EncodeP()->in(0) == NULL);
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(EncodeP reg);
format %{ "$reg" %}
interface(REG_INTER)
%}
operand iRegN2P(iRegN reg) %{
predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0 &&
_leaf->as_DecodeN()->in(0) == NULL);
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(DecodeN reg);
format %{ "$reg" %}
interface(REG_INTER)
%}
//----------Complex Operands---------------------------------------------------
// Indirect Memory Reference
operand indirect(memoryRegP base) %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(base);
op_cost(1);
format %{ "#0[,$base]" %}
interface(MEMORY_INTER) %{
base($base);
index(0xffffFFFF); // noreg
scale(0x0);
disp(0x0);
%}
%}
// Indirect with Offset (long)
operand indOffset20(memoryRegP base, immL20 offset) %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP base offset);
op_cost(1);
format %{ "$offset[,$base]" %}
interface(MEMORY_INTER) %{
base($base);
index(0xffffFFFF); // noreg
scale(0x0);
disp($offset);
%}
%}
operand indOffset20Narrow(iRegN base, immL20 offset) %{
predicate(Matcher::narrow_oop_use_complex_address());
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP (DecodeN base) offset);
op_cost(1);
format %{ "$offset[,$base]" %}
interface(MEMORY_INTER) %{
base($base);
index(0xffffFFFF); // noreg
scale(0x0);
disp($offset);
%}
%}
// Indirect with Offset (short)
operand indOffset12(memoryRegP base, uimmL12 offset) %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP base offset);
op_cost(1);
format %{ "$offset[[,$base]]" %}
interface(MEMORY_INTER) %{
base($base);
index(0xffffFFFF); // noreg
scale(0x0);
disp($offset);
%}
%}
operand indOffset12Narrow(iRegN base, uimmL12 offset) %{
predicate(Matcher::narrow_oop_use_complex_address());
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP (DecodeN base) offset);
op_cost(1);
format %{ "$offset[[,$base]]" %}
interface(MEMORY_INTER) %{
base($base);
index(0xffffFFFF); // noreg
scale(0x0);
disp($offset);
%}
%}
// Indirect with Register Index
operand indIndex(memoryRegP base, iRegL index) %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP base index);
op_cost(1);
format %{ "#0[($index,$base)]" %}
interface(MEMORY_INTER) %{
base($base);
index($index);
scale(0x0);
disp(0x0);
%}
%}
// Indirect with Offset (long) and index
operand indOffset20index(memoryRegP base, immL20 offset, iRegL index) %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP (AddP base index) offset);
op_cost(1);
format %{ "$offset[($index,$base)]" %}
interface(MEMORY_INTER) %{
base($base);
index($index);
scale(0x0);
disp($offset);
%}
%}
operand indOffset20indexNarrow(iRegN base, immL20 offset, iRegL index) %{
predicate(Matcher::narrow_oop_use_complex_address());
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP (AddP (DecodeN base) index) offset);
op_cost(1);
format %{ "$offset[($index,$base)]" %}
interface(MEMORY_INTER) %{
base($base);
index($index);
scale(0x0);
disp($offset);
%}
%}
// Indirect with Offset (short) and index
operand indOffset12index(memoryRegP base, uimmL12 offset, iRegL index) %{
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP (AddP base index) offset);
op_cost(1);
format %{ "$offset[[($index,$base)]]" %}
interface(MEMORY_INTER) %{
base($base);
index($index);
scale(0x0);
disp($offset);
%}
%}
operand indOffset12indexNarrow(iRegN base, uimmL12 offset, iRegL index) %{
predicate(Matcher::narrow_oop_use_complex_address());
constraint(ALLOC_IN_RC(z_memory_ptr_reg));
match(AddP (AddP (DecodeN base) index) offset);
op_cost(1);
format %{ "$offset[[($index,$base)]]" %}
interface(MEMORY_INTER) %{
base($base);
index($index);
scale(0x0);
disp($offset);
%}
%}
//----------Special Memory Operands--------------------------------------------
// Stack Slot Operand
// This operand is used for loading and storing temporary values on
// the stack where a match requires a value to flow through memory.
operand stackSlotI(sRegI reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(1);
format %{ "[$reg(stackSlotI)]" %}
interface(MEMORY_INTER) %{
base(0xf); // Z_SP
index(0xffffFFFF); // noreg
scale(0x0);
disp($reg); // stack offset
%}
%}
operand stackSlotP(sRegP reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(1);
format %{ "[$reg(stackSlotP)]" %}
interface(MEMORY_INTER) %{
base(0xf); // Z_SP
index(0xffffFFFF); // noreg
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotF(sRegF reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(1);
format %{ "[$reg(stackSlotF)]" %}
interface(MEMORY_INTER) %{
base(0xf); // Z_SP
index(0xffffFFFF); // noreg
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotD(sRegD reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(1);
//match(RegD);
format %{ "[$reg(stackSlotD)]" %}
interface(MEMORY_INTER) %{
base(0xf); // Z_SP
index(0xffffFFFF); // noreg
scale(0x0);
disp($reg); // Stack Offset
%}
%}
operand stackSlotL(sRegL reg) %{
constraint(ALLOC_IN_RC(stack_slots));
op_cost(1); //match(RegL);
format %{ "[$reg(stackSlotL)]" %}
interface(MEMORY_INTER) %{
base(0xf); // Z_SP
index(0xffffFFFF); // noreg
scale(0x0);
disp($reg); // Stack Offset
%}
%}
// Operands for expressing Control Flow
// NOTE: Label is a predefined operand which should not be redefined in
// the AD file. It is generically handled within the ADLC.
//----------Conditional Branch Operands----------------------------------------
// Comparison Op - This is the operation of the comparison, and is limited to
// the following set of codes:
// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
//
// Other attributes of the comparison, such as unsignedness, are specified
// by the comparison instruction that sets a condition code flags register.
// That result is represented by a flags operand whose subtype is appropriate
// to the unsignedness (etc.) of the comparison.
//
// Later, the instruction which matches both the Comparison Op (a Bool) and
// the flags (produced by the Cmp) specifies the coding of the comparison op
// by matching a specific subtype of Bool operand below.
// INT cmpOps for CompareAndBranch and CompareAndTrap instructions should not
// have mask bit #3 set.
operand cmpOpT() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x8); // Assembler::bcondEqual
not_equal(0x6); // Assembler::bcondNotEqual
less(0x4); // Assembler::bcondLow
greater_equal(0xa); // Assembler::bcondNotLow
less_equal(0xc); // Assembler::bcondNotHigh
greater(0x2); // Assembler::bcondHigh
overflow(0x1); // Assembler::bcondOverflow
no_overflow(0xe); // Assembler::bcondNotOverflow
%}
%}
// When used for floating point comparisons: unordered is treated as less.
operand cmpOpF() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x8);
not_equal(0x7); // Includes 'unordered'.
less(0x5); // Includes 'unordered'.
greater_equal(0xa);
less_equal(0xd); // Includes 'unordered'.
greater(0x2);
overflow(0x0); // Not meaningful on z/Architecture.
no_overflow(0x0); // leave unchanged (zero) therefore
%}
%}
// "Regular" cmpOp for int comparisons, includes bit #3 (overflow).
operand cmpOp() %{
match(Bool);
format %{ "" %}
interface(COND_INTER) %{
equal(0x8);
not_equal(0x7); // Includes 'unordered'.
less(0x5); // Includes 'unordered'.
greater_equal(0xa);
less_equal(0xd); // Includes 'unordered'.
greater(0x2);
overflow(0x1); // Assembler::bcondOverflow
no_overflow(0xe); // Assembler::bcondNotOverflow
%}
%}
//----------OPERAND CLASSES----------------------------------------------------
// Operand Classes are groups of operands that are used to simplify
// instruction definitions by not requiring the AD writer to specify
// seperate instructions for every form of operand when the
// instruction accepts multiple operand types with the same basic
// encoding and format. The classic case of this is memory operands.
// Indirect is not included since its use is limited to Compare & Swap
// Most general memory operand, allows base, index, and long displacement.
opclass memory(indirect, indIndex, indOffset20, indOffset20Narrow, indOffset20index, indOffset20indexNarrow);
opclass memoryRXY(indirect, indIndex, indOffset20, indOffset20Narrow, indOffset20index, indOffset20indexNarrow);
// General memory operand, allows base, index, and short displacement.
opclass memoryRX(indirect, indIndex, indOffset12, indOffset12Narrow, indOffset12index, indOffset12indexNarrow);
// Memory operand, allows only base and long displacement.
opclass memoryRSY(indirect, indOffset20, indOffset20Narrow);
// Memory operand, allows only base and short displacement.
opclass memoryRS(indirect, indOffset12, indOffset12Narrow);
// Operand classes to match encode and decode.
opclass iRegN_P2N(iRegN);
opclass iRegP_N2P(iRegP);
//----------PIPELINE-----------------------------------------------------------
pipeline %{
//----------ATTRIBUTES---------------------------------------------------------
attributes %{
// z/Architecture instructions are of length 2, 4, or 6 bytes.
variable_size_instructions;
instruction_unit_size = 2;
// Meaningless on z/Architecture.
max_instructions_per_bundle = 1;
// The z/Architecture processor fetches 64 bytes...
instruction_fetch_unit_size = 64;
// ...in one line.
instruction_fetch_units = 1
%}
//----------RESOURCES----------------------------------------------------------
// Resources are the functional units available to the machine.
resources(
Z_BR, // branch unit
Z_CR, // condition unit
Z_FX1, // integer arithmetic unit 1
Z_FX2, // integer arithmetic unit 2
Z_LDST1, // load/store unit 1
Z_LDST2, // load/store unit 2
Z_FP1, // float arithmetic unit 1
Z_FP2, // float arithmetic unit 2
Z_LDST = Z_LDST1 | Z_LDST2,
Z_FX = Z_FX1 | Z_FX2,
Z_FP = Z_FP1 | Z_FP2
);
//----------PIPELINE DESCRIPTION-----------------------------------------------
// Pipeline Description specifies the stages in the machine's pipeline.
pipe_desc(
// TODO: adapt
Z_IF, // instruction fetch
Z_IC,
Z_D0, // decode
Z_D1, // decode
Z_D2, // decode
Z_D3, // decode
Z_Xfer1,
Z_GD, // group definition
Z_MP, // map
Z_ISS, // issue
Z_RF, // resource fetch
Z_EX1, // execute (all units)
Z_EX2, // execute (FP, LDST)
Z_EX3, // execute (FP, LDST)
Z_EX4, // execute (FP)
Z_EX5, // execute (FP)
Z_EX6, // execute (FP)
Z_WB, // write back
Z_Xfer2,
Z_CP
);
//----------PIPELINE CLASSES---------------------------------------------------
// Pipeline Classes describe the stages in which input and output are
// referenced by the hardware pipeline.
// Providing the `ins_pipe' declarations in the instruction
// specifications seems to be of little use. So we use
// `pipe_class_dummy' for all our instructions at present.
pipe_class pipe_class_dummy() %{
single_instruction;
fixed_latency(4);
%}
// SIGTRAP based implicit range checks in compiled code.
// Currently, no pipe classes are used on z/Architecture.
pipe_class pipe_class_trap() %{
single_instruction;
%}
pipe_class pipe_class_fx_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
single_instruction;
dst : Z_EX1(write);
src1 : Z_RF(read);
src2 : Z_RF(read);
Z_FX : Z_RF;
%}
pipe_class pipe_class_ldst(iRegP dst, memory mem) %{
single_instruction;
mem : Z_RF(read);
dst : Z_WB(write);
Z_LDST : Z_RF;
%}
define %{
MachNop = pipe_class_dummy;
%}
%}
//----------INSTRUCTIONS-------------------------------------------------------
//---------- Chain stack slots between similar types --------
// Load integer from stack slot.
instruct stkI_to_regI(iRegI dst, stackSlotI src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "L $dst,$src\t # stk reload int" %}
opcode(L_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Store integer to stack slot.
instruct regI_to_stkI(stackSlotI dst, iRegI src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "ST $src,$dst\t # stk spill int" %}
opcode(ST_ZOPC);
ins_encode(z_form_rt_mem(src, dst)); // rs=rt
ins_pipe(pipe_class_dummy);
%}
// Load long from stack slot.
instruct stkL_to_regL(iRegL dst, stackSlotL src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LG $dst,$src\t # stk reload long" %}
opcode(LG_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Store long to stack slot.
instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "STG $src,$dst\t # stk spill long" %}
opcode(STG_ZOPC);
ins_encode(z_form_rt_mem(src, dst)); // rs=rt
ins_pipe(pipe_class_dummy);
%}
// Load pointer from stack slot, 64-bit encoding.
instruct stkP_to_regP(iRegP dst, stackSlotP src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LG $dst,$src\t # stk reload ptr" %}
opcode(LG_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Store pointer to stack slot.
instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "STG $src,$dst\t # stk spill ptr" %}
opcode(STG_ZOPC);
ins_encode(z_form_rt_mem(src, dst)); // rs=rt
ins_pipe(pipe_class_dummy);
%}
// Float types
// Load float value from stack slot.
instruct stkF_to_regF(regF dst, stackSlotF src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LE(Y) $dst,$src\t # stk reload float" %}
opcode(LE_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Store float value to stack slot.
instruct regF_to_stkF(stackSlotF dst, regF src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STE(Y) $src,$dst\t # stk spill float" %}
opcode(STE_ZOPC);
ins_encode(z_form_rt_mem(src, dst));
ins_pipe(pipe_class_dummy);
%}
// Load double value from stack slot.
instruct stkD_to_regD(regD dst, stackSlotD src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LD(Y) $dst,$src\t # stk reload double" %}
opcode(LD_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Store double value to stack slot.
instruct regD_to_stkD(stackSlotD dst, regD src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STD(Y) $src,$dst\t # stk spill double" %}
opcode(STD_ZOPC);
ins_encode(z_form_rt_mem(src, dst));
ins_pipe(pipe_class_dummy);
%}
//----------Load/Store/Move Instructions---------------------------------------
//----------Load Instructions--------------------------------------------------
//------------------
// MEMORY
//------------------
// BYTE
// Load Byte (8bit signed)
instruct loadB(iRegI dst, memory mem) %{
match(Set dst (LoadB mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LB $dst, $mem\t # sign-extend byte to int" %}
opcode(LB_ZOPC, LB_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Byte (8bit signed)
instruct loadB2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadB mem)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LGB $dst, $mem\t # sign-extend byte to long" %}
opcode(LGB_ZOPC, LGB_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Unsigned Byte (8bit UNsigned) into an int reg.
instruct loadUB(iRegI dst, memory mem) %{
match(Set dst (LoadUB mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LLGC $dst,$mem\t # zero-extend byte to int" %}
opcode(LLGC_ZOPC, LLGC_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Unsigned Byte (8bit UNsigned) into a Long Register.
instruct loadUB2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadUB mem)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LLGC $dst,$mem\t # zero-extend byte to long" %}
opcode(LLGC_ZOPC, LLGC_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// CHAR/SHORT
// Load Short (16bit signed)
instruct loadS(iRegI dst, memory mem) %{
match(Set dst (LoadS mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "LH(Y) $dst,$mem\t # sign-extend short to int" %}
opcode(LHY_ZOPC, LH_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Short (16bit signed)
instruct loadS2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadS mem)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LGH $dst,$mem\t # sign-extend short to long" %}
opcode(LGH_ZOPC, LGH_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Char (16bit Unsigned)
instruct loadUS(iRegI dst, memory mem) %{
match(Set dst (LoadUS mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LLGH $dst,$mem\t # zero-extend short to int" %}
opcode(LLGH_ZOPC, LLGH_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
instruct loadUS2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadUS mem)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LLGH $dst,$mem\t # zero-extend short to long" %}
opcode(LLGH_ZOPC, LLGH_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// INT
// Load Integer
instruct loadI(iRegI dst, memory mem) %{
match(Set dst (LoadI mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "L(Y) $dst,$mem\t #" %}
opcode(LY_ZOPC, L_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load and convert to long.
instruct loadI2L(iRegL dst, memory mem) %{
match(Set dst (ConvI2L (LoadI mem)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LGF $dst,$mem\t #" %}
opcode(LGF_ZOPC, LGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Unsigned Integer into a Long Register
instruct loadUI2L(iRegL dst, memory mem, immL_FFFFFFFF mask) %{
match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LLGF $dst,$mem\t # zero-extend int to long" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// range = array length (=jint)
// Load Range
instruct loadRange(iRegI dst, memory mem) %{
match(Set dst (LoadRange mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "L(Y) $dst,$mem\t # range" %}
opcode(LY_ZOPC, L_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// LONG
// Load Long - aligned
instruct loadL(iRegL dst, memory mem) %{
match(Set dst (LoadL mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LG $dst,$mem\t # long" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Long - UNaligned
instruct loadL_unaligned(iRegL dst, memory mem) %{
match(Set dst (LoadL_unaligned mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LG $dst,$mem\t # unaligned long" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// PTR
// Load Pointer
instruct loadP(iRegP dst, memory mem) %{
match(Set dst (LoadP mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LG $dst,$mem\t # ptr" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// LoadP + CastP2L
instruct castP2X_loadP(iRegL dst, memory mem) %{
match(Set dst (CastP2X (LoadP mem)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LG $dst,$mem\t # ptr + p2x" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Klass Pointer
instruct loadKlass(iRegP dst, memory mem) %{
match(Set dst (LoadKlass mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LG $dst,$mem\t # klass ptr" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
instruct loadTOC(iRegL dst) %{
effect(DEF dst);
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
// TODO: check why this attribute causes many unnecessary rematerializations.
//
// The graphs I saw just had high register pressure. Further the
// register TOC is loaded to is overwritten by the constant short
// after. Here something as round robin register allocation might
// help. But rematerializing seems not to hurt, jack even seems to
// improve slightly.
//
// Without this flag we get spill-split recycle sanity check
// failures in
// spec.benchmarks._228_jack.NfaState::GenerateCode. This happens in
// a block with three loadConP_dynTOC nodes and a tlsLoadP. The
// tlsLoadP has a huge amount of outs and forces the TOC down to the
// stack. Later tlsLoadP is rematerialized, leaving the register
// allocator with TOC on the stack and a badly placed reload.
ins_should_rematerialize(true);
format %{ "LARL $dst, &constant_pool\t; load dynTOC" %}
ins_encode %{ __ load_toc($dst$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// FLOAT
// Load Float
instruct loadF(regF dst, memory mem) %{
match(Set dst (LoadF mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "LE(Y) $dst,$mem" %}
opcode(LEY_ZOPC, LE_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// DOUBLE
// Load Double
instruct loadD(regD dst, memory mem) %{
match(Set dst (LoadD mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "LD(Y) $dst,$mem" %}
opcode(LDY_ZOPC, LD_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load Double - UNaligned
instruct loadD_unaligned(regD dst, memory mem) %{
match(Set dst (LoadD_unaligned mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "LD(Y) $dst,$mem" %}
opcode(LDY_ZOPC, LD_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
//----------------------
// IMMEDIATES
//----------------------
instruct loadConI(iRegI dst, immI src) %{
match(Set dst src);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LGFI $dst,$src\t # (int)" %}
ins_encode %{ __ z_lgfi($dst$$Register, $src$$constant); %} // Sign-extend to 64 bit, it's at no cost.
ins_pipe(pipe_class_dummy);
%}
instruct loadConI16(iRegI dst, immI16 src) %{
match(Set dst src);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LGHI $dst,$src\t # (int)" %}
ins_encode %{ __ z_lghi($dst$$Register, $src$$constant); %} // Sign-extend to 64 bit, it's at no cost.
ins_pipe(pipe_class_dummy);
%}
instruct loadConI_0(iRegI dst, immI_0 src, flagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "loadConI $dst,$src\t # (int) XGR because ZERO is loaded" %}
opcode(XGR_ZOPC);
ins_encode(z_rreform(dst, dst));
ins_pipe(pipe_class_dummy);
%}
instruct loadConUI16(iRegI dst, uimmI16 src) %{
match(Set dst src);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LLILL $dst,$src" %}
opcode(LLILL_ZOPC);
ins_encode(z_riform_unsigned(dst, src) );
ins_pipe(pipe_class_dummy);
%}
// Load long constant from TOC with pcrelative address.
instruct loadConL_pcrelTOC(iRegL dst, immL src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST_LO);
size(6);
format %{ "LGRL $dst,[pcrelTOC]\t # load long $src from table" %}
ins_encode %{
address long_address = __ long_constant($src$$constant);
if (long_address == NULL) {
Compile::current()->env()->record_out_of_memory_failure();
return;
}
__ load_long_pcrelative($dst$$Register, long_address);
%}
ins_pipe(pipe_class_dummy);
%}
instruct loadConL32(iRegL dst, immL32 src) %{
match(Set dst src);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LGFI $dst,$src\t # (long)" %}
ins_encode %{ __ z_lgfi($dst$$Register, $src$$constant); %} // Sign-extend to 64 bit, it's at no cost.
ins_pipe(pipe_class_dummy);
%}
instruct loadConL16(iRegL dst, immL16 src) %{
match(Set dst src);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LGHI $dst,$src\t # (long)" %}
ins_encode %{ __ z_lghi($dst$$Register, $src$$constant); %} // Sign-extend to 64 bit, it's at no cost.
ins_pipe(pipe_class_dummy);
%}
instruct loadConL_0(iRegL dst, immL_0 src, flagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(DEFAULT_COST_LOW);
format %{ "LoadConL $dst,$src\t # (long) XGR because ZERO is loaded" %}
opcode(XGR_ZOPC);
ins_encode(z_rreform(dst, dst));
ins_pipe(pipe_class_dummy);
%}
// Load ptr constant from TOC with pc relative address.
// Special handling for oop constants required.
instruct loadConP_pcrelTOC(iRegP dst, immP src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST_LO);
size(6);
format %{ "LGRL $dst,[pcrelTOC]\t # load ptr $src from table" %}
ins_encode %{
relocInfo::relocType constant_reloc = $src->constant_reloc();
if (constant_reloc == relocInfo::oop_type) {
AddressLiteral a = __ allocate_oop_address((jobject)$src$$constant);
bool success = __ load_oop_from_toc($dst$$Register, a);
if (!success) {
Compile::current()->env()->record_out_of_memory_failure();
return;
}
} else if (constant_reloc == relocInfo::metadata_type) {
AddressLiteral a = __ constant_metadata_address((Metadata *)$src$$constant);
address const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
if (const_toc_addr == NULL) {
Compile::current()->env()->record_out_of_memory_failure();
return;
}
__ load_long_pcrelative($dst$$Register, const_toc_addr);
} else { // Non-oop pointers, e.g. card mark base, heap top.
address long_address = __ long_constant((jlong)$src$$constant);
if (long_address == NULL) {
Compile::current()->env()->record_out_of_memory_failure();
return;
}
__ load_long_pcrelative($dst$$Register, long_address);
}
%}
ins_pipe(pipe_class_dummy);
%}
// We don't use immP16 to avoid problems with oops.
instruct loadConP0(iRegP dst, immP0 src, flagsReg cr) %{
match(Set dst src);
effect(KILL cr);
size(4);
format %{ "XGR $dst,$dst\t # NULL ptr" %}
opcode(XGR_ZOPC);
ins_encode(z_rreform(dst, dst));
ins_pipe(pipe_class_dummy);
%}
//----------Load Float Constant Instructions-------------------------------------------------
// We may not specify this instruction via an `expand' rule. If we do,
// code selection will forget that this instruction needs a floating
// point constant inserted into the code buffer. So `Shorten_branches'
// will fail.
instruct loadConF_dynTOC(regF dst, immF src, flagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(6);
// If this instruction rematerializes, it prolongs the live range
// of the toc node, causing illegal graphs.
ins_cannot_rematerialize(true);
format %{ "LE(Y) $dst,$constantoffset[,$constanttablebase]\t # load FLOAT $src from table" %}
ins_encode %{
__ load_float_largeoffset($dst$$FloatRegister, $constantoffset($src), $constanttablebase, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// E may not specify this instruction via an `expand' rule. If we do,
// code selection will forget that this instruction needs a floating
// point constant inserted into the code buffer. So `Shorten_branches'
// will fail.
instruct loadConD_dynTOC(regD dst, immD src, flagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(6);
// If this instruction rematerializes, it prolongs the live range
// of the toc node, causing illegal graphs.
ins_cannot_rematerialize(true);
format %{ "LD(Y) $dst,$constantoffset[,$constanttablebase]\t # load DOUBLE $src from table" %}
ins_encode %{
__ load_double_largeoffset($dst$$FloatRegister, $constantoffset($src), $constanttablebase, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// Special case: Load Const 0.0F
// There's a special instr to clear a FP register.
instruct loadConF0(regF dst, immFp0 src) %{
match(Set dst src);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LZER $dst,$src\t # clear to zero" %}
opcode(LZER_ZOPC);
ins_encode(z_rreform(dst, Z_F0));
ins_pipe(pipe_class_dummy);
%}
// There's a special instr to clear a FP register.
instruct loadConD0(regD dst, immDp0 src) %{
match(Set dst src);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LZDR $dst,$src\t # clear to zero" %}
opcode(LZDR_ZOPC);
ins_encode(z_rreform(dst, Z_F0));
ins_pipe(pipe_class_dummy);
%}
//----------Store Instructions-------------------------------------------------
// BYTE
// Store Byte
instruct storeB(memory mem, iRegI src) %{
match(Set mem (StoreB mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "STC(Y) $src,$mem\t # byte" %}
opcode(STCY_ZOPC, STC_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
instruct storeCM(memory mem, immI_0 src) %{
match(Set mem (StoreCM mem src));
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "STC(Y) $src,$mem\t # CMS card-mark byte (must be 0!)" %}
ins_encode %{
guarantee($mem$$index$$Register != Z_R0, "content will not be used.");
if ($mem$$index$$Register != noreg) {
// Can't use clear_mem --> load const zero and store character.
__ load_const_optimized(Z_R0_scratch, (long)0);
if (Immediate::is_uimm12($mem$$disp)) {
__ z_stc(Z_R0_scratch, $mem$$Address);
} else {
__ z_stcy(Z_R0_scratch, $mem$$Address);
}
} else {
__ clear_mem(Address($mem$$Address), 1);
}
%}
ins_pipe(pipe_class_dummy);
%}
// CHAR/SHORT
// Store Char/Short
instruct storeC(memory mem, iRegI src) %{
match(Set mem (StoreC mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "STH(Y) $src,$mem\t # short" %}
opcode(STHY_ZOPC, STH_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// INT
// Store Integer
instruct storeI(memory mem, iRegI src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "ST(Y) $src,$mem\t # int" %}
opcode(STY_ZOPC, ST_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// LONG
// Store Long
instruct storeL(memory mem, iRegL src) %{
match(Set mem (StoreL mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "STG $src,$mem\t # long" %}
opcode(STG_ZOPC, STG_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// PTR
// Store Pointer
instruct storeP(memory dst, memoryRegP src) %{
match(Set dst (StoreP dst src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "STG $src,$dst\t # ptr" %}
opcode(STG_ZOPC, STG_ZOPC);
ins_encode(z_form_rt_mem_opt(src, dst));
ins_pipe(pipe_class_dummy);
%}
// FLOAT
// Store Float
instruct storeF(memory mem, regF src) %{
match(Set mem (StoreF mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "STE(Y) $src,$mem\t # float" %}
opcode(STEY_ZOPC, STE_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// DOUBLE
// Store Double
instruct storeD(memory mem, regD src) %{
match(Set mem (StoreD mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "STD(Y) $src,$mem\t # double" %}
opcode(STDY_ZOPC, STD_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// Prefetch instructions. Must be safe to execute with invalid address (cannot fault).
// Should support match rule for PrefetchAllocation.
// Still needed after 8068977 for PrefetchAllocate.
instruct prefetchAlloc(memory mem) %{
match(PrefetchAllocation mem);
predicate(VM_Version::has_Prefetch());
ins_cost(DEFAULT_COST);
format %{ "PREFETCH 2, $mem\t # Prefetch allocation, z10 only" %}
ins_encode %{ __ z_pfd(0x02, $mem$$Address); %}
ins_pipe(pipe_class_dummy);
%}
//----------Memory init instructions------------------------------------------
// Move Immediate to 1-byte memory.
instruct memInitB(memoryRSY mem, immI8 src) %{
match(Set mem (StoreB mem src));
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MVI $mem,$src\t # direct mem init 1" %}
ins_encode %{
if (Immediate::is_uimm12((long)$mem$$disp)) {
__ z_mvi($mem$$Address, $src$$constant);
} else {
__ z_mviy($mem$$Address, $src$$constant);
}
%}
ins_pipe(pipe_class_dummy);
%}
// Move Immediate to 2-byte memory.
instruct memInitC(memoryRS mem, immI16 src) %{
match(Set mem (StoreC mem src));
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "MVHHI $mem,$src\t # direct mem init 2" %}
opcode(MVHHI_ZOPC);
ins_encode(z_silform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// Move Immediate to 4-byte memory.
instruct memInitI(memoryRS mem, immI16 src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "MVHI $mem,$src\t # direct mem init 4" %}
opcode(MVHI_ZOPC);
ins_encode(z_silform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// Move Immediate to 8-byte memory.
instruct memInitL(memoryRS mem, immL16 src) %{
match(Set mem (StoreL mem src));
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "MVGHI $mem,$src\t # direct mem init 8" %}
opcode(MVGHI_ZOPC);
ins_encode(z_silform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// Move Immediate to 8-byte memory.
instruct memInitP(memoryRS mem, immP16 src) %{
match(Set mem (StoreP mem src));
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "MVGHI $mem,$src\t # direct mem init 8" %}
opcode(MVGHI_ZOPC);
ins_encode(z_silform(mem, src));
ins_pipe(pipe_class_dummy);
%}
//----------Instructions for compressed pointers (cOop and NKlass)-------------
// See cOop encoding classes for elaborate comment.
// Moved here because it is needed in expand rules for encode.
// Long negation.
instruct negL_reg_reg(iRegL dst, immL_0 zero, iRegL src, flagsReg cr) %{
match(Set dst (SubL zero src));
effect(KILL cr);
size(4);
format %{ "NEG $dst, $src\t # long" %}
ins_encode %{ __ z_lcgr($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Load Compressed Pointer
// Load narrow oop
instruct loadN(iRegN dst, memory mem) %{
match(Set dst (LoadN mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LoadN $dst,$mem\t# (cOop)" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load narrow Klass Pointer
instruct loadNKlass(iRegN dst, memory mem) %{
match(Set dst (LoadNKlass mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LoadNKlass $dst,$mem\t# (klass cOop)" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Load constant Compressed Pointer
instruct loadConN(iRegN dst, immN src) %{
match(Set dst src);
ins_cost(DEFAULT_COST);
size(6);
format %{ "loadConN $dst,$src\t # (cOop)" %}
ins_encode %{
AddressLiteral cOop = __ constant_oop_address((jobject)$src$$constant);
__ relocate(cOop.rspec(), 1);
__ load_narrow_oop($dst$$Register, (narrowOop)cOop.value());
%}
ins_pipe(pipe_class_dummy);
%}
instruct loadConN0(iRegN dst, immN0 src, flagsReg cr) %{
match(Set dst src);
effect(KILL cr);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "loadConN $dst,$src\t # (cOop) XGR because ZERO is loaded" %}
opcode(XGR_ZOPC);
ins_encode(z_rreform(dst, dst));
ins_pipe(pipe_class_dummy);
%}
instruct loadConNKlass(iRegN dst, immNKlass src) %{
match(Set dst src);
ins_cost(DEFAULT_COST);
size(6);
format %{ "loadConNKlass $dst,$src\t # (cKlass)" %}
ins_encode %{
AddressLiteral NKlass = __ constant_metadata_address((Metadata*)$src$$constant);
__ relocate(NKlass.rspec(), 1);
__ load_narrow_klass($dst$$Register, (Klass*)NKlass.value());
%}
ins_pipe(pipe_class_dummy);
%}
// Load and Decode Compressed Pointer
// optimized variants for Unscaled cOops
instruct decodeLoadN(iRegP dst, memory mem) %{
match(Set dst (DecodeN (LoadN mem)));
predicate(false && (Universe::narrow_oop_base()==NULL)&&(Universe::narrow_oop_shift()==0));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "DecodeLoadN $dst,$mem\t# (cOop Load+Decode)" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
instruct decodeLoadNKlass(iRegP dst, memory mem) %{
match(Set dst (DecodeNKlass (LoadNKlass mem)));
predicate(false && (Universe::narrow_klass_base()==NULL)&&(Universe::narrow_klass_shift()==0));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "DecodeLoadNKlass $dst,$mem\t# (load/decode NKlass)" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
instruct decodeLoadConNKlass(iRegP dst, immNKlass src) %{
match(Set dst (DecodeNKlass src));
ins_cost(3 * DEFAULT_COST);
size(12);
format %{ "DecodeLoadConNKlass $dst,$src\t # decode(cKlass)" %}
ins_encode %{
AddressLiteral NKlass = __ constant_metadata_address((Metadata*)$src$$constant);
__ relocate(NKlass.rspec(), 1);
__ load_const($dst$$Register, (Klass*)NKlass.value());
%}
ins_pipe(pipe_class_dummy);
%}
// Decode Compressed Pointer
// General decoder
instruct decodeN(iRegP dst, iRegN src, flagsReg cr) %{
match(Set dst (DecodeN src));
effect(KILL cr);
predicate(Universe::narrow_oop_base() == NULL || !ExpandLoadingBaseDecode);
ins_cost(MEMORY_REF_COST+3 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "decodeN $dst,$src\t# (decode cOop)" %}
ins_encode %{ __ oop_decoder($dst$$Register, $src$$Register, true); %}
ins_pipe(pipe_class_dummy);
%}
// General Klass decoder
instruct decodeKlass(iRegP dst, iRegN src, flagsReg cr) %{
match(Set dst (DecodeNKlass src));
effect(KILL cr);
ins_cost(3 * DEFAULT_COST);
format %{ "decode_klass $dst,$src" %}
ins_encode %{ __ decode_klass_not_null($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// General decoder
instruct decodeN_NN(iRegP dst, iRegN src, flagsReg cr) %{
match(Set dst (DecodeN src));
effect(KILL cr);
predicate((n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull ||
n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
(Universe::narrow_oop_base()== NULL || !ExpandLoadingBaseDecode_NN));
ins_cost(MEMORY_REF_COST+2 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "decodeN $dst,$src\t# (decode cOop NN)" %}
ins_encode %{ __ oop_decoder($dst$$Register, $src$$Register, false); %}
ins_pipe(pipe_class_dummy);
%}
instruct loadBase(iRegL dst, immL baseImm) %{
effect(DEF dst, USE baseImm);
predicate(false);
format %{ "llihl $dst=$baseImm \t// load heap base" %}
ins_encode %{ __ get_oop_base($dst$$Register, $baseImm$$constant); %}
ins_pipe(pipe_class_dummy);
%}
// Decoder for heapbased mode peeling off loading the base.
instruct decodeN_base(iRegP dst, iRegN src, iRegL base, flagsReg cr) %{
match(Set dst (DecodeN src base));
// Note: Effect TEMP dst was used with the intention to get
// different regs for dst and base, but this has caused ADLC to
// generate wrong code. Oop_decoder generates additional lgr when
// dst==base.
effect(KILL cr);
predicate(false);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "decodeN $dst = ($src == 0) ? NULL : ($src << 3) + $base + pow2_offset\t# (decode cOop)" %}
ins_encode %{
__ oop_decoder($dst$$Register, $src$$Register, true, $base$$Register,
(jlong)MacroAssembler::get_oop_base_pow2_offset((uint64_t)(intptr_t)Universe::narrow_oop_base()));
%}
ins_pipe(pipe_class_dummy);
%}
// Decoder for heapbased mode peeling off loading the base.
instruct decodeN_NN_base(iRegP dst, iRegN src, iRegL base, flagsReg cr) %{
match(Set dst (DecodeN src base));
effect(KILL cr);
predicate(false);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "decodeN $dst = ($src << 3) + $base + pow2_offset\t# (decode cOop)" %}
ins_encode %{
__ oop_decoder($dst$$Register, $src$$Register, false, $base$$Register,
(jlong)MacroAssembler::get_oop_base_pow2_offset((uint64_t)(intptr_t)Universe::narrow_oop_base()));
%}
ins_pipe(pipe_class_dummy);
%}
// Decoder for heapbased mode peeling off loading the base.
instruct decodeN_Ex(iRegP dst, iRegN src, flagsReg cr) %{
match(Set dst (DecodeN src));
predicate(Universe::narrow_oop_base() != NULL && ExpandLoadingBaseDecode);
ins_cost(MEMORY_REF_COST+3 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
expand %{
immL baseImm %{ (jlong)(intptr_t)Universe::narrow_oop_base() %}
iRegL base;
loadBase(base, baseImm);
decodeN_base(dst, src, base, cr);
%}
%}
// Decoder for heapbased mode peeling off loading the base.
instruct decodeN_NN_Ex(iRegP dst, iRegN src, flagsReg cr) %{
match(Set dst (DecodeN src));
predicate((n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull ||
n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
Universe::narrow_oop_base() != NULL && ExpandLoadingBaseDecode_NN);
ins_cost(MEMORY_REF_COST+2 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
expand %{
immL baseImm %{ (jlong)(intptr_t)Universe::narrow_oop_base() %}
iRegL base;
loadBase(base, baseImm);
decodeN_NN_base(dst, src, base, cr);
%}
%}
// Encode Compressed Pointer
// General encoder
instruct encodeP(iRegN dst, iRegP src, flagsReg cr) %{
match(Set dst (EncodeP src));
effect(KILL cr);
predicate((n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull) &&
(Universe::narrow_oop_base() == 0 ||
Universe::narrow_oop_base_disjoint() ||
!ExpandLoadingBaseEncode));
ins_cost(MEMORY_REF_COST+3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "encodeP $dst,$src\t# (encode cOop)" %}
ins_encode %{ __ oop_encoder($dst$$Register, $src$$Register, true, Z_R1_scratch, -1, all_outs_are_Stores(this)); %}
ins_pipe(pipe_class_dummy);
%}
// General class encoder
instruct encodeKlass(iRegN dst, iRegP src, flagsReg cr) %{
match(Set dst (EncodePKlass src));
effect(KILL cr);
format %{ "encode_klass $dst,$src" %}
ins_encode %{ __ encode_klass_not_null($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
instruct encodeP_NN(iRegN dst, iRegP src, flagsReg cr) %{
match(Set dst (EncodeP src));
effect(KILL cr);
predicate((n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull) &&
(Universe::narrow_oop_base() == 0 ||
Universe::narrow_oop_base_disjoint() ||
!ExpandLoadingBaseEncode_NN));
ins_cost(MEMORY_REF_COST+3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "encodeP $dst,$src\t# (encode cOop)" %}
ins_encode %{ __ oop_encoder($dst$$Register, $src$$Register, false, Z_R1_scratch, -1, all_outs_are_Stores(this)); %}
ins_pipe(pipe_class_dummy);
%}
// Encoder for heapbased mode peeling off loading the base.
instruct encodeP_base(iRegN dst, iRegP src, iRegL base) %{
match(Set dst (EncodeP src (Binary base dst)));
effect(TEMP_DEF dst);
predicate(false);
ins_cost(MEMORY_REF_COST+2 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "encodeP $dst = ($src>>3) +$base + pow2_offset\t# (encode cOop)" %}
ins_encode %{
jlong offset = -(jlong)MacroAssembler::get_oop_base_pow2_offset
(((uint64_t)(intptr_t)Universe::narrow_oop_base()) >> Universe::narrow_oop_shift());
__ oop_encoder($dst$$Register, $src$$Register, true, $base$$Register, offset);
%}
ins_pipe(pipe_class_dummy);
%}
// Encoder for heapbased mode peeling off loading the base.
instruct encodeP_NN_base(iRegN dst, iRegP src, iRegL base, immL pow2_offset) %{
match(Set dst (EncodeP src base));
effect(USE pow2_offset);
predicate(false);
ins_cost(MEMORY_REF_COST+2 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "encodeP $dst = ($src>>3) +$base + $pow2_offset\t# (encode cOop)" %}
ins_encode %{ __ oop_encoder($dst$$Register, $src$$Register, false, $base$$Register, $pow2_offset$$constant); %}
ins_pipe(pipe_class_dummy);
%}
// Encoder for heapbased mode peeling off loading the base.
instruct encodeP_Ex(iRegN dst, iRegP src, flagsReg cr) %{
match(Set dst (EncodeP src));
effect(KILL cr);
predicate((n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull) &&
(Universe::narrow_oop_base_overlaps() && ExpandLoadingBaseEncode));
ins_cost(MEMORY_REF_COST+3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
expand %{
immL baseImm %{ ((jlong)(intptr_t)Universe::narrow_oop_base()) >> Universe::narrow_oop_shift() %}
immL_0 zero %{ (0) %}
flagsReg ccr;
iRegL base;
iRegL negBase;
loadBase(base, baseImm);
negL_reg_reg(negBase, zero, base, ccr);
encodeP_base(dst, src, negBase);
%}
%}
// Encoder for heapbased mode peeling off loading the base.
instruct encodeP_NN_Ex(iRegN dst, iRegP src, flagsReg cr) %{
match(Set dst (EncodeP src));
effect(KILL cr);
predicate((n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull) &&
(Universe::narrow_oop_base_overlaps() && ExpandLoadingBaseEncode_NN));
ins_cost(MEMORY_REF_COST+3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
expand %{
immL baseImm %{ (jlong)(intptr_t)Universe::narrow_oop_base() %}
immL pow2_offset %{ -(jlong)MacroAssembler::get_oop_base_pow2_offset(((uint64_t)(intptr_t)Universe::narrow_oop_base())) %}
immL_0 zero %{ 0 %}
flagsReg ccr;
iRegL base;
iRegL negBase;
loadBase(base, baseImm);
negL_reg_reg(negBase, zero, base, ccr);
encodeP_NN_base(dst, src, negBase, pow2_offset);
%}
%}
// Store Compressed Pointer
// Store Compressed Pointer
instruct storeN(memory mem, iRegN_P2N src) %{
match(Set mem (StoreN mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "ST $src,$mem\t# (cOop)" %}
opcode(STY_ZOPC, ST_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// Store Compressed Klass pointer
instruct storeNKlass(memory mem, iRegN src) %{
match(Set mem (StoreNKlass mem src));
ins_cost(MEMORY_REF_COST);
size(Z_DISP_SIZE);
format %{ "ST $src,$mem\t# (cKlass)" %}
opcode(STY_ZOPC, ST_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// Compare Compressed Pointers
instruct compN_iRegN(iRegN_P2N src1, iRegN_P2N src2, flagsReg cr) %{
match(Set cr (CmpN src1 src2));
ins_cost(DEFAULT_COST);
size(2);
format %{ "CLR $src1,$src2\t# (cOop)" %}
opcode(CLR_ZOPC);
ins_encode(z_rrform(src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct compN_iRegN_immN(iRegN_P2N src1, immN src2, flagsReg cr) %{
match(Set cr (CmpN src1 src2));
ins_cost(DEFAULT_COST);
size(6);
format %{ "CLFI $src1,$src2\t# (cOop) compare immediate narrow" %}
ins_encode %{
AddressLiteral cOop = __ constant_oop_address((jobject)$src2$$constant);
__ relocate(cOop.rspec(), 1);
__ compare_immediate_narrow_oop($src1$$Register, (narrowOop)cOop.value());
%}
ins_pipe(pipe_class_dummy);
%}
instruct compNKlass_iRegN_immN(iRegN src1, immNKlass src2, flagsReg cr) %{
match(Set cr (CmpN src1 src2));
ins_cost(DEFAULT_COST);
size(6);
format %{ "CLFI $src1,$src2\t# (NKlass) compare immediate narrow" %}
ins_encode %{
AddressLiteral NKlass = __ constant_metadata_address((Metadata*)$src2$$constant);
__ relocate(NKlass.rspec(), 1);
__ compare_immediate_narrow_klass($src1$$Register, (Klass*)NKlass.value());
%}
ins_pipe(pipe_class_dummy);
%}
instruct compN_iRegN_immN0(iRegN_P2N src1, immN0 src2, flagsReg cr) %{
match(Set cr (CmpN src1 src2));
ins_cost(DEFAULT_COST);
size(2);
format %{ "LTR $src1,$src2\t# (cOop) LTR because comparing against zero" %}
opcode(LTR_ZOPC);
ins_encode(z_rrform(src1, src1));
ins_pipe(pipe_class_dummy);
%}
//----------MemBar Instructions-----------------------------------------------
// Memory barrier flavors
instruct membar_acquire() %{
match(MemBarAcquire);
match(LoadFence);
ins_cost(4*MEMORY_REF_COST);
size(0);
format %{ "MEMBAR-acquire" %}
ins_encode %{ __ z_acquire(); %}
ins_pipe(pipe_class_dummy);
%}
instruct membar_acquire_lock() %{
match(MemBarAcquireLock);
ins_cost(0);
size(0);
format %{ "MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
instruct membar_release() %{
match(MemBarRelease);
match(StoreFence);
ins_cost(4 * MEMORY_REF_COST);
size(0);
format %{ "MEMBAR-release" %}
ins_encode %{ __ z_release(); %}
ins_pipe(pipe_class_dummy);
%}
instruct membar_release_lock() %{
match(MemBarReleaseLock);
ins_cost(0);
size(0);
format %{ "MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
instruct membar_volatile() %{
match(MemBarVolatile);
ins_cost(4 * MEMORY_REF_COST);
size(2);
format %{ "MEMBAR-volatile" %}
ins_encode %{ __ z_fence(); %}
ins_pipe(pipe_class_dummy);
%}
instruct unnecessary_membar_volatile() %{
match(MemBarVolatile);
predicate(Matcher::post_store_load_barrier(n));
ins_cost(0);
size(0);
format %{ "# MEMBAR-volatile (empty)" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
instruct membar_CPUOrder() %{
match(MemBarCPUOrder);
ins_cost(0);
// TODO: s390 port size(FIXED_SIZE);
format %{ "MEMBAR-CPUOrder (empty)" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
instruct membar_storestore() %{
match(MemBarStoreStore);
ins_cost(0);
size(0);
format %{ "MEMBAR-storestore (empty)" %}
ins_encode();
ins_pipe(pipe_class_dummy);
%}
//----------Register Move Instructions-----------------------------------------
instruct roundDouble_nop(regD dst) %{
match(Set dst (RoundDouble dst));
ins_cost(0);
// TODO: s390 port size(FIXED_SIZE);
// z/Architecture results are already "rounded" (i.e., normal-format IEEE).
ins_encode();
ins_pipe(pipe_class_dummy);
%}
instruct roundFloat_nop(regF dst) %{
match(Set dst (RoundFloat dst));
ins_cost(0);
// TODO: s390 port size(FIXED_SIZE);
// z/Architecture results are already "rounded" (i.e., normal-format IEEE).
ins_encode();
ins_pipe(pipe_class_dummy);
%}
// Cast Long to Pointer for unsafe natives.
instruct castX2P(iRegP dst, iRegL src) %{
match(Set dst (CastX2P src));
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "LGR $dst,$src\t # CastX2P" %}
ins_encode %{ __ lgr_if_needed($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Cast Pointer to Long for unsafe natives.
instruct castP2X(iRegL dst, iRegP_N2P src) %{
match(Set dst (CastP2X src));
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "LGR $dst,$src\t # CastP2X" %}
ins_encode %{ __ lgr_if_needed($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
instruct stfSSD(stackSlotD stkSlot, regD src) %{
// %%%% TODO: Tell the coalescer that this kind of node is a copy!
match(Set stkSlot src); // chain rule
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ " STD $src,$stkSlot\t # stk" %}
opcode(STD_ZOPC);
ins_encode(z_form_rt_mem(src, stkSlot));
ins_pipe(pipe_class_dummy);
%}
instruct stfSSF(stackSlotF stkSlot, regF src) %{
// %%%% TODO: Tell the coalescer that this kind of node is a copy!
match(Set stkSlot src); // chain rule
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "STE $src,$stkSlot\t # stk" %}
opcode(STE_ZOPC);
ins_encode(z_form_rt_mem(src, stkSlot));
ins_pipe(pipe_class_dummy);
%}
//----------Conditional Move---------------------------------------------------
instruct cmovN_reg(cmpOp cmp, flagsReg cr, iRegN dst, iRegN_P2N src) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveN,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_reg(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovN_imm(cmpOp cmp, flagsReg cr, iRegN dst, immN0 src) %{
match(Set dst (CMoveN (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveN,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_imm(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovI_reg(cmpOp cmp, flagsReg cr, iRegI dst, iRegI src) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveI,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_reg(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovI_imm(cmpOp cmp, flagsReg cr, iRegI dst, immI16 src) %{
match(Set dst (CMoveI (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveI,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_imm(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovP_reg(cmpOp cmp, flagsReg cr, iRegP dst, iRegP_N2P src) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveP,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_reg(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovP_imm(cmpOp cmp, flagsReg cr, iRegP dst, immP0 src) %{
match(Set dst (CMoveP (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveP,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_imm(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovF_reg(cmpOpF cmp, flagsReg cr, regF dst, regF src) %{
match(Set dst (CMoveF (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveF,$cmp $dst,$src" %}
ins_encode %{
// Don't emit code if operands are identical (same register).
if ($dst$$FloatRegister != $src$$FloatRegister) {
Label done;
__ z_brc(Assembler::inverse_float_condition((Assembler::branch_condition)$cmp$$cmpcode), done);
__ z_ler($dst$$FloatRegister, $src$$FloatRegister);
__ bind(done);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct cmovD_reg(cmpOpF cmp, flagsReg cr, regD dst, regD src) %{
match(Set dst (CMoveD (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveD,$cmp $dst,$src" %}
ins_encode %{
// Don't emit code if operands are identical (same register).
if ($dst$$FloatRegister != $src$$FloatRegister) {
Label done;
__ z_brc(Assembler::inverse_float_condition((Assembler::branch_condition)$cmp$$cmpcode), done);
__ z_ldr($dst$$FloatRegister, $src$$FloatRegister);
__ bind(done);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct cmovL_reg(cmpOp cmp, flagsReg cr, iRegL dst, iRegL src) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveL,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_reg(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
instruct cmovL_imm(cmpOp cmp, flagsReg cr, iRegL dst, immL16 src) %{
match(Set dst (CMoveL (Binary cmp cr) (Binary dst src)));
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CMoveL,$cmp $dst,$src" %}
ins_encode(z_enc_cmov_imm(cmp,dst,src));
ins_pipe(pipe_class_dummy);
%}
//----------OS and Locking Instructions----------------------------------------
// This name is KNOWN by the ADLC and cannot be changed.
// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
// for this guy.
instruct tlsLoadP(threadRegP dst) %{
match(Set dst (ThreadLocal));
ins_cost(0);
size(0);
ins_should_rematerialize(true);
format %{ "# $dst=ThreadLocal" %}
ins_encode(/* empty */);
ins_pipe(pipe_class_dummy);
%}
instruct checkCastPP(iRegP dst) %{
match(Set dst (CheckCastPP dst));
size(0);
format %{ "# checkcastPP of $dst" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
instruct castPP(iRegP dst) %{
match(Set dst (CastPP dst));
size(0);
format %{ "# castPP of $dst" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
instruct castII(iRegI dst) %{
match(Set dst (CastII dst));
size(0);
format %{ "# castII of $dst" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
//----------Conditional_store--------------------------------------------------
// Conditional-store of the updated heap-top.
// Used during allocation of the shared heap.
// Sets flags (EQ) on success.
// Implement LoadPLocked. Must be ordered against changes of the memory location
// by storePConditional.
// Don't know whether this is ever used.
instruct loadPLocked(iRegP dst, memory mem) %{
match(Set dst (LoadPLocked mem));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "LG $dst,$mem\t # LoadPLocked" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// As compareAndSwapP, but return flag register instead of boolean value in
// int register.
// This instruction is matched if UseTLAB is off. Needed to pass
// option tests. Mem_ptr must be a memory operand, else this node
// does not get Flag_needs_anti_dependence_check set by adlc. If this
// is not set this node can be rematerialized which leads to errors.
instruct storePConditional(indirect mem_ptr, rarg5RegP oldval, iRegP_N2P newval, flagsReg cr) %{
match(Set cr (StorePConditional mem_ptr (Binary oldval newval)));
effect(KILL oldval);
// TODO: s390 port size(FIXED_SIZE);
format %{ "storePConditional $oldval,$newval,$mem_ptr" %}
ins_encode(z_enc_casL(oldval, newval, mem_ptr));
ins_pipe(pipe_class_dummy);
%}
// As compareAndSwapL, but return flag register instead of boolean value in
// int register.
// Used by sun/misc/AtomicLongCSImpl.java. Mem_ptr must be a memory
// operand, else this node does not get
// Flag_needs_anti_dependence_check set by adlc. If this is not set
// this node can be rematerialized which leads to errors.
instruct storeLConditional(indirect mem_ptr, rarg5RegL oldval, iRegL newval, flagsReg cr) %{
match(Set cr (StoreLConditional mem_ptr (Binary oldval newval)));
effect(KILL oldval);
// TODO: s390 port size(FIXED_SIZE);
format %{ "storePConditional $oldval,$newval,$mem_ptr" %}
ins_encode(z_enc_casL(oldval, newval, mem_ptr));
ins_pipe(pipe_class_dummy);
%}
// No flag versions for CompareAndSwap{P,I,L,N} because matcher can't match them.
instruct compareAndSwapI_bool(iRegP mem_ptr, rarg5RegI oldval, iRegI newval, iRegI res, flagsReg cr) %{
match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
effect(USE mem_ptr, USE_KILL oldval, KILL cr);
size(16);
format %{ "$res = CompareAndSwapI $oldval,$newval,$mem_ptr" %}
ins_encode(z_enc_casI(oldval, newval, mem_ptr),
z_enc_cctobool(res));
ins_pipe(pipe_class_dummy);
%}
instruct compareAndSwapL_bool(iRegP mem_ptr, rarg5RegL oldval, iRegL newval, iRegI res, flagsReg cr) %{
match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
effect(USE mem_ptr, USE_KILL oldval, KILL cr);
size(18);
format %{ "$res = CompareAndSwapL $oldval,$newval,$mem_ptr" %}
ins_encode(z_enc_casL(oldval, newval, mem_ptr),
z_enc_cctobool(res));
ins_pipe(pipe_class_dummy);
%}
instruct compareAndSwapP_bool(iRegP mem_ptr, rarg5RegP oldval, iRegP_N2P newval, iRegI res, flagsReg cr) %{
match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
effect(USE mem_ptr, USE_KILL oldval, KILL cr);
size(18);
format %{ "$res = CompareAndSwapP $oldval,$newval,$mem_ptr" %}
ins_encode(z_enc_casL(oldval, newval, mem_ptr),
z_enc_cctobool(res));
ins_pipe(pipe_class_dummy);
%}
instruct compareAndSwapN_bool(iRegP mem_ptr, rarg5RegN oldval, iRegN_P2N newval, iRegI res, flagsReg cr) %{
match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
effect(USE mem_ptr, USE_KILL oldval, KILL cr);
size(16);
format %{ "$res = CompareAndSwapN $oldval,$newval,$mem_ptr" %}
ins_encode(z_enc_casI(oldval, newval, mem_ptr),
z_enc_cctobool(res));
ins_pipe(pipe_class_dummy);
%}
//----------Atomic operations on memory (GetAndSet*, GetAndAdd*)---------------
// Exploit: direct memory arithmetic
// Prereqs: - instructions available
// - instructions guarantee atomicity
// - immediate operand to be added
// - immediate operand is small enough (8-bit signed).
// - result of instruction is not used
instruct addI_mem_imm8_atomic_no_res(memoryRSY mem, Universe dummy, immI8 src, flagsReg cr) %{
match(Set dummy (GetAndAddI mem src));
effect(KILL cr);
predicate(VM_Version::has_AtomicMemWithImmALUOps() && n->as_LoadStore()->result_not_used());
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "ASI [$mem],$src\t # GetAndAddI (atomic)" %}
opcode(ASI_ZOPC);
ins_encode(z_siyform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// Fallback: direct memory arithmetic not available
// Disadvantages: - CS-Loop required, very expensive.
// - more code generated (26 to xx bytes vs. 6 bytes)
instruct addI_mem_imm16_atomic(memoryRSY mem, iRegI dst, immI16 src, iRegI tmp, flagsReg cr) %{
match(Set dst (GetAndAddI mem src));
effect(KILL cr, TEMP_DEF dst, TEMP tmp);
ins_cost(MEMORY_REF_COST+100*DEFAULT_COST);
format %{ "BEGIN ATOMIC {\n\t"
" LGF $dst,[$mem]\n\t"
" AHIK $tmp,$dst,$src\n\t"
" CSY $dst,$tmp,$mem\n\t"
" retry if failed\n\t"
"} END ATOMIC"
%}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
int Isrc = $src$$constant;
Label retry;
// Iterate until update with incremented value succeeds.
__ z_lgf(Rdst, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
if (VM_Version::has_DistinctOpnds()) {
__ z_ahik(Rtmp, Rdst, Isrc);
} else {
__ z_lr(Rtmp, Rdst);
__ z_ahi(Rtmp, Isrc);
}
// Swap into memory location.
__ z_csy(Rdst, Rtmp, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
%}
ins_pipe(pipe_class_dummy);
%}
instruct addI_mem_imm32_atomic(memoryRSY mem, iRegI dst, immI src, iRegI tmp, flagsReg cr) %{
match(Set dst (GetAndAddI mem src));
effect(KILL cr, TEMP_DEF dst, TEMP tmp);
ins_cost(MEMORY_REF_COST+200*DEFAULT_COST);
format %{ "BEGIN ATOMIC {\n\t"
" LGF $dst,[$mem]\n\t"
" LGR $tmp,$dst\n\t"
" AFI $tmp,$src\n\t"
" CSY $dst,$tmp,$mem\n\t"
" retry if failed\n\t"
"} END ATOMIC"
%}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
int Isrc = $src$$constant;
Label retry;
// Iterate until update with incremented value succeeds.
__ z_lgf(Rdst, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
__ z_lr(Rtmp, Rdst);
__ z_afi(Rtmp, Isrc);
// Swap into memory location.
__ z_csy(Rdst, Rtmp, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
%}
ins_pipe(pipe_class_dummy);
%}
instruct addI_mem_reg_atomic(memoryRSY mem, iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
match(Set dst (GetAndAddI mem src));
effect(KILL cr, TEMP_DEF dst, TEMP tmp);
ins_cost(MEMORY_REF_COST+100*DEFAULT_COST);
format %{ "BEGIN ATOMIC {\n\t"
" LGF $dst,[$mem]\n\t"
" ARK $tmp,$dst,$src\n\t"
" CSY $dst,$tmp,$mem\n\t"
" retry if failed\n\t"
"} END ATOMIC"
%}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
Label retry;
// Iterate until update with incremented value succeeds.
__ z_lgf(Rdst, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
if (VM_Version::has_DistinctOpnds()) {
__ z_ark(Rtmp, Rdst, Rsrc);
} else {
__ z_lr(Rtmp, Rdst);
__ z_ar(Rtmp, Rsrc);
}
__ z_csy(Rdst, Rtmp, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
%}
ins_pipe(pipe_class_dummy);
%}
// Exploit: direct memory arithmetic
// Prereqs: - instructions available
// - instructions guarantee atomicity
// - immediate operand to be added
// - immediate operand is small enough (8-bit signed).
// - result of instruction is not used
instruct addL_mem_imm8_atomic_no_res(memoryRSY mem, Universe dummy, immL8 src, flagsReg cr) %{
match(Set dummy (GetAndAddL mem src));
effect(KILL cr);
predicate(VM_Version::has_AtomicMemWithImmALUOps() && n->as_LoadStore()->result_not_used());
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "AGSI [$mem],$src\t # GetAndAddL (atomic)" %}
opcode(AGSI_ZOPC);
ins_encode(z_siyform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// Fallback: direct memory arithmetic not available
// Disadvantages: - CS-Loop required, very expensive.
// - more code generated (26 to xx bytes vs. 6 bytes)
instruct addL_mem_imm16_atomic(memoryRSY mem, iRegL dst, immL16 src, iRegL tmp, flagsReg cr) %{
match(Set dst (GetAndAddL mem src));
effect(KILL cr, TEMP_DEF dst, TEMP tmp);
ins_cost(MEMORY_REF_COST+100*DEFAULT_COST);
format %{ "BEGIN ATOMIC {\n\t"
" LG $dst,[$mem]\n\t"
" AGHIK $tmp,$dst,$src\n\t"
" CSG $dst,$tmp,$mem\n\t"
" retry if failed\n\t"
"} END ATOMIC"
%}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
int Isrc = $src$$constant;
Label retry;
// Iterate until update with incremented value succeeds.
__ z_lg(Rdst, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
if (VM_Version::has_DistinctOpnds()) {
__ z_aghik(Rtmp, Rdst, Isrc);
} else {
__ z_lgr(Rtmp, Rdst);
__ z_aghi(Rtmp, Isrc);
}
__ z_csg(Rdst, Rtmp, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
%}
ins_pipe(pipe_class_dummy);
%}
instruct addL_mem_imm32_atomic(memoryRSY mem, iRegL dst, immL32 src, iRegL tmp, flagsReg cr) %{
match(Set dst (GetAndAddL mem src));
effect(KILL cr, TEMP_DEF dst, TEMP tmp);
ins_cost(MEMORY_REF_COST+100*DEFAULT_COST);
format %{ "BEGIN ATOMIC {\n\t"
" LG $dst,[$mem]\n\t"
" LGR $tmp,$dst\n\t"
" AGFI $tmp,$src\n\t"
" CSG $dst,$tmp,$mem\n\t"
" retry if failed\n\t"
"} END ATOMIC"
%}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
int Isrc = $src$$constant;
Label retry;
// Iterate until update with incremented value succeeds.
__ z_lg(Rdst, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
__ z_lgr(Rtmp, Rdst);
__ z_agfi(Rtmp, Isrc);
__ z_csg(Rdst, Rtmp, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
%}
ins_pipe(pipe_class_dummy);
%}
instruct addL_mem_reg_atomic(memoryRSY mem, iRegL dst, iRegL src, iRegL tmp, flagsReg cr) %{
match(Set dst (GetAndAddL mem src));
effect(KILL cr, TEMP_DEF dst, TEMP tmp);
ins_cost(MEMORY_REF_COST+100*DEFAULT_COST);
format %{ "BEGIN ATOMIC {\n\t"
" LG $dst,[$mem]\n\t"
" AGRK $tmp,$dst,$src\n\t"
" CSG $dst,$tmp,$mem\n\t"
" retry if failed\n\t"
"} END ATOMIC"
%}
ins_encode %{
Register Rsrc = $src$$Register;
Register Rdst = $dst$$Register;
Register Rtmp = $tmp$$Register;
Label retry;
// Iterate until update with incremented value succeeds.
__ z_lg(Rdst, $mem$$Address); // current contents
__ bind(retry);
// Calculate incremented value.
if (VM_Version::has_DistinctOpnds()) {
__ z_agrk(Rtmp, Rdst, Rsrc);
} else {
__ z_lgr(Rtmp, Rdst);
__ z_agr(Rtmp, Rsrc);
}
__ z_csg(Rdst, Rtmp, $mem$$Address); // Try to store new value.
__ z_brne(retry); // Yikes, concurrent update, need to retry.
%}
ins_pipe(pipe_class_dummy);
%}
// Increment value in memory, save old value in dst.
instruct addI_mem_reg_atomic_z196(memoryRSY mem, iRegI dst, iRegI src) %{
match(Set dst (GetAndAddI mem src));
predicate(VM_Version::has_LoadAndALUAtomicV1());
ins_cost(MEMORY_REF_COST + DEFAULT_COST);
size(6);
format %{ "LAA $dst,$src,[$mem]" %}
ins_encode %{ __ z_laa($dst$$Register, $src$$Register, $mem$$Address); %}
ins_pipe(pipe_class_dummy);
%}
// Increment value in memory, save old value in dst.
instruct addL_mem_reg_atomic_z196(memoryRSY mem, iRegL dst, iRegL src) %{
match(Set dst (GetAndAddL mem src));
predicate(VM_Version::has_LoadAndALUAtomicV1());
ins_cost(MEMORY_REF_COST + DEFAULT_COST);
size(6);
format %{ "LAAG $dst,$src,[$mem]" %}
ins_encode %{ __ z_laag($dst$$Register, $src$$Register, $mem$$Address); %}
ins_pipe(pipe_class_dummy);
%}
instruct xchgI_reg_mem(memoryRSY mem, iRegI dst, iRegI tmp, flagsReg cr) %{
match(Set dst (GetAndSetI mem dst));
effect(KILL cr, TEMP tmp); // USE_DEF dst by match rule.
format %{ "XCHGI $dst,[$mem]\t # EXCHANGE (int, atomic), temp $tmp" %}
ins_encode(z_enc_SwapI(mem, dst, tmp));
ins_pipe(pipe_class_dummy);
%}
instruct xchgL_reg_mem(memoryRSY mem, iRegL dst, iRegL tmp, flagsReg cr) %{
match(Set dst (GetAndSetL mem dst));
effect(KILL cr, TEMP tmp); // USE_DEF dst by match rule.
format %{ "XCHGL $dst,[$mem]\t # EXCHANGE (long, atomic), temp $tmp" %}
ins_encode(z_enc_SwapL(mem, dst, tmp));
ins_pipe(pipe_class_dummy);
%}
instruct xchgN_reg_mem(memoryRSY mem, iRegN dst, iRegI tmp, flagsReg cr) %{
match(Set dst (GetAndSetN mem dst));
effect(KILL cr, TEMP tmp); // USE_DEF dst by match rule.
format %{ "XCHGN $dst,[$mem]\t # EXCHANGE (coop, atomic), temp $tmp" %}
ins_encode(z_enc_SwapI(mem, dst, tmp));
ins_pipe(pipe_class_dummy);
%}
instruct xchgP_reg_mem(memoryRSY mem, iRegP dst, iRegL tmp, flagsReg cr) %{
match(Set dst (GetAndSetP mem dst));
effect(KILL cr, TEMP tmp); // USE_DEF dst by match rule.
format %{ "XCHGP $dst,[$mem]\t # EXCHANGE (oop, atomic), temp $tmp" %}
ins_encode(z_enc_SwapL(mem, dst, tmp));
ins_pipe(pipe_class_dummy);
%}
//----------Arithmetic Instructions--------------------------------------------
// The rules are sorted by right operand type and operand length. Please keep
// it that way.
// Left operand type is always reg. Left operand len is I, L, P
// Right operand type is reg, imm, mem. Right operand len is S, I, L, P
// Special instruction formats, e.g. multi-operand, are inserted at the end.
// ADD
// REG = REG + REG
// Register Addition
instruct addI_reg_reg_CISC(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (AddI dst src));
effect(KILL cr);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AR $dst,$src\t # int CISC ALU" %}
opcode(AR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct addI_reg_reg_RISC(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (AddI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
size(4);
format %{ "ARK $dst,$src1,$src2\t # int RISC ALU" %}
opcode(ARK_ZOPC);
ins_encode(z_rrfform(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// REG = REG + IMM
// Avoid use of LA(Y) for general ALU operation.
// Immediate Addition
instruct addI_reg_imm16_CISC(iRegI dst, immI16 con, flagsReg cr) %{
match(Set dst (AddI dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AHI $dst,$con\t # int CISC ALU" %}
opcode(AHI_ZOPC);
ins_encode(z_riform_signed(dst, con));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
// Immediate Addition
instruct addI_reg_imm16_RISC(iRegI dst, iRegI src, immI16 con, flagsReg cr) %{
match(Set dst (AddI src con));
effect(KILL cr);
predicate( VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AHIK $dst,$src,$con\t # int RISC ALU" %}
opcode(AHIK_ZOPC);
ins_encode(z_rieform_d(dst, src, con));
ins_pipe(pipe_class_dummy);
%}
// Immediate Addition
instruct addI_reg_imm32(iRegI dst, immI src, flagsReg cr) %{
match(Set dst (AddI dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
size(6);
format %{ "AFI $dst,$src" %}
opcode(AFI_ZOPC);
ins_encode(z_rilform_signed(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Addition
instruct addI_reg_imm12(iRegI dst, iRegI src, uimmI12 con) %{
match(Set dst (AddI src con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con(,$src)\t # int d12(,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg(dst, con, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Addition
instruct addI_reg_imm20(iRegI dst, iRegI src, immI20 con) %{
match(Set dst (AddI src con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LAY $dst,$con(,$src)\t # int d20(,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg(dst, con, src));
ins_pipe(pipe_class_dummy);
%}
instruct addI_reg_reg_imm12(iRegI dst, iRegI src1, iRegI src2, uimmI12 con) %{
match(Set dst (AddI (AddI src1 src2) con));
predicate( PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con($src1,$src2)\t # int d12(x,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct addI_reg_reg_imm20(iRegI dst, iRegI src1, iRegI src2, immI20 con) %{
match(Set dst (AddI (AddI src1 src2) con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LAY $dst,$con($src1,$src2)\t # int d20(x,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// REG = REG + MEM
instruct addI_Reg_mem(iRegI dst, memory src, flagsReg cr)%{
match(Set dst (AddI dst (LoadI src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "A(Y) $dst, $src\t # int" %}
opcode(AY_ZOPC, A_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// MEM = MEM + IMM
// Add Immediate to 4-byte memory operand and result
instruct addI_mem_imm(memoryRSY mem, immI8 src, flagsReg cr) %{
match(Set mem (StoreI mem (AddI (LoadI mem) src)));
effect(KILL cr);
predicate(VM_Version::has_MemWithImmALUOps());
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "ASI $mem,$src\t # direct mem add 4" %}
opcode(ASI_ZOPC);
ins_encode(z_siyform(mem, src));
ins_pipe(pipe_class_dummy);
%}
//
// REG = REG + REG
instruct addL_reg_regI(iRegL dst, iRegI src, flagsReg cr) %{
match(Set dst (AddL dst (ConvI2L src)));
effect(KILL cr);
size(4);
format %{ "AGFR $dst,$src\t # long<-int CISC ALU" %}
opcode(AGFR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct addL_reg_reg_CISC(iRegL dst, iRegL src, flagsReg cr) %{
match(Set dst (AddL dst src));
effect(KILL cr);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AGR $dst, $src\t # long CISC ALU" %}
opcode(AGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct addL_reg_reg_RISC(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
match(Set dst (AddL src1 src2));
effect(KILL cr);
predicate(VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
size(4);
format %{ "AGRK $dst,$src1,$src2\t # long RISC ALU" %}
opcode(AGRK_ZOPC);
ins_encode(z_rrfform(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// REG = REG + IMM
instruct addL_reg_imm12(iRegL dst, iRegL src, uimmL12 con) %{
match(Set dst (AddL src con));
predicate( PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con(,$src)\t # long d12(,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg(dst, con, src));
ins_pipe(pipe_class_dummy);
%}
instruct addL_reg_imm20(iRegL dst, iRegL src, immL20 con) %{
match(Set dst (AddL src con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LAY $dst,$con(,$src)\t # long d20(,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg(dst, con, src));
ins_pipe(pipe_class_dummy);
%}
instruct addL_reg_imm32(iRegL dst, immL32 con, flagsReg cr) %{
match(Set dst (AddL dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
size(6);
format %{ "AGFI $dst,$con\t # long CISC ALU" %}
opcode(AGFI_ZOPC);
ins_encode(z_rilform_signed(dst, con));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct addL_reg_imm16_CISC(iRegL dst, immL16 con, flagsReg cr) %{
match(Set dst (AddL dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AGHI $dst,$con\t # long CISC ALU" %}
opcode(AGHI_ZOPC);
ins_encode(z_riform_signed(dst, con));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct addL_reg_imm16_RISC(iRegL dst, iRegL src, immL16 con, flagsReg cr) %{
match(Set dst (AddL src con));
effect(KILL cr);
predicate( VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
size(6);
format %{ "AGHIK $dst,$src,$con\t # long RISC ALU" %}
opcode(AGHIK_ZOPC);
ins_encode(z_rieform_d(dst, src, con));
ins_pipe(pipe_class_dummy);
%}
// REG = REG + MEM
instruct addL_Reg_memI(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (AddL dst (ConvI2L (LoadI src))));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "AGF $dst, $src\t # long/int" %}
opcode(AGF_ZOPC, AGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct addL_Reg_mem(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (AddL dst (LoadL src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "AG $dst, $src\t # long" %}
opcode(AG_ZOPC, AG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct addL_reg_reg_imm12(iRegL dst, iRegL src1, iRegL src2, uimmL12 con) %{
match(Set dst (AddL (AddL src1 src2) con));
predicate( PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con($src1,$src2)\t # long d12(x,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct addL_reg_reg_imm20(iRegL dst, iRegL src1, iRegL src2, immL20 con) %{
match(Set dst (AddL (AddL src1 src2) con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LAY $dst,$con($src1,$src2)\t # long d20(x,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// MEM = MEM + IMM
// Add Immediate to 8-byte memory operand and result.
instruct addL_mem_imm(memoryRSY mem, immL8 src, flagsReg cr) %{
match(Set mem (StoreL mem (AddL (LoadL mem) src)));
effect(KILL cr);
predicate(VM_Version::has_MemWithImmALUOps());
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "AGSI $mem,$src\t # direct mem add 8" %}
opcode(AGSI_ZOPC);
ins_encode(z_siyform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// REG = REG + REG
// Ptr Addition
instruct addP_reg_reg_LA(iRegP dst, iRegP_N2P src1, iRegL src2) %{
match(Set dst (AddP src1 src2));
predicate( PreferLAoverADD);
ins_cost(DEFAULT_COST);
size(4);
format %{ "LA $dst,#0($src1,$src2)\t # ptr 0(x,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg_reg(dst, 0x0, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// Ptr Addition
// Avoid use of LA(Y) for general ALU operation.
instruct addP_reg_reg_CISC(iRegP dst, iRegL src, flagsReg cr) %{
match(Set dst (AddP dst src));
effect(KILL cr);
predicate(!PreferLAoverADD && !VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "ALGR $dst,$src\t # ptr CICS ALU" %}
opcode(ALGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Ptr Addition
// Avoid use of LA(Y) for general ALU operation.
instruct addP_reg_reg_RISC(iRegP dst, iRegP_N2P src1, iRegL src2, flagsReg cr) %{
match(Set dst (AddP src1 src2));
effect(KILL cr);
predicate(!PreferLAoverADD && VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "ALGRK $dst,$src1,$src2\t # ptr RISC ALU" %}
opcode(ALGRK_ZOPC);
ins_encode(z_rrfform(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// REG = REG + IMM
instruct addP_reg_imm12(iRegP dst, iRegP_N2P src, uimmL12 con) %{
match(Set dst (AddP src con));
predicate( PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con(,$src)\t # ptr d12(,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg(dst, con, src));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct addP_reg_imm16_CISC(iRegP dst, immL16 src, flagsReg cr) %{
match(Set dst (AddP dst src));
effect(KILL cr);
predicate(!PreferLAoverADD && !VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AGHI $dst,$src\t # ptr CISC ALU" %}
opcode(AGHI_ZOPC);
ins_encode(z_riform_signed(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct addP_reg_imm16_RISC(iRegP dst, iRegP_N2P src, immL16 con, flagsReg cr) %{
match(Set dst (AddP src con));
effect(KILL cr);
predicate(!PreferLAoverADD && VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "ALGHSIK $dst,$src,$con\t # ptr RISC ALU" %}
opcode(ALGHSIK_ZOPC);
ins_encode(z_rieform_d(dst, src, con));
ins_pipe(pipe_class_dummy);
%}
instruct addP_reg_imm20(iRegP dst, memoryRegP src, immL20 con) %{
match(Set dst (AddP src con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST);
size(6);
format %{ "LAY $dst,$con(,$src)\t # ptr d20(,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg(dst, con, src));
ins_pipe(pipe_class_dummy);
%}
// Pointer Immediate Addition
instruct addP_reg_imm32(iRegP dst, immL32 src, flagsReg cr) %{
match(Set dst (AddP dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AGFI $dst,$src\t # ptr" %}
opcode(AGFI_ZOPC);
ins_encode(z_rilform_signed(dst, src));
ins_pipe(pipe_class_dummy);
%}
// REG = REG1 + REG2 + IMM
instruct addP_reg_reg_imm12(iRegP dst, memoryRegP src1, iRegL src2, uimmL12 con) %{
match(Set dst (AddP (AddP src1 src2) con));
predicate( PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con($src1,$src2)\t # ptr d12(x,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct addP_regN_reg_imm12(iRegP dst, iRegP_N2P src1, iRegL src2, uimmL12 con) %{
match(Set dst (AddP (AddP src1 src2) con));
predicate( PreferLAoverADD && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,$con($src1,$src2)\t # ptr d12(x,b)" %}
opcode(LA_ZOPC);
ins_encode(z_rxform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct addP_reg_reg_imm20(iRegP dst, memoryRegP src1, iRegL src2, immL20 con) %{
match(Set dst (AddP (AddP src1 src2) con));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LAY $dst,$con($src1,$src2)\t # ptr d20(x,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct addP_regN_reg_imm20(iRegP dst, iRegP_N2P src1, iRegL src2, immL20 con) %{
match(Set dst (AddP (AddP src1 src2) con));
predicate( PreferLAoverADD && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LAY $dst,$con($src1,$src2)\t # ptr d20(x,b)" %}
opcode(LAY_ZOPC);
ins_encode(z_rxyform_imm_reg_reg(dst, con, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// MEM = MEM + IMM
// Add Immediate to 8-byte memory operand and result
instruct addP_mem_imm(memoryRSY mem, immL8 src, flagsReg cr) %{
match(Set mem (StoreP mem (AddP (LoadP mem) src)));
effect(KILL cr);
predicate(VM_Version::has_MemWithImmALUOps());
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "AGSI $mem,$src\t # direct mem add 8 (ptr)" %}
opcode(AGSI_ZOPC);
ins_encode(z_siyform(mem, src));
ins_pipe(pipe_class_dummy);
%}
// SUB
// Register Subtraction
instruct subI_reg_reg_CISC(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (SubI dst src));
effect(KILL cr);
// TODO: s390 port size(FIXED_SIZE);
format %{ "SR $dst,$src\t # int CISC ALU" %}
opcode(SR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct subI_reg_reg_RISC(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (SubI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
size(4);
format %{ "SRK $dst,$src1,$src2\t # int RISC ALU" %}
opcode(SRK_ZOPC);
ins_encode(z_rrfform(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct subI_Reg_mem(iRegI dst, memory src, flagsReg cr)%{
match(Set dst (SubI dst (LoadI src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "S(Y) $dst, $src\t # int" %}
opcode(SY_ZOPC, S_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct subI_zero_reg(iRegI dst, immI_0 zero, iRegI src, flagsReg cr) %{
match(Set dst (SubI zero src));
effect(KILL cr);
size(2);
format %{ "NEG $dst, $src" %}
ins_encode %{ __ z_lcr($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
//
// Long subtraction
instruct subL_reg_reg_CISC(iRegL dst, iRegL src, flagsReg cr) %{
match(Set dst (SubL dst src));
effect(KILL cr);
// TODO: s390 port size(FIXED_SIZE);
format %{ "SGR $dst,$src\t # int CISC ALU" %}
opcode(SGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Avoid use of LA(Y) for general ALU operation.
instruct subL_reg_reg_RISC(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
match(Set dst (SubL src1 src2));
effect(KILL cr);
predicate(VM_Version::has_DistinctOpnds());
ins_cost(DEFAULT_COST);
size(4);
format %{ "SGRK $dst,$src1,$src2\t # int RISC ALU" %}
opcode(SGRK_ZOPC);
ins_encode(z_rrfform(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct subL_reg_regI_CISC(iRegL dst, iRegI src, flagsReg cr) %{
match(Set dst (SubL dst (ConvI2L src)));
effect(KILL cr);
size(4);
format %{ "SGFR $dst, $src\t # int CISC ALU" %}
opcode(SGFR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct subL_Reg_memI(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (SubL dst (ConvI2L (LoadI src))));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "SGF $dst, $src\t # long/int" %}
opcode(SGF_ZOPC, SGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct subL_Reg_mem(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (SubL dst (LoadL src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "SG $dst, $src\t # long" %}
opcode(SG_ZOPC, SG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Moved declaration of negL_reg_reg before encode nodes, where it is used.
// MUL
// Register Multiplication
instruct mulI_reg_reg(iRegI dst, iRegI src) %{
match(Set dst (MulI dst src));
ins_cost(DEFAULT_COST);
size(4);
format %{ "MSR $dst, $src" %}
opcode(MSR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Multiplication
instruct mulI_reg_imm16(iRegI dst, immI16 con) %{
match(Set dst (MulI dst con));
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "MHI $dst,$con" %}
opcode(MHI_ZOPC);
ins_encode(z_riform_signed(dst,con));
ins_pipe(pipe_class_dummy);
%}
// Immediate (32bit) Multiplication
instruct mulI_reg_imm32(iRegI dst, immI con) %{
match(Set dst (MulI dst con));
ins_cost(DEFAULT_COST);
size(6);
format %{ "MSFI $dst,$con" %}
opcode(MSFI_ZOPC);
ins_encode(z_rilform_signed(dst,con));
ins_pipe(pipe_class_dummy);
%}
instruct mulI_Reg_mem(iRegI dst, memory src)%{
match(Set dst (MulI dst (LoadI src)));
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MS(Y) $dst, $src\t # int" %}
opcode(MSY_ZOPC, MS_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
//
instruct mulL_reg_regI(iRegL dst, iRegI src) %{
match(Set dst (MulL dst (ConvI2L src)));
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "MSGFR $dst $src\t # long/int" %}
opcode(MSGFR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct mulL_reg_reg(iRegL dst, iRegL src) %{
match(Set dst (MulL dst src));
ins_cost(DEFAULT_COST);
size(4);
format %{ "MSGR $dst $src\t # long" %}
opcode(MSGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Multiplication
instruct mulL_reg_imm16(iRegL dst, immL16 src) %{
match(Set dst (MulL dst src));
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "MGHI $dst,$src\t # long" %}
opcode(MGHI_ZOPC);
ins_encode(z_riform_signed(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate (32bit) Multiplication
instruct mulL_reg_imm32(iRegL dst, immL32 con) %{
match(Set dst (MulL dst con));
ins_cost(DEFAULT_COST);
size(6);
format %{ "MSGFI $dst,$con" %}
opcode(MSGFI_ZOPC);
ins_encode(z_rilform_signed(dst,con));
ins_pipe(pipe_class_dummy);
%}
instruct mulL_Reg_memI(iRegL dst, memory src)%{
match(Set dst (MulL dst (ConvI2L (LoadI src))));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "MSGF $dst, $src\t # long" %}
opcode(MSGF_ZOPC, MSGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct mulL_Reg_mem(iRegL dst, memory src)%{
match(Set dst (MulL dst (LoadL src)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "MSG $dst, $src\t # long" %}
opcode(MSG_ZOPC, MSG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct mulHiL_reg_reg(revenRegL Rdst, roddRegL Rsrc1, iRegL Rsrc2, iRegL Rtmp1, flagsReg cr)%{
match(Set Rdst (MulHiL Rsrc1 Rsrc2));
effect(TEMP_DEF Rdst, USE_KILL Rsrc1, TEMP Rtmp1, KILL cr);
ins_cost(7*DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MulHiL $Rdst, $Rsrc1, $Rsrc2\t # Multiply High Long" %}
ins_encode%{
Register dst = $Rdst$$Register;
Register src1 = $Rsrc1$$Register;
Register src2 = $Rsrc2$$Register;
Register tmp1 = $Rtmp1$$Register;
Register tmp2 = $Rdst$$Register;
// z/Architecture has only unsigned multiply (64 * 64 -> 128).
// implementing mulhs(a,b) = mulhu(a,b) – (a & (b>>63)) – (b & (a>>63))
__ z_srag(tmp2, src1, 63); // a>>63
__ z_srag(tmp1, src2, 63); // b>>63
__ z_ngr(tmp2, src2); // b & (a>>63)
__ z_ngr(tmp1, src1); // a & (b>>63)
__ z_agr(tmp1, tmp2); // ((a & (b>>63)) + (b & (a>>63)))
__ z_mlgr(dst, src2); // tricky: 128-bit product is written to even/odd pair (dst,src1),
// multiplicand is taken from oddReg (src1), multiplier in src2.
__ z_sgr(dst, tmp1);
%}
ins_pipe(pipe_class_dummy);
%}
// DIV
// Integer DIVMOD with Register, both quotient and mod results
instruct divModI_reg_divmod(roddRegI dst1src1, revenRegI dst2, noOdd_iRegI src2, flagsReg cr) %{
match(DivModI dst1src1 src2);
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(VM_Version::has_CompareBranch() ? 24 : 26);
format %{ "DIVMODI ($dst1src1, $dst2) $src2" %}
ins_encode %{
Register d1s1 = $dst1src1$$Register;
Register d2 = $dst2$$Register;
Register s2 = $src2$$Register;
assert_different_registers(d1s1, s2);
Label do_div, done_div;
if (VM_Version::has_CompareBranch()) {
__ z_cij(s2, -1, Assembler::bcondNotEqual, do_div);
} else {
__ z_chi(s2, -1);
__ z_brne(do_div);
}
__ z_lcr(d1s1, d1s1);
__ clear_reg(d2, false, false);
__ z_bru(done_div);
__ bind(do_div);
__ z_lgfr(d1s1, d1s1);
__ z_dsgfr(d2, s2);
__ bind(done_div);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Division
instruct divI_reg_reg(roddRegI dst, iRegI src1, noOdd_iRegI src2, revenRegI tmp, flagsReg cr) %{
match(Set dst (DivI src1 src2));
effect(KILL tmp, KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(VM_Version::has_CompareBranch() ? 20 : 22);
format %{ "DIV_checked $dst, $src1,$src2\t # treats special case 0x80../-1" %}
ins_encode %{
Register a = $src1$$Register;
Register b = $src2$$Register;
Register t = $dst$$Register;
assert_different_registers(t, b);
Label do_div, done_div;
if (VM_Version::has_CompareBranch()) {
__ z_cij(b, -1, Assembler::bcondNotEqual, do_div);
} else {
__ z_chi(b, -1);
__ z_brne(do_div);
}
__ z_lcr(t, a);
__ z_bru(done_div);
__ bind(do_div);
__ z_lgfr(t, a);
__ z_dsgfr(t->predecessor()/* t is odd part of a register pair. */, b);
__ bind(done_div);
%}
ins_pipe(pipe_class_dummy);
%}
// Immediate Division
instruct divI_reg_imm16(roddRegI dst, iRegI src1, immI16 src2, revenRegI tmp, flagsReg cr) %{
match(Set dst (DivI src1 src2));
effect(KILL tmp, KILL cr); // R0 is killed, too.
ins_cost(2 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "DIV_const $dst,$src1,$src2" %}
ins_encode %{
// No sign extension of Rdividend needed here.
if ($src2$$constant != -1) {
__ z_lghi(Z_R0_scratch, $src2$$constant);
__ z_lgfr($dst$$Register, $src1$$Register);
__ z_dsgfr($dst$$Register->predecessor()/* Dst is odd part of a register pair. */, Z_R0_scratch);
} else {
__ z_lcr($dst$$Register, $src1$$Register);
}
%}
ins_pipe(pipe_class_dummy);
%}
// Long DIVMOD with Register, both quotient and mod results
instruct divModL_reg_divmod(roddRegL dst1src1, revenRegL dst2, iRegL src2, flagsReg cr) %{
match(DivModL dst1src1 src2);
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(VM_Version::has_CompareBranch() ? 22 : 24);
format %{ "DIVMODL ($dst1src1, $dst2) $src2" %}
ins_encode %{
Register d1s1 = $dst1src1$$Register;
Register d2 = $dst2$$Register;
Register s2 = $src2$$Register;
Label do_div, done_div;
if (VM_Version::has_CompareBranch()) {
__ z_cgij(s2, -1, Assembler::bcondNotEqual, do_div);
} else {
__ z_cghi(s2, -1);
__ z_brne(do_div);
}
__ z_lcgr(d1s1, d1s1);
// indicate unused result
(void) __ clear_reg(d2, true, false);
__ z_bru(done_div);
__ bind(do_div);
__ z_dsgr(d2, s2);
__ bind(done_div);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Long Division
instruct divL_reg_reg(roddRegL dst, iRegL src, revenRegL tmp, flagsReg cr) %{
match(Set dst (DivL dst src));
effect(KILL tmp, KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(VM_Version::has_CompareBranch() ? 18 : 20);
format %{ "DIVG_checked $dst, $src\t # long, treats special case 0x80../-1" %}
ins_encode %{
Register b = $src$$Register;
Register t = $dst$$Register;
Label done_div;
__ z_lcgr(t, t); // Does no harm. divisor is in other register.
if (VM_Version::has_CompareBranch()) {
__ z_cgij(b, -1, Assembler::bcondEqual, done_div);
} else {
__ z_cghi(b, -1);
__ z_bre(done_div);
}
__ z_lcgr(t, t); // Restore sign.
__ z_dsgr(t->predecessor()/* t is odd part of a register pair. */, b);
__ bind(done_div);
%}
ins_pipe(pipe_class_dummy);
%}
// Immediate Long Division
instruct divL_reg_imm16(roddRegL dst, iRegL src1, immL16 src2, revenRegL tmp, flagsReg cr) %{
match(Set dst (DivL src1 src2));
effect(KILL tmp, KILL cr); // R0 is killed, too.
ins_cost(2 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "DIVG_const $dst,$src1,$src2\t # long" %}
ins_encode %{
if ($src2$$constant != -1) {
__ z_lghi(Z_R0_scratch, $src2$$constant);
__ lgr_if_needed($dst$$Register, $src1$$Register);
__ z_dsgr($dst$$Register->predecessor()/* Dst is odd part of a register pair. */, Z_R0_scratch);
} else {
__ z_lcgr($dst$$Register, $src1$$Register);
}
%}
ins_pipe(pipe_class_dummy);
%}
// REM
// Integer Remainder
// Register Remainder
instruct modI_reg_reg(revenRegI dst, iRegI src1, noOdd_iRegI src2, roddRegI tmp, flagsReg cr) %{
match(Set dst (ModI src1 src2));
effect(KILL tmp, KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MOD_checked $dst,$src1,$src2" %}
ins_encode %{
Register a = $src1$$Register;
Register b = $src2$$Register;
Register t = $dst$$Register;
assert_different_registers(t->successor(), b);
Label do_div, done_div;
if ((t->encoding() != b->encoding()) && (t->encoding() != a->encoding())) {
(void) __ clear_reg(t, true, false); // Does no harm. Operands are in other regs.
if (VM_Version::has_CompareBranch()) {
__ z_cij(b, -1, Assembler::bcondEqual, done_div);
} else {
__ z_chi(b, -1);
__ z_bre(done_div);
}
__ z_lgfr(t->successor(), a);
__ z_dsgfr(t/* t is even part of a register pair. */, b);
} else {
if (VM_Version::has_CompareBranch()) {
__ z_cij(b, -1, Assembler::bcondNotEqual, do_div);
} else {
__ z_chi(b, -1);
__ z_brne(do_div);
}
__ clear_reg(t, true, false);
__ z_bru(done_div);
__ bind(do_div);
__ z_lgfr(t->successor(), a);
__ z_dsgfr(t/* t is even part of a register pair. */, b);
}
__ bind(done_div);
%}
ins_pipe(pipe_class_dummy);
%}
// Immediate Remainder
instruct modI_reg_imm16(revenRegI dst, iRegI src1, immI16 src2, roddRegI tmp, flagsReg cr) %{
match(Set dst (ModI src1 src2));
effect(KILL tmp, KILL cr); // R0 is killed, too.
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MOD_const $dst,src1,$src2" %}
ins_encode %{
assert_different_registers($dst$$Register, $src1$$Register);
assert_different_registers($dst$$Register->successor(), $src1$$Register);
int divisor = $src2$$constant;
if (divisor != -1) {
__ z_lghi(Z_R0_scratch, divisor);
__ z_lgfr($dst$$Register->successor(), $src1$$Register);
__ z_dsgfr($dst$$Register/* Dst is even part of a register pair. */, Z_R0_scratch); // Instruction kills tmp.
} else {
__ clear_reg($dst$$Register, true, false);
}
%}
ins_pipe(pipe_class_dummy);
%}
// Register Long Remainder
instruct modL_reg_reg(revenRegL dst, roddRegL src1, iRegL src2, flagsReg cr) %{
match(Set dst (ModL src1 src2));
effect(KILL src1, KILL cr); // R0 is killed, too.
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MODG_checked $dst,$src1,$src2" %}
ins_encode %{
Register a = $src1$$Register;
Register b = $src2$$Register;
Register t = $dst$$Register;
assert(t->successor() == a, "(t,a) is an even-odd pair" );
Label do_div, done_div;
if (t->encoding() != b->encoding()) {
(void) __ clear_reg(t, true, false); // Does no harm. Dividend is in successor.
if (VM_Version::has_CompareBranch()) {
__ z_cgij(b, -1, Assembler::bcondEqual, done_div);
} else {
__ z_cghi(b, -1);
__ z_bre(done_div);
}
__ z_dsgr(t, b);
} else {
if (VM_Version::has_CompareBranch()) {
__ z_cgij(b, -1, Assembler::bcondNotEqual, do_div);
} else {
__ z_cghi(b, -1);
__ z_brne(do_div);
}
__ clear_reg(t, true, false);
__ z_bru(done_div);
__ bind(do_div);
__ z_dsgr(t, b);
}
__ bind(done_div);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Long Remainder
instruct modL_reg_imm16(revenRegL dst, iRegL src1, immL16 src2, roddRegL tmp, flagsReg cr) %{
match(Set dst (ModL src1 src2));
effect(KILL tmp, KILL cr); // R0 is killed, too.
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MODG_const $dst,src1,$src2\t # long" %}
ins_encode %{
int divisor = $src2$$constant;
if (divisor != -1) {
__ z_lghi(Z_R0_scratch, divisor);
__ z_lgr($dst$$Register->successor(), $src1$$Register);
__ z_dsgr($dst$$Register /* Dst is even part of a register pair. */, Z_R0_scratch); // Instruction kills tmp.
} else {
__ clear_reg($dst$$Register, true, false);
}
%}
ins_pipe(pipe_class_dummy);
%}
// SHIFT
// Shift left logical
// Register Shift Left variable
instruct sllI_reg_reg(iRegI dst, iRegI src, iRegI nbits, flagsReg cr) %{
match(Set dst (LShiftI src nbits));
effect(KILL cr); // R1 is killed, too.
ins_cost(3 * DEFAULT_COST);
size(14);
format %{ "SLL $dst,$src,[$nbits] & 31\t# use RISC-like SLLG also for int" %}
ins_encode %{
__ z_lgr(Z_R1_scratch, $nbits$$Register);
__ z_nill(Z_R1_scratch, BitsPerJavaInteger-1);
__ z_sllg($dst$$Register, $src$$Register, 0, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Shift Left Immediate
// Constant shift count is masked in ideal graph already.
instruct sllI_reg_imm(iRegI dst, iRegI src, immI nbits) %{
match(Set dst (LShiftI src nbits));
size(6);
format %{ "SLL $dst,$src,$nbits\t# use RISC-like SLLG also for int" %}
ins_encode %{
int Nbit = $nbits$$constant;
assert((Nbit & (BitsPerJavaInteger - 1)) == Nbit, "Check shift mask in ideal graph");
__ z_sllg($dst$$Register, $src$$Register, Nbit & (BitsPerJavaInteger - 1), Z_R0);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Shift Left Immediate by 1bit
instruct sllI_reg_imm_1(iRegI dst, iRegI src, immI_1 nbits) %{
match(Set dst (LShiftI src nbits));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,#0($src,$src)\t # SLL by 1 (int)" %}
ins_encode %{ __ z_la($dst$$Register, 0, $src$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Register Shift Left Long
instruct sllL_reg_reg(iRegL dst, iRegL src1, iRegI nbits) %{
match(Set dst (LShiftL src1 nbits));
size(6);
format %{ "SLLG $dst,$src1,[$nbits]" %}
opcode(SLLG_ZOPC);
ins_encode(z_rsyform_reg_reg(dst, src1, nbits));
ins_pipe(pipe_class_dummy);
%}
// Register Shift Left Long Immediate
instruct sllL_reg_imm(iRegL dst, iRegL src1, immI nbits) %{
match(Set dst (LShiftL src1 nbits));
size(6);
format %{ "SLLG $dst,$src1,$nbits" %}
opcode(SLLG_ZOPC);
ins_encode(z_rsyform_const(dst, src1, nbits));
ins_pipe(pipe_class_dummy);
%}
// Register Shift Left Long Immediate by 1bit
instruct sllL_reg_imm_1(iRegL dst, iRegL src1, immI_1 nbits) %{
match(Set dst (LShiftL src1 nbits));
predicate(PreferLAoverADD);
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LA $dst,#0($src1,$src1)\t # SLLG by 1 (long)" %}
ins_encode %{ __ z_la($dst$$Register, 0, $src1$$Register, $src1$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Shift right arithmetic
// Register Arithmetic Shift Right
instruct sraI_reg_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (RShiftI dst src));
effect(KILL cr); // R1 is killed, too.
ins_cost(3 * DEFAULT_COST);
size(12);
format %{ "SRA $dst,[$src] & 31" %}
ins_encode %{
__ z_lgr(Z_R1_scratch, $src$$Register);
__ z_nill(Z_R1_scratch, BitsPerJavaInteger-1);
__ z_sra($dst$$Register, 0, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Arithmetic Shift Right Immediate
// Constant shift count is masked in ideal graph already.
instruct sraI_reg_imm(iRegI dst, immI src, flagsReg cr) %{
match(Set dst (RShiftI dst src));
effect(KILL cr);
size(4);
format %{ "SRA $dst,$src" %}
ins_encode %{
int Nbit = $src$$constant;
assert((Nbit & (BitsPerJavaInteger - 1)) == Nbit, "Check shift mask in ideal graph");
__ z_sra($dst$$Register, Nbit & (BitsPerJavaInteger - 1), Z_R0);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Arithmetic Shift Right Long
instruct sraL_reg_reg(iRegL dst, iRegL src1, iRegI src2, flagsReg cr) %{
match(Set dst (RShiftL src1 src2));
effect(KILL cr);
size(6);
format %{ "SRAG $dst,$src1,[$src2]" %}
opcode(SRAG_ZOPC);
ins_encode(z_rsyform_reg_reg(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// Register Arithmetic Shift Right Long Immediate
instruct sraL_reg_imm(iRegL dst, iRegL src1, immI src2, flagsReg cr) %{
match(Set dst (RShiftL src1 src2));
effect(KILL cr);
size(6);
format %{ "SRAG $dst,$src1,$src2" %}
opcode(SRAG_ZOPC);
ins_encode(z_rsyform_const(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// Shift right logical
// Register Shift Right
instruct srlI_reg_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (URShiftI dst src));
effect(KILL cr); // R1 is killed, too.
ins_cost(3 * DEFAULT_COST);
size(12);
format %{ "SRL $dst,[$src] & 31" %}
ins_encode %{
__ z_lgr(Z_R1_scratch, $src$$Register);
__ z_nill(Z_R1_scratch, BitsPerJavaInteger-1);
__ z_srl($dst$$Register, 0, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Shift Right Immediate
// Constant shift count is masked in ideal graph already.
instruct srlI_reg_imm(iRegI dst, immI src) %{
match(Set dst (URShiftI dst src));
size(4);
format %{ "SRL $dst,$src" %}
ins_encode %{
int Nbit = $src$$constant;
assert((Nbit & (BitsPerJavaInteger - 1)) == Nbit, "Check shift mask in ideal graph");
__ z_srl($dst$$Register, Nbit & (BitsPerJavaInteger - 1), Z_R0);
%}
ins_pipe(pipe_class_dummy);
%}
// Register Shift Right Long
instruct srlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
match(Set dst (URShiftL src1 src2));
size(6);
format %{ "SRLG $dst,$src1,[$src2]" %}
opcode(SRLG_ZOPC);
ins_encode(z_rsyform_reg_reg(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// Register Shift Right Long Immediate
instruct srlL_reg_imm(iRegL dst, iRegL src1, immI src2) %{
match(Set dst (URShiftL src1 src2));
size(6);
format %{ "SRLG $dst,$src1,$src2" %}
opcode(SRLG_ZOPC);
ins_encode(z_rsyform_const(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
// Register Shift Right Immediate with a CastP2X
instruct srlP_reg_imm(iRegL dst, iRegP_N2P src1, immI src2) %{
match(Set dst (URShiftL (CastP2X src1) src2));
size(6);
format %{ "SRLG $dst,$src1,$src2\t # Cast ptr $src1 to long and shift" %}
opcode(SRLG_ZOPC);
ins_encode(z_rsyform_const(dst, src1, src2));
ins_pipe(pipe_class_dummy);
%}
//----------Rotate Instructions------------------------------------------------
// Rotate left 32bit.
instruct rotlI_reg_immI8(iRegI dst, iRegI src, immI8 lshift, immI8 rshift) %{
match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
size(6);
format %{ "RLL $dst,$src,$lshift\t # ROTL32" %}
opcode(RLL_ZOPC);
ins_encode(z_rsyform_const(dst, src, lshift));
ins_pipe(pipe_class_dummy);
%}
// Rotate left 64bit.
instruct rotlL_reg_immI8(iRegL dst, iRegL src, immI8 lshift, immI8 rshift) %{
match(Set dst (OrL (LShiftL src lshift) (URShiftL src rshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
size(6);
format %{ "RLLG $dst,$src,$lshift\t # ROTL64" %}
opcode(RLLG_ZOPC);
ins_encode(z_rsyform_const(dst, src, lshift));
ins_pipe(pipe_class_dummy);
%}
// Rotate right 32bit.
instruct rotrI_reg_immI8(iRegI dst, iRegI src, immI8 rshift, immI8 lshift) %{
match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
// TODO: s390 port size(FIXED_SIZE);
format %{ "RLL $dst,$src,$rshift\t # ROTR32" %}
opcode(RLL_ZOPC);
ins_encode(z_rsyform_const(dst, src, rshift));
ins_pipe(pipe_class_dummy);
%}
// Rotate right 64bit.
instruct rotrL_reg_immI8(iRegL dst, iRegL src, immI8 rshift, immI8 lshift) %{
match(Set dst (OrL (URShiftL src rshift) (LShiftL src lshift)));
predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
// TODO: s390 port size(FIXED_SIZE);
format %{ "RLLG $dst,$src,$rshift\t # ROTR64" %}
opcode(RLLG_ZOPC);
ins_encode(z_rsyform_const(dst, src, rshift));
ins_pipe(pipe_class_dummy);
%}
//----------Overflow Math Instructions-----------------------------------------
instruct overflowAddI_reg_reg(flagsReg cr, iRegI op1, iRegI op2) %{
match(Set cr (OverflowAddI op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AR $op1,$op2\t # overflow check int" %}
ins_encode %{
__ z_lr(Z_R0_scratch, $op1$$Register);
__ z_ar(Z_R0_scratch, $op2$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowAddI_reg_imm(flagsReg cr, iRegI op1, immI op2) %{
match(Set cr (OverflowAddI op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "AR $op1,$op2\t # overflow check int" %}
ins_encode %{
__ load_const_optimized(Z_R0_scratch, $op2$$constant);
__ z_ar(Z_R0_scratch, $op1$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowAddL_reg_reg(flagsReg cr, iRegL op1, iRegL op2) %{
match(Set cr (OverflowAddL op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(FIXED_SIZE);
format %{ "AGR $op1,$op2\t # overflow check long" %}
ins_encode %{
__ z_lgr(Z_R0_scratch, $op1$$Register);
__ z_agr(Z_R0_scratch, $op2$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowAddL_reg_imm(flagsReg cr, iRegL op1, immL op2) %{
match(Set cr (OverflowAddL op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "AGR $op1,$op2\t # overflow check long" %}
ins_encode %{
__ load_const_optimized(Z_R0_scratch, $op2$$constant);
__ z_agr(Z_R0_scratch, $op1$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowSubI_reg_reg(flagsReg cr, iRegI op1, iRegI op2) %{
match(Set cr (OverflowSubI op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(FIXED_SIZE);
format %{ "SR $op1,$op2\t # overflow check int" %}
ins_encode %{
__ z_lr(Z_R0_scratch, $op1$$Register);
__ z_sr(Z_R0_scratch, $op2$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowSubI_reg_imm(flagsReg cr, iRegI op1, immI op2) %{
match(Set cr (OverflowSubI op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "SR $op1,$op2\t # overflow check int" %}
ins_encode %{
__ load_const_optimized(Z_R1_scratch, $op2$$constant);
__ z_lr(Z_R0_scratch, $op1$$Register);
__ z_sr(Z_R0_scratch, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowSubL_reg_reg(flagsReg cr, iRegL op1, iRegL op2) %{
match(Set cr (OverflowSubL op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(FIXED_SIZE);
format %{ "SGR $op1,$op2\t # overflow check long" %}
ins_encode %{
__ z_lgr(Z_R0_scratch, $op1$$Register);
__ z_sgr(Z_R0_scratch, $op2$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowSubL_reg_imm(flagsReg cr, iRegL op1, immL op2) %{
match(Set cr (OverflowSubL op1 op2));
effect(DEF cr, USE op1, USE op2);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "SGR $op1,$op2\t # overflow check long" %}
ins_encode %{
__ load_const_optimized(Z_R1_scratch, $op2$$constant);
__ z_lgr(Z_R0_scratch, $op1$$Register);
__ z_sgr(Z_R0_scratch, Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowNegI_rReg(flagsReg cr, immI_0 zero, iRegI op2) %{
match(Set cr (OverflowSubI zero op2));
effect(DEF cr, USE op2);
format %{ "NEG $op2\t# overflow check int" %}
ins_encode %{
__ clear_reg(Z_R0_scratch, false, false);
__ z_sr(Z_R0_scratch, $op2$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct overflowNegL_rReg(flagsReg cr, immL_0 zero, iRegL op2) %{
match(Set cr (OverflowSubL zero op2));
effect(DEF cr, USE op2);
format %{ "NEGG $op2\t# overflow check long" %}
ins_encode %{
__ clear_reg(Z_R0_scratch, true, false);
__ z_sgr(Z_R0_scratch, $op2$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
// No intrinsics for multiplication, since there is no easy way
// to check for overflow.
//----------Floating Point Arithmetic Instructions-----------------------------
// ADD
// Add float single precision
instruct addF_reg_reg(regF dst, regF src, flagsReg cr) %{
match(Set dst (AddF dst src));
effect(KILL cr);
ins_cost(ALU_REG_COST);
size(4);
format %{ "AEBR $dst,$src" %}
opcode(AEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct addF_reg_mem(regF dst, memoryRX src, flagsReg cr)%{
match(Set dst (AddF dst (LoadF src)));
effect(KILL cr);
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "AEB $dst,$src\t # floatMemory" %}
opcode(AEB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Add float double precision
instruct addD_reg_reg(regD dst, regD src, flagsReg cr) %{
match(Set dst (AddD dst src));
effect(KILL cr);
ins_cost(ALU_REG_COST);
size(4);
format %{ "ADBR $dst,$src" %}
opcode(ADBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct addD_reg_mem(regD dst, memoryRX src, flagsReg cr)%{
match(Set dst (AddD dst (LoadD src)));
effect(KILL cr);
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "ADB $dst,$src\t # doubleMemory" %}
opcode(ADB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// SUB
// Sub float single precision
instruct subF_reg_reg(regF dst, regF src, flagsReg cr) %{
match(Set dst (SubF dst src));
effect(KILL cr);
ins_cost(ALU_REG_COST);
size(4);
format %{ "SEBR $dst,$src" %}
opcode(SEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct subF_reg_mem(regF dst, memoryRX src, flagsReg cr)%{
match(Set dst (SubF dst (LoadF src)));
effect(KILL cr);
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "SEB $dst,$src\t # floatMemory" %}
opcode(SEB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Sub float double precision
instruct subD_reg_reg(regD dst, regD src, flagsReg cr) %{
match(Set dst (SubD dst src));
effect(KILL cr);
ins_cost(ALU_REG_COST);
size(4);
format %{ "SDBR $dst,$src" %}
opcode(SDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct subD_reg_mem(regD dst, memoryRX src, flagsReg cr)%{
match(Set dst (SubD dst (LoadD src)));
effect(KILL cr);
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "SDB $dst,$src\t # doubleMemory" %}
opcode(SDB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// MUL
// Mul float single precision
instruct mulF_reg_reg(regF dst, regF src) %{
match(Set dst (MulF dst src));
// CC unchanged by MUL.
ins_cost(ALU_REG_COST);
size(4);
format %{ "MEEBR $dst,$src" %}
opcode(MEEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct mulF_reg_mem(regF dst, memoryRX src)%{
match(Set dst (MulF dst (LoadF src)));
// CC unchanged by MUL.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MEEB $dst,$src\t # floatMemory" %}
opcode(MEEB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Mul float double precision
instruct mulD_reg_reg(regD dst, regD src) %{
match(Set dst (MulD dst src));
// CC unchanged by MUL.
ins_cost(ALU_REG_COST);
size(4);
format %{ "MDBR $dst,$src" %}
opcode(MDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct mulD_reg_mem(regD dst, memoryRX src)%{
match(Set dst (MulD dst (LoadD src)));
// CC unchanged by MUL.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MDB $dst,$src\t # doubleMemory" %}
opcode(MDB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Multiply-Accumulate
// src1 * src2 + dst
instruct maddF_reg_reg(regF dst, regF src1, regF src2) %{
match(Set dst (FmaF dst (Binary src1 src2)));
// CC unchanged by MUL-ADD.
ins_cost(ALU_REG_COST);
size(4);
format %{ "MAEBR $dst, $src1, $src2" %}
ins_encode %{
__ z_maebr($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 + dst
instruct maddD_reg_reg(regD dst, regD src1, regD src2) %{
match(Set dst (FmaD dst (Binary src1 src2)));
// CC unchanged by MUL-ADD.
ins_cost(ALU_REG_COST);
size(4);
format %{ "MADBR $dst, $src1, $src2" %}
ins_encode %{
__ z_madbr($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 - dst
instruct msubF_reg_reg(regF dst, regF src1, regF src2) %{
match(Set dst (FmaF (NegF dst) (Binary src1 src2)));
// CC unchanged by MUL-SUB.
ins_cost(ALU_REG_COST);
size(4);
format %{ "MSEBR $dst, $src1, $src2" %}
ins_encode %{
__ z_msebr($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 - dst
instruct msubD_reg_reg(regD dst, regD src1, regD src2) %{
match(Set dst (FmaD (NegD dst) (Binary src1 src2)));
// CC unchanged by MUL-SUB.
ins_cost(ALU_REG_COST);
size(4);
format %{ "MSDBR $dst, $src1, $src2" %}
ins_encode %{
__ z_msdbr($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 + dst
instruct maddF_reg_mem(regF dst, regF src1, memoryRX src2) %{
match(Set dst (FmaF dst (Binary src1 (LoadF src2))));
// CC unchanged by MUL-ADD.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MAEB $dst, $src1, $src2" %}
ins_encode %{
__ z_maeb($dst$$FloatRegister, $src1$$FloatRegister,
Address(reg_to_register_object($src2$$base), $src2$$index$$Register, $src2$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 + dst
instruct maddD_reg_mem(regD dst, regD src1, memoryRX src2) %{
match(Set dst (FmaD dst (Binary src1 (LoadD src2))));
// CC unchanged by MUL-ADD.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MADB $dst, $src1, $src2" %}
ins_encode %{
__ z_madb($dst$$FloatRegister, $src1$$FloatRegister,
Address(reg_to_register_object($src2$$base), $src2$$index$$Register, $src2$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 - dst
instruct msubF_reg_mem(regF dst, regF src1, memoryRX src2) %{
match(Set dst (FmaF (NegF dst) (Binary src1 (LoadF src2))));
// CC unchanged by MUL-SUB.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MSEB $dst, $src1, $src2" %}
ins_encode %{
__ z_mseb($dst$$FloatRegister, $src1$$FloatRegister,
Address(reg_to_register_object($src2$$base), $src2$$index$$Register, $src2$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 - dst
instruct msubD_reg_mem(regD dst, regD src1, memoryRX src2) %{
match(Set dst (FmaD (NegD dst) (Binary src1 (LoadD src2))));
// CC unchanged by MUL-SUB.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MSDB $dst, $src1, $src2" %}
ins_encode %{
__ z_msdb($dst$$FloatRegister, $src1$$FloatRegister,
Address(reg_to_register_object($src2$$base), $src2$$index$$Register, $src2$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 + dst
instruct maddF_mem_reg(regF dst, memoryRX src1, regF src2) %{
match(Set dst (FmaF dst (Binary (LoadF src1) src2)));
// CC unchanged by MUL-ADD.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MAEB $dst, $src1, $src2" %}
ins_encode %{
__ z_maeb($dst$$FloatRegister, $src2$$FloatRegister,
Address(reg_to_register_object($src1$$base), $src1$$index$$Register, $src1$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 + dst
instruct maddD_mem_reg(regD dst, memoryRX src1, regD src2) %{
match(Set dst (FmaD dst (Binary (LoadD src1) src2)));
// CC unchanged by MUL-ADD.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MADB $dst, $src1, $src2" %}
ins_encode %{
__ z_madb($dst$$FloatRegister, $src2$$FloatRegister,
Address(reg_to_register_object($src1$$base), $src1$$index$$Register, $src1$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 - dst
instruct msubF_mem_reg(regF dst, memoryRX src1, regF src2) %{
match(Set dst (FmaF (NegF dst) (Binary (LoadF src1) src2)));
// CC unchanged by MUL-SUB.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MSEB $dst, $src1, $src2" %}
ins_encode %{
__ z_mseb($dst$$FloatRegister, $src2$$FloatRegister,
Address(reg_to_register_object($src1$$base), $src1$$index$$Register, $src1$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// src1 * src2 - dst
instruct msubD_mem_reg(regD dst, memoryRX src1, regD src2) %{
match(Set dst (FmaD (NegD dst) (Binary (LoadD src1) src2)));
// CC unchanged by MUL-SUB.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "MSDB $dst, $src1, $src2" %}
ins_encode %{
__ z_msdb($dst$$FloatRegister, $src2$$FloatRegister,
Address(reg_to_register_object($src1$$base), $src1$$index$$Register, $src1$$disp));
%}
ins_pipe(pipe_class_dummy);
%}
// DIV
// Div float single precision
instruct divF_reg_reg(regF dst, regF src) %{
match(Set dst (DivF dst src));
// CC unchanged by DIV.
ins_cost(ALU_REG_COST);
size(4);
format %{ "DEBR $dst,$src" %}
opcode(DEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct divF_reg_mem(regF dst, memoryRX src)%{
match(Set dst (DivF dst (LoadF src)));
// CC unchanged by DIV.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "DEB $dst,$src\t # floatMemory" %}
opcode(DEB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Div float double precision
instruct divD_reg_reg(regD dst, regD src) %{
match(Set dst (DivD dst src));
// CC unchanged by DIV.
ins_cost(ALU_REG_COST);
size(4);
format %{ "DDBR $dst,$src" %}
opcode(DDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct divD_reg_mem(regD dst, memoryRX src)%{
match(Set dst (DivD dst (LoadD src)));
// CC unchanged by DIV.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "DDB $dst,$src\t # doubleMemory" %}
opcode(DDB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
// ABS
// Absolute float single precision
instruct absF_reg(regF dst, regF src, flagsReg cr) %{
match(Set dst (AbsF src));
effect(KILL cr);
size(4);
format %{ "LPEBR $dst,$src\t float" %}
opcode(LPEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Absolute float double precision
instruct absD_reg(regD dst, regD src, flagsReg cr) %{
match(Set dst (AbsD src));
effect(KILL cr);
size(4);
format %{ "LPDBR $dst,$src\t double" %}
opcode(LPDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// NEG(ABS)
// Negative absolute float single precision
instruct nabsF_reg(regF dst, regF src, flagsReg cr) %{
match(Set dst (NegF (AbsF src)));
effect(KILL cr);
size(4);
format %{ "LNEBR $dst,$src\t float" %}
opcode(LNEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Negative absolute float double precision
instruct nabsD_reg(regD dst, regD src, flagsReg cr) %{
match(Set dst (NegD (AbsD src)));
effect(KILL cr);
size(4);
format %{ "LNDBR $dst,$src\t double" %}
opcode(LNDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// NEG
instruct negF_reg(regF dst, regF src, flagsReg cr) %{
match(Set dst (NegF src));
effect(KILL cr);
size(4);
format %{ "NegF $dst,$src\t float" %}
ins_encode %{ __ z_lcebr($dst$$FloatRegister, $src$$FloatRegister); %}
ins_pipe(pipe_class_dummy);
%}
instruct negD_reg(regD dst, regD src, flagsReg cr) %{
match(Set dst (NegD src));
effect(KILL cr);
size(4);
format %{ "NegD $dst,$src\t double" %}
ins_encode %{ __ z_lcdbr($dst$$FloatRegister, $src$$FloatRegister); %}
ins_pipe(pipe_class_dummy);
%}
// SQRT
// Sqrt float precision
instruct sqrtF_reg(regF dst, regF src) %{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
// CC remains unchanged.
ins_cost(ALU_REG_COST);
size(4);
format %{ "SQEBR $dst,$src" %}
opcode(SQEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Sqrt double precision
instruct sqrtD_reg(regD dst, regD src) %{
match(Set dst (SqrtD src));
// CC remains unchanged.
ins_cost(ALU_REG_COST);
size(4);
format %{ "SQDBR $dst,$src" %}
opcode(SQDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct sqrtF_mem(regF dst, memoryRX src) %{
match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
// CC remains unchanged.
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "SQEB $dst,$src\t # floatMemory" %}
opcode(SQEB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct sqrtD_mem(regD dst, memoryRX src) %{
match(Set dst (SqrtD src));
// CC remains unchanged.
ins_cost(ALU_MEMORY_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "SQDB $dst,$src\t # doubleMemory" %}
opcode(SQDB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
//----------Logical Instructions-----------------------------------------------
// Register And
instruct andI_reg_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (AndI dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST_LOW);
size(2);
format %{ "NR $dst,$src\t # int" %}
opcode(NR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct andI_Reg_mem(iRegI dst, memory src, flagsReg cr)%{
match(Set dst (AndI dst (LoadI src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "N(Y) $dst, $src\t # int" %}
opcode(NY_ZOPC, N_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate And
instruct andI_reg_uimm32(iRegI dst, uimmI src, flagsReg cr) %{
match(Set dst (AndI dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
size(6);
format %{ "NILF $dst,$src" %}
opcode(NILF_ZOPC);
ins_encode(z_rilform_unsigned(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct andI_reg_uimmI_LH1(iRegI dst, uimmI_LH1 src, flagsReg cr) %{
match(Set dst (AndI dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NILH $dst,$src" %}
ins_encode %{ __ z_nilh($dst$$Register, ($src$$constant >> 16) & 0xFFFF); %}
ins_pipe(pipe_class_dummy);
%}
instruct andI_reg_uimmI_LL1(iRegI dst, uimmI_LL1 src, flagsReg cr) %{
match(Set dst (AndI dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NILL $dst,$src" %}
ins_encode %{ __ z_nill($dst$$Register, $src$$constant & 0xFFFF); %}
ins_pipe(pipe_class_dummy);
%}
// Register And Long
instruct andL_reg_reg(iRegL dst, iRegL src, flagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NGR $dst,$src\t # long" %}
opcode(NGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct andL_Reg_mem(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (AndL dst (LoadL src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "NG $dst, $src\t # long" %}
opcode(NG_ZOPC, NG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct andL_reg_uimmL_LL1(iRegL dst, uimmL_LL1 src, flagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NILL $dst,$src\t # long" %}
ins_encode %{ __ z_nill($dst$$Register, $src$$constant & 0xFFFF); %}
ins_pipe(pipe_class_dummy);
%}
instruct andL_reg_uimmL_LH1(iRegL dst, uimmL_LH1 src, flagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NILH $dst,$src\t # long" %}
ins_encode %{ __ z_nilh($dst$$Register, ($src$$constant >> 16) & 0xFFFF); %}
ins_pipe(pipe_class_dummy);
%}
instruct andL_reg_uimmL_HL1(iRegL dst, uimmL_HL1 src, flagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NIHL $dst,$src\t # long" %}
ins_encode %{ __ z_nihl($dst$$Register, ($src$$constant >> 32) & 0xFFFF); %}
ins_pipe(pipe_class_dummy);
%}
instruct andL_reg_uimmL_HH1(iRegL dst, uimmL_HH1 src, flagsReg cr) %{
match(Set dst (AndL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "NIHH $dst,$src\t # long" %}
ins_encode %{ __ z_nihh($dst$$Register, ($src$$constant >> 48) & 0xFFFF); %}
ins_pipe(pipe_class_dummy);
%}
// OR
// Or Instructions
// Register Or
instruct orI_reg_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (OrI dst src));
effect(KILL cr);
size(2);
format %{ "OR $dst,$src" %}
opcode(OR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct orI_Reg_mem(iRegI dst, memory src, flagsReg cr)%{
match(Set dst (OrI dst (LoadI src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "O(Y) $dst, $src\t # int" %}
opcode(OY_ZOPC, O_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Or
instruct orI_reg_uimm16(iRegI dst, uimmI16 con, flagsReg cr) %{
match(Set dst (OrI dst con));
effect(KILL cr);
size(4);
format %{ "OILL $dst,$con" %}
opcode(OILL_ZOPC);
ins_encode(z_riform_unsigned(dst,con));
ins_pipe(pipe_class_dummy);
%}
instruct orI_reg_uimm32(iRegI dst, uimmI con, flagsReg cr) %{
match(Set dst (OrI dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
size(6);
format %{ "OILF $dst,$con" %}
opcode(OILF_ZOPC);
ins_encode(z_rilform_unsigned(dst,con));
ins_pipe(pipe_class_dummy);
%}
// Register Or Long
instruct orL_reg_reg(iRegL dst, iRegL src, flagsReg cr) %{
match(Set dst (OrL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "OGR $dst,$src\t # long" %}
opcode(OGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct orL_Reg_mem(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (OrL dst (LoadL src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "OG $dst, $src\t # long" %}
opcode(OG_ZOPC, OG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Or long
instruct orL_reg_uimm16(iRegL dst, uimmL16 con, flagsReg cr) %{
match(Set dst (OrL dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "OILL $dst,$con\t # long" %}
opcode(OILL_ZOPC);
ins_encode(z_riform_unsigned(dst,con));
ins_pipe(pipe_class_dummy);
%}
instruct orL_reg_uimm32(iRegI dst, uimmL32 con, flagsReg cr) %{
match(Set dst (OrI dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
// TODO: s390 port size(FIXED_SIZE);
format %{ "OILF $dst,$con\t # long" %}
opcode(OILF_ZOPC);
ins_encode(z_rilform_unsigned(dst,con));
ins_pipe(pipe_class_dummy);
%}
// XOR
// Register Xor
instruct xorI_reg_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (XorI dst src));
effect(KILL cr);
size(2);
format %{ "XR $dst,$src" %}
opcode(XR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct xorI_Reg_mem(iRegI dst, memory src, flagsReg cr)%{
match(Set dst (XorI dst (LoadI src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "X(Y) $dst, $src\t # int" %}
opcode(XY_ZOPC, X_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Xor
instruct xorI_reg_uimm32(iRegI dst, uimmI src, flagsReg cr) %{
match(Set dst (XorI dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
size(6);
format %{ "XILF $dst,$src" %}
opcode(XILF_ZOPC);
ins_encode(z_rilform_unsigned(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Register Xor Long
instruct xorL_reg_reg(iRegL dst, iRegL src, flagsReg cr) %{
match(Set dst (XorL dst src));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "XGR $dst,$src\t # long" %}
opcode(XGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct xorL_Reg_mem(iRegL dst, memory src, flagsReg cr)%{
match(Set dst (XorL dst (LoadL src)));
effect(KILL cr);
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "XG $dst, $src\t # long" %}
opcode(XG_ZOPC, XG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Immediate Xor Long
instruct xorL_reg_uimm32(iRegL dst, uimmL32 con, flagsReg cr) %{
match(Set dst (XorL dst con));
effect(KILL cr);
ins_cost(DEFAULT_COST_HIGH);
size(6);
format %{ "XILF $dst,$con\t # long" %}
opcode(XILF_ZOPC);
ins_encode(z_rilform_unsigned(dst,con));
ins_pipe(pipe_class_dummy);
%}
//----------Convert to Boolean-------------------------------------------------
// Convert integer to boolean.
instruct convI2B(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (Conv2B src));
effect(KILL cr);
ins_cost(3 * DEFAULT_COST);
size(6);
format %{ "convI2B $dst,$src" %}
ins_encode %{
__ z_lnr($dst$$Register, $src$$Register); // Rdst := -|Rsrc|, i.e. Rdst == 0 <=> Rsrc == 0
__ z_srl($dst$$Register, 31); // Rdst := sign(Rdest)
%}
ins_pipe(pipe_class_dummy);
%}
instruct convP2B(iRegI dst, iRegP_N2P src, flagsReg cr) %{
match(Set dst (Conv2B src));
effect(KILL cr);
ins_cost(3 * DEFAULT_COST);
size(10);
format %{ "convP2B $dst,$src" %}
ins_encode %{
__ z_lngr($dst$$Register, $src$$Register); // Rdst := -|Rsrc| i.e. Rdst == 0 <=> Rsrc == 0
__ z_srlg($dst$$Register, $dst$$Register, 63); // Rdst := sign(Rdest)
%}
ins_pipe(pipe_class_dummy);
%}
instruct cmpLTMask_reg_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (CmpLTMask dst src));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST);
size(18);
format %{ "Set $dst CmpLTMask $dst,$src" %}
ins_encode %{
// Avoid signed 32 bit overflow: Do sign extend and sub 64 bit.
__ z_lgfr(Z_R0_scratch, $src$$Register);
__ z_lgfr($dst$$Register, $dst$$Register);
__ z_sgr($dst$$Register, Z_R0_scratch);
__ z_srag($dst$$Register, $dst$$Register, 63);
%}
ins_pipe(pipe_class_dummy);
%}
instruct cmpLTMask_reg_zero(iRegI dst, immI_0 zero, flagsReg cr) %{
match(Set dst (CmpLTMask dst zero));
effect(KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "Set $dst CmpLTMask $dst,$zero" %}
ins_encode %{ __ z_sra($dst$$Register, 31); %}
ins_pipe(pipe_class_dummy);
%}
//----------Arithmetic Conversion Instructions---------------------------------
// The conversions operations are all Alpha sorted. Please keep it that way!
instruct convD2F_reg(regF dst, regD src) %{
match(Set dst (ConvD2F src));
// CC remains unchanged.
size(4);
format %{ "LEDBR $dst,$src" %}
opcode(LEDBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct convF2I_reg(iRegI dst, regF src, flagsReg cr) %{
match(Set dst (ConvF2I src));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(16);
format %{ "convF2I $dst,$src" %}
ins_encode %{
Label done;
__ clear_reg($dst$$Register, false, false); // Initialize with result for unordered: 0.
__ z_cebr($src$$FloatRegister, $src$$FloatRegister); // Round.
__ z_brno(done); // Result is zero if unordered argument.
__ z_cfebr($dst$$Register, $src$$FloatRegister, Assembler::to_zero);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct convD2I_reg(iRegI dst, regD src, flagsReg cr) %{
match(Set dst (ConvD2I src));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(16);
format %{ "convD2I $dst,$src" %}
ins_encode %{
Label done;
__ clear_reg($dst$$Register, false, false); // Initialize with result for unordered: 0.
__ z_cdbr($src$$FloatRegister, $src$$FloatRegister); // Round.
__ z_brno(done); // Result is zero if unordered argument.
__ z_cfdbr($dst$$Register, $src$$FloatRegister, Assembler::to_zero);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct convF2L_reg(iRegL dst, regF src, flagsReg cr) %{
match(Set dst (ConvF2L src));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(16);
format %{ "convF2L $dst,$src" %}
ins_encode %{
Label done;
__ clear_reg($dst$$Register, true, false); // Initialize with result for unordered: 0.
__ z_cebr($src$$FloatRegister, $src$$FloatRegister); // Round.
__ z_brno(done); // Result is zero if unordered argument.
__ z_cgebr($dst$$Register, $src$$FloatRegister, Assembler::to_zero);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct convD2L_reg(iRegL dst, regD src, flagsReg cr) %{
match(Set dst (ConvD2L src));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
size(16);
format %{ "convD2L $dst,$src" %}
ins_encode %{
Label done;
__ clear_reg($dst$$Register, true, false); // Initialize with result for unordered: 0.
__ z_cdbr($src$$FloatRegister, $src$$FloatRegister); // Round.
__ z_brno(done); // Result is zero if unordered argument.
__ z_cgdbr($dst$$Register, $src$$FloatRegister, Assembler::to_zero);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct convF2D_reg(regD dst, regF src) %{
match(Set dst (ConvF2D src));
// CC remains unchanged.
size(4);
format %{ "LDEBR $dst,$src" %}
opcode(LDEBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct convF2D_mem(regD dst, memoryRX src) %{
match(Set dst (ConvF2D src));
// CC remains unchanged.
size(6);
format %{ "LDEB $dst,$src" %}
opcode(LDEB_ZOPC);
ins_encode(z_form_rt_memFP(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct convI2D_reg(regD dst, iRegI src) %{
match(Set dst (ConvI2D src));
// CC remains unchanged.
ins_cost(DEFAULT_COST);
size(4);
format %{ "CDFBR $dst,$src" %}
opcode(CDFBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Optimization that saves up to two memory operations for each conversion.
instruct convI2F_ireg(regF dst, iRegI src) %{
match(Set dst (ConvI2F src));
// CC remains unchanged.
ins_cost(DEFAULT_COST);
size(4);
format %{ "CEFBR $dst,$src\t # convert int to float" %}
opcode(CEFBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct convI2L_reg(iRegL dst, iRegI src) %{
match(Set dst (ConvI2L src));
size(4);
format %{ "LGFR $dst,$src\t # int->long" %}
opcode(LGFR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Zero-extend convert int to long.
instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask) %{
match(Set dst (AndL (ConvI2L src) mask));
size(4);
format %{ "LLGFR $dst, $src \t # zero-extend int to long" %}
ins_encode %{ __ z_llgfr($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Zero-extend convert int to long.
instruct convI2L_mem_zex(iRegL dst, memory src, immL_32bits mask) %{
match(Set dst (AndL (ConvI2L (LoadI src)) mask));
// Uses load_const_optmized, so size can vary.
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "LLGF $dst, $src \t # zero-extend int to long" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Zero-extend long
instruct zeroExtend_long(iRegL dst, iRegL src, immL_32bits mask) %{
match(Set dst (AndL src mask));
size(4);
format %{ "LLGFR $dst, $src \t # zero-extend long to long" %}
ins_encode %{ __ z_llgfr($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
instruct rShiftI16_lShiftI16_reg(iRegI dst, iRegI src, immI_16 amount) %{
match(Set dst (RShiftI (LShiftI src amount) amount));
size(4);
format %{ "LHR $dst,$src\t short->int" %}
opcode(LHR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct rShiftI24_lShiftI24_reg(iRegI dst, iRegI src, immI_24 amount) %{
match(Set dst (RShiftI (LShiftI src amount) amount));
size(4);
format %{ "LBR $dst,$src\t byte->int" %}
opcode(LBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
match(Set dst (MoveF2I src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "L $dst,$src\t # MoveF2I" %}
opcode(L_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
// javax.imageio.stream.ImageInputStreamImpl.toFloats([B[FII)
instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
match(Set dst (MoveI2F src));
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LE $dst,$src\t # MoveI2F" %}
opcode(LE_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
match(Set dst (MoveD2L src));
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "LG $src,$dst\t # MoveD2L" %}
opcode(LG_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
match(Set dst (MoveL2D src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LD $dst,$src\t # MoveL2D" %}
opcode(LD_ZOPC);
ins_encode(z_form_rt_mem(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
match(Set dst (MoveI2F src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "ST $src,$dst\t # MoveI2F" %}
opcode(ST_ZOPC);
ins_encode(z_form_rt_mem(src, dst));
ins_pipe(pipe_class_dummy);
%}
instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
match(Set dst (MoveD2L src));
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STD $src,$dst\t # MoveD2L" %}
opcode(STD_ZOPC);
ins_encode(z_form_rt_mem(src,dst));
ins_pipe(pipe_class_dummy);
%}
instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
match(Set dst (MoveL2D src));
ins_cost(MEMORY_REF_COST);
size(6);
format %{ "STG $src,$dst\t # MoveL2D" %}
opcode(STG_ZOPC);
ins_encode(z_form_rt_mem(src,dst));
ins_pipe(pipe_class_dummy);
%}
instruct convL2F_reg(regF dst, iRegL src) %{
match(Set dst (ConvL2F src));
// CC remains unchanged.
ins_cost(DEFAULT_COST);
size(4);
format %{ "CEGBR $dst,$src" %}
opcode(CEGBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct convL2D_reg(regD dst, iRegL src) %{
match(Set dst (ConvL2D src));
// CC remains unchanged.
ins_cost(DEFAULT_COST);
size(4);
format %{ "CDGBR $dst,$src" %}
opcode(CDGBR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct convL2I_reg(iRegI dst, iRegL src) %{
match(Set dst (ConvL2I src));
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "LR $dst,$src\t # long->int (if needed)" %}
ins_encode %{ __ lr_if_needed($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Register Shift Right Immediate
instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt, flagsReg cr) %{
match(Set dst (ConvL2I (RShiftL src cnt)));
effect(KILL cr);
size(6);
format %{ "SRAG $dst,$src,$cnt" %}
opcode(SRAG_ZOPC);
ins_encode(z_rsyform_const(dst, src, cnt));
ins_pipe(pipe_class_dummy);
%}
//----------TRAP based zero checks and range checks----------------------------
// SIGTRAP based implicit range checks in compiled code.
// A range check in the ideal world has one of the following shapes:
// - (If le (CmpU length index)), (IfTrue throw exception)
// - (If lt (CmpU index length)), (IfFalse throw exception)
//
// Match range check 'If le (CmpU length index)'
instruct rangeCheck_iReg_uimmI16(cmpOpT cmp, iRegI length, uimmI16 index, label labl) %{
match(If cmp (CmpU length index));
effect(USE labl);
predicate(TrapBasedRangeChecks &&
_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
PROB_UNLIKELY(_leaf->as_If ()->_prob) >= PROB_ALWAYS &&
Matcher::branches_to_uncommon_trap(_leaf));
ins_cost(1);
// TODO: s390 port size(FIXED_SIZE);
ins_is_TrapBasedCheckNode(true);
format %{ "RangeCheck len=$length cmp=$cmp idx=$index => trap $labl" %}
ins_encode %{ __ z_clfit($length$$Register, $index$$constant, $cmp$$cmpcode); %}
ins_pipe(pipe_class_trap);
%}
// Match range check 'If lt (CmpU index length)'
instruct rangeCheck_iReg_iReg(cmpOpT cmp, iRegI index, iRegI length, label labl, flagsReg cr) %{
match(If cmp (CmpU index length));
effect(USE labl, KILL cr);
predicate(TrapBasedRangeChecks &&
_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
_leaf->as_If ()->_prob >= PROB_ALWAYS &&
Matcher::branches_to_uncommon_trap(_leaf));
ins_cost(1);
// TODO: s390 port size(FIXED_SIZE);
ins_is_TrapBasedCheckNode(true);
format %{ "RangeCheck idx=$index cmp=$cmp len=$length => trap $labl" %}
ins_encode %{ __ z_clrt($index$$Register, $length$$Register, $cmp$$cmpcode); %}
ins_pipe(pipe_class_trap);
%}
// Match range check 'If lt (CmpU index length)'
instruct rangeCheck_uimmI16_iReg(cmpOpT cmp, iRegI index, uimmI16 length, label labl) %{
match(If cmp (CmpU index length));
effect(USE labl);
predicate(TrapBasedRangeChecks &&
_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
_leaf->as_If ()->_prob >= PROB_ALWAYS &&
Matcher::branches_to_uncommon_trap(_leaf));
ins_cost(1);
// TODO: s390 port size(FIXED_SIZE);
ins_is_TrapBasedCheckNode(true);
format %{ "RangeCheck idx=$index cmp=$cmp len= $length => trap $labl" %}
ins_encode %{ __ z_clfit($index$$Register, $length$$constant, $cmp$$cmpcode); %}
ins_pipe(pipe_class_trap);
%}
// Implicit zero checks (more implicit null checks).
instruct zeroCheckP_iReg_imm0(cmpOpT cmp, iRegP_N2P value, immP0 zero, label labl) %{
match(If cmp (CmpP value zero));
effect(USE labl);
predicate(TrapBasedNullChecks &&
_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
_leaf->as_If ()->_prob >= PROB_LIKELY_MAG(4) &&
Matcher::branches_to_uncommon_trap(_leaf));
size(6);
ins_is_TrapBasedCheckNode(true);
format %{ "ZeroCheckP value=$value cmp=$cmp zero=$zero => trap $labl" %}
ins_encode %{ __ z_cgit($value$$Register, 0, $cmp$$cmpcode); %}
ins_pipe(pipe_class_trap);
%}
// Implicit zero checks (more implicit null checks).
instruct zeroCheckN_iReg_imm0(cmpOpT cmp, iRegN_P2N value, immN0 zero, label labl) %{
match(If cmp (CmpN value zero));
effect(USE labl);
predicate(TrapBasedNullChecks &&
_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
_leaf->as_If ()->_prob >= PROB_LIKELY_MAG(4) &&
Matcher::branches_to_uncommon_trap(_leaf));
size(6);
ins_is_TrapBasedCheckNode(true);
format %{ "ZeroCheckN value=$value cmp=$cmp zero=$zero => trap $labl" %}
ins_encode %{ __ z_cit($value$$Register, 0, $cmp$$cmpcode); %}
ins_pipe(pipe_class_trap);
%}
//----------Compare instructions-----------------------------------------------
// INT signed
// Compare Integers
instruct compI_reg_reg(flagsReg cr, iRegI op1, iRegI op2) %{
match(Set cr (CmpI op1 op2));
size(2);
format %{ "CR $op1,$op2" %}
opcode(CR_ZOPC);
ins_encode(z_rrform(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compI_reg_imm(flagsReg cr, iRegI op1, immI op2) %{
match(Set cr (CmpI op1 op2));
size(6);
format %{ "CFI $op1,$op2" %}
opcode(CFI_ZOPC);
ins_encode(z_rilform_signed(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compI_reg_imm16(flagsReg cr, iRegI op1, immI16 op2) %{
match(Set cr (CmpI op1 op2));
size(4);
format %{ "CHI $op1,$op2" %}
opcode(CHI_ZOPC);
ins_encode(z_riform_signed(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compI_reg_imm0(flagsReg cr, iRegI op1, immI_0 zero) %{
match(Set cr (CmpI op1 zero));
ins_cost(DEFAULT_COST_LOW);
size(2);
format %{ "LTR $op1,$op1" %}
opcode(LTR_ZOPC);
ins_encode(z_rrform(op1, op1));
ins_pipe(pipe_class_dummy);
%}
instruct compI_reg_mem(flagsReg cr, iRegI op1, memory op2)%{
match(Set cr (CmpI op1 (LoadI op2)));
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "C(Y) $op1, $op2\t # int" %}
opcode(CY_ZOPC, C_ZOPC);
ins_encode(z_form_rt_mem_opt(op1, op2));
ins_pipe(pipe_class_dummy);
%}
// INT unsigned
instruct compU_reg_reg(flagsReg cr, iRegI op1, iRegI op2) %{
match(Set cr (CmpU op1 op2));
size(2);
format %{ "CLR $op1,$op2\t # unsigned" %}
opcode(CLR_ZOPC);
ins_encode(z_rrform(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compU_reg_uimm(flagsReg cr, iRegI op1, uimmI op2) %{
match(Set cr (CmpU op1 op2));
size(6);
format %{ "CLFI $op1,$op2\t # unsigned" %}
opcode(CLFI_ZOPC);
ins_encode(z_rilform_unsigned(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compU_reg_mem(flagsReg cr, iRegI op1, memory op2)%{
match(Set cr (CmpU op1 (LoadI op2)));
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CL(Y) $op1, $op2\t # unsigned" %}
opcode(CLY_ZOPC, CL_ZOPC);
ins_encode(z_form_rt_mem_opt(op1, op2));
ins_pipe(pipe_class_dummy);
%}
// LONG signed
instruct compL_reg_reg(flagsReg cr, iRegL op1, iRegL op2) %{
match(Set cr (CmpL op1 op2));
size(4);
format %{ "CGR $op1,$op2\t # long" %}
opcode(CGR_ZOPC);
ins_encode(z_rreform(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compL_reg_regI(flagsReg cr, iRegL op1, iRegI op2) %{
match(Set cr (CmpL op1 (ConvI2L op2)));
size(4);
format %{ "CGFR $op1,$op2\t # long/int" %}
opcode(CGFR_ZOPC);
ins_encode(z_rreform(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compL_reg_imm32(flagsReg cr, iRegL op1, immL32 con) %{
match(Set cr (CmpL op1 con));
size(6);
format %{ "CGFI $op1,$con" %}
opcode(CGFI_ZOPC);
ins_encode(z_rilform_signed(op1, con));
ins_pipe(pipe_class_dummy);
%}
instruct compL_reg_imm16(flagsReg cr, iRegL op1, immL16 con) %{
match(Set cr (CmpL op1 con));
size(4);
format %{ "CGHI $op1,$con" %}
opcode(CGHI_ZOPC);
ins_encode(z_riform_signed(op1, con));
ins_pipe(pipe_class_dummy);
%}
instruct compL_reg_imm0(flagsReg cr, iRegL op1, immL_0 con) %{
match(Set cr (CmpL op1 con));
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LTGR $op1,$op1" %}
opcode(LTGR_ZOPC);
ins_encode(z_rreform(op1, op1));
ins_pipe(pipe_class_dummy);
%}
instruct compL_conv_reg_imm0(flagsReg cr, iRegI op1, immL_0 con) %{
match(Set cr (CmpL (ConvI2L op1) con));
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LTGFR $op1,$op1" %}
opcode(LTGFR_ZOPC);
ins_encode(z_rreform(op1, op1));
ins_pipe(pipe_class_dummy);
%}
instruct compL_reg_mem(iRegL dst, memory src, flagsReg cr)%{
match(Set cr (CmpL dst (LoadL src)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "CG $dst, $src\t # long" %}
opcode(CG_ZOPC, CG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct compL_reg_memI(iRegL dst, memory src, flagsReg cr)%{
match(Set cr (CmpL dst (ConvI2L (LoadI src))));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "CGF $dst, $src\t # long/int" %}
opcode(CGF_ZOPC, CGF_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
// LONG unsigned
// Added CmpUL for LoopPredicate.
instruct compUL_reg_reg(flagsReg cr, iRegL op1, iRegL op2) %{
match(Set cr (CmpUL op1 op2));
size(4);
format %{ "CLGR $op1,$op2\t # long" %}
opcode(CLGR_ZOPC);
ins_encode(z_rreform(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compUL_reg_imm32(flagsReg cr, iRegL op1, uimmL32 con) %{
match(Set cr (CmpUL op1 con));
size(6);
format %{ "CLGFI $op1,$con" %}
opcode(CLGFI_ZOPC);
ins_encode(z_rilform_unsigned(op1, con));
ins_pipe(pipe_class_dummy);
%}
// PTR unsigned
instruct compP_reg_reg(flagsReg cr, iRegP_N2P op1, iRegP_N2P op2) %{
match(Set cr (CmpP op1 op2));
size(4);
format %{ "CLGR $op1,$op2\t # ptr" %}
opcode(CLGR_ZOPC);
ins_encode(z_rreform(op1, op2));
ins_pipe(pipe_class_dummy);
%}
instruct compP_reg_imm0(flagsReg cr, iRegP_N2P op1, immP0 op2) %{
match(Set cr (CmpP op1 op2));
ins_cost(DEFAULT_COST_LOW);
size(4);
format %{ "LTGR $op1, $op1\t # ptr" %}
opcode(LTGR_ZOPC);
ins_encode(z_rreform(op1, op1));
ins_pipe(pipe_class_dummy);
%}
// Don't use LTGFR which performs sign extend.
instruct compP_decode_reg_imm0(flagsReg cr, iRegN op1, immP0 op2) %{
match(Set cr (CmpP (DecodeN op1) op2));
predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
ins_cost(DEFAULT_COST_LOW);
size(2);
format %{ "LTR $op1, $op1\t # ptr" %}
opcode(LTR_ZOPC);
ins_encode(z_rrform(op1, op1));
ins_pipe(pipe_class_dummy);
%}
instruct compP_reg_mem(iRegP dst, memory src, flagsReg cr)%{
match(Set cr (CmpP dst (LoadP src)));
ins_cost(MEMORY_REF_COST);
size(Z_DISP3_SIZE);
format %{ "CLG $dst, $src\t # ptr" %}
opcode(CLG_ZOPC, CLG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, src));
ins_pipe(pipe_class_dummy);
%}
//----------Max and Min--------------------------------------------------------
// Max Register with Register
instruct z196_minI_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_LoadStoreConditional());
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI (z196 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
Register Rsrc2 = $src2$$Register;
if (Rsrc1 == Rsrc2) {
if (Rdst != Rsrc1) {
__ z_lgfr(Rdst, Rsrc1);
}
} else if (Rdst == Rsrc1) { // Rdst preset with src1.
__ z_cr(Rsrc1, Rsrc2); // Move src2 only if src1 is NotLow.
__ z_locr(Rdst, Rsrc2, Assembler::bcondNotLow);
} else if (Rdst == Rsrc2) { // Rdst preset with src2.
__ z_cr(Rsrc2, Rsrc1); // Move src1 only if src2 is NotLow.
__ z_locr(Rdst, Rsrc1, Assembler::bcondNotLow);
} else {
// Rdst is disjoint from operands, move in either case.
__ z_cr(Rsrc1, Rsrc2);
__ z_locr(Rdst, Rsrc2, Assembler::bcondNotLow);
__ z_locr(Rdst, Rsrc1, Assembler::bcondLow);
}
%}
ins_pipe(pipe_class_dummy);
%}
// Min Register with Register.
instruct z10_minI_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI (z10 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
Register Rsrc2 = $src2$$Register;
Label done;
if (Rsrc1 == Rsrc2) {
if (Rdst != Rsrc1) {
__ z_lgfr(Rdst, Rsrc1);
}
} else if (Rdst == Rsrc1) {
__ z_crj(Rsrc1, Rsrc2, Assembler::bcondLow, done);
__ z_lgfr(Rdst, Rsrc2);
} else if (Rdst == Rsrc2) {
__ z_crj(Rsrc2, Rsrc1, Assembler::bcondLow, done);
__ z_lgfr(Rdst, Rsrc1);
} else {
__ z_lgfr(Rdst, Rsrc1);
__ z_crj(Rsrc1, Rsrc2, Assembler::bcondLow, done);
__ z_lgfr(Rdst, Rsrc2);
}
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct minI_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
predicate(!VM_Version::has_CompareBranch());
ins_cost(3 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
Register Rsrc2 = $src2$$Register;
Label done;
if (Rsrc1 == Rsrc2) {
if (Rdst != Rsrc1) {
__ z_lgfr(Rdst, Rsrc1);
}
} else if (Rdst == Rsrc1) {
__ z_cr(Rsrc1, Rsrc2);
__ z_brl(done);
__ z_lgfr(Rdst, Rsrc2);
} else if (Rdst == Rsrc2) {
__ z_cr(Rsrc2, Rsrc1);
__ z_brl(done);
__ z_lgfr(Rdst, Rsrc1);
} else {
__ z_lgfr(Rdst, Rsrc1);
__ z_cr(Rsrc1, Rsrc2);
__ z_brl(done);
__ z_lgfr(Rdst, Rsrc2);
}
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct z196_minI_reg_imm32(iRegI dst, iRegI src1, immI src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_LoadStoreConditional());
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI const32 (z196 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
int Isrc2 = $src2$$constant;
if (Rdst == Rsrc1) {
__ load_const_optimized(Z_R0_scratch, Isrc2);
__ z_cfi(Rsrc1, Isrc2);
__ z_locr(Rdst, Z_R0_scratch, Assembler::bcondNotLow);
} else {
__ load_const_optimized(Rdst, Isrc2);
__ z_cfi(Rsrc1, Isrc2);
__ z_locr(Rdst, Rsrc1, Assembler::bcondLow);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct minI_reg_imm32(iRegI dst, iRegI src1, immI src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI const32" %}
ins_encode %{
Label done;
if ($dst$$Register != $src1$$Register) {
__ z_lgfr($dst$$Register, $src1$$Register);
}
__ z_cfi($src1$$Register, $src2$$constant);
__ z_brl(done);
__ z_lgfi($dst$$Register, $src2$$constant);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct z196_minI_reg_imm16(iRegI dst, iRegI src1, immI16 src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_LoadStoreConditional());
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI const16 (z196 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
int Isrc2 = $src2$$constant;
if (Rdst == Rsrc1) {
__ load_const_optimized(Z_R0_scratch, Isrc2);
__ z_chi(Rsrc1, Isrc2);
__ z_locr(Rdst, Z_R0_scratch, Assembler::bcondNotLow);
} else {
__ load_const_optimized(Rdst, Isrc2);
__ z_chi(Rsrc1, Isrc2);
__ z_locr(Rdst, Rsrc1, Assembler::bcondLow);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct minI_reg_imm16(iRegI dst, iRegI src1, immI16 src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI const16" %}
ins_encode %{
Label done;
if ($dst$$Register != $src1$$Register) {
__ z_lgfr($dst$$Register, $src1$$Register);
}
__ z_chi($src1$$Register, $src2$$constant);
__ z_brl(done);
__ z_lghi($dst$$Register, $src2$$constant);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct z10_minI_reg_imm8(iRegI dst, iRegI src1, immI8 src2, flagsReg cr) %{
match(Set dst (MinI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MinI $dst $src1,$src2\t MinI const8 (z10 only)" %}
ins_encode %{
Label done;
if ($dst$$Register != $src1$$Register) {
__ z_lgfr($dst$$Register, $src1$$Register);
}
__ z_cij($src1$$Register, $src2$$constant, Assembler::bcondLow, done);
__ z_lghi($dst$$Register, $src2$$constant);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
// Max Register with Register
instruct z196_maxI_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_LoadStoreConditional());
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI (z196 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
Register Rsrc2 = $src2$$Register;
if (Rsrc1 == Rsrc2) {
if (Rdst != Rsrc1) {
__ z_lgfr(Rdst, Rsrc1);
}
} else if (Rdst == Rsrc1) { // Rdst preset with src1.
__ z_cr(Rsrc1, Rsrc2); // Move src2 only if src1 is NotHigh.
__ z_locr(Rdst, Rsrc2, Assembler::bcondNotHigh);
} else if (Rdst == Rsrc2) { // Rdst preset with src2.
__ z_cr(Rsrc2, Rsrc1); // Move src1 only if src2 is NotHigh.
__ z_locr(Rdst, Rsrc1, Assembler::bcondNotHigh);
} else { // Rdst is disjoint from operands, move in either case.
__ z_cr(Rsrc1, Rsrc2);
__ z_locr(Rdst, Rsrc2, Assembler::bcondNotHigh);
__ z_locr(Rdst, Rsrc1, Assembler::bcondHigh);
}
%}
ins_pipe(pipe_class_dummy);
%}
// Max Register with Register
instruct z10_maxI_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI (z10 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
Register Rsrc2 = $src2$$Register;
Label done;
if (Rsrc1 == Rsrc2) {
if (Rdst != Rsrc1) {
__ z_lgfr(Rdst, Rsrc1);
}
} else if (Rdst == Rsrc1) {
__ z_crj(Rsrc1, Rsrc2, Assembler::bcondHigh, done);
__ z_lgfr(Rdst, Rsrc2);
} else if (Rdst == Rsrc2) {
__ z_crj(Rsrc2, Rsrc1, Assembler::bcondHigh, done);
__ z_lgfr(Rdst, Rsrc1);
} else {
__ z_lgfr(Rdst, Rsrc1);
__ z_crj(Rsrc1, Rsrc2, Assembler::bcondHigh, done);
__ z_lgfr(Rdst, Rsrc2);
}
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct maxI_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
predicate(!VM_Version::has_CompareBranch());
ins_cost(3 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
Register Rsrc2 = $src2$$Register;
Label done;
if (Rsrc1 == Rsrc2) {
if (Rdst != Rsrc1) {
__ z_lgfr(Rdst, Rsrc1);
}
} else if (Rdst == Rsrc1) {
__ z_cr(Rsrc1, Rsrc2);
__ z_brh(done);
__ z_lgfr(Rdst, Rsrc2);
} else if (Rdst == Rsrc2) {
__ z_cr(Rsrc2, Rsrc1);
__ z_brh(done);
__ z_lgfr(Rdst, Rsrc1);
} else {
__ z_lgfr(Rdst, Rsrc1);
__ z_cr(Rsrc1, Rsrc2);
__ z_brh(done);
__ z_lgfr(Rdst, Rsrc2);
}
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct z196_maxI_reg_imm32(iRegI dst, iRegI src1, immI src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_LoadStoreConditional());
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI const32 (z196 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
int Isrc2 = $src2$$constant;
if (Rdst == Rsrc1) {
__ load_const_optimized(Z_R0_scratch, Isrc2);
__ z_cfi(Rsrc1, Isrc2);
__ z_locr(Rdst, Z_R0_scratch, Assembler::bcondNotHigh);
} else {
__ load_const_optimized(Rdst, Isrc2);
__ z_cfi(Rsrc1, Isrc2);
__ z_locr(Rdst, Rsrc1, Assembler::bcondHigh);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct maxI_reg_imm32(iRegI dst, iRegI src1, immI src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI const32" %}
ins_encode %{
Label done;
if ($dst$$Register != $src1$$Register) {
__ z_lgfr($dst$$Register, $src1$$Register);
}
__ z_cfi($src1$$Register, $src2$$constant);
__ z_brh(done);
__ z_lgfi($dst$$Register, $src2$$constant);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct z196_maxI_reg_imm16(iRegI dst, iRegI src1, immI16 src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_LoadStoreConditional());
ins_cost(3 * DEFAULT_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI const16 (z196 only)" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc1 = $src1$$Register;
int Isrc2 = $src2$$constant;
if (Rdst == Rsrc1) {
__ load_const_optimized(Z_R0_scratch, Isrc2);
__ z_chi(Rsrc1, Isrc2);
__ z_locr(Rdst, Z_R0_scratch, Assembler::bcondNotHigh);
} else {
__ load_const_optimized(Rdst, Isrc2);
__ z_chi(Rsrc1, Isrc2);
__ z_locr(Rdst, Rsrc1, Assembler::bcondHigh);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct maxI_reg_imm16(iRegI dst, iRegI src1, immI16 src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
ins_cost(2 * DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI const16" %}
ins_encode %{
Label done;
if ($dst$$Register != $src1$$Register) {
__ z_lgfr($dst$$Register, $src1$$Register);
}
__ z_chi($src1$$Register, $src2$$constant);
__ z_brh(done);
__ z_lghi($dst$$Register, $src2$$constant);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct z10_maxI_reg_imm8(iRegI dst, iRegI src1, immI8 src2, flagsReg cr) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(DEFAULT_COST + BRANCH_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "MaxI $dst $src1,$src2\t MaxI const8" %}
ins_encode %{
Label done;
if ($dst$$Register != $src1$$Register) {
__ z_lgfr($dst$$Register, $src1$$Register);
}
__ z_cij($src1$$Register, $src2$$constant, Assembler::bcondHigh, done);
__ z_lghi($dst$$Register, $src2$$constant);
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
//----------Abs---------------------------------------------------------------
instruct absI_reg(iRegI dst, iRegI src, flagsReg cr) %{
match(Set dst (AbsI src));
effect(KILL cr);
ins_cost(DEFAULT_COST_LOW);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LPR $dst, $src" %}
opcode(LPR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct negabsI_reg(iRegI dst, iRegI src, immI_0 zero, flagsReg cr) %{
match(Set dst (SubI zero (AbsI src)));
effect(KILL cr);
ins_cost(DEFAULT_COST_LOW);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LNR $dst, $src" %}
opcode(LNR_ZOPC);
ins_encode(z_rrform(dst, src));
ins_pipe(pipe_class_dummy);
%}
//----------Float Compares----------------------------------------------------
// Compare floating, generate condition code.
instruct cmpF_cc(flagsReg cr, regF src1, regF src2) %{
match(Set cr (CmpF src1 src2));
ins_cost(ALU_REG_COST);
size(4);
format %{ "FCMPcc $src1,$src2\t # float" %}
ins_encode %{ __ z_cebr($src1$$FloatRegister, $src2$$FloatRegister); %}
ins_pipe(pipe_class_dummy);
%}
instruct cmpD_cc(flagsReg cr, regD src1, regD src2) %{
match(Set cr (CmpD src1 src2));
ins_cost(ALU_REG_COST);
size(4);
format %{ "FCMPcc $src1,$src2 \t # double" %}
ins_encode %{ __ z_cdbr($src1$$FloatRegister, $src2$$FloatRegister); %}
ins_pipe(pipe_class_dummy);
%}
instruct cmpF_cc_mem(flagsReg cr, regF src1, memoryRX src2) %{
match(Set cr (CmpF src1 (LoadF src2)));
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "FCMPcc_mem $src1,$src2\t # floatMemory" %}
opcode(CEB_ZOPC);
ins_encode(z_form_rt_memFP(src1, src2));
ins_pipe(pipe_class_dummy);
%}
instruct cmpD_cc_mem(flagsReg cr, regD src1, memoryRX src2) %{
match(Set cr (CmpD src1 (LoadD src2)));
ins_cost(ALU_MEMORY_COST);
size(6);
format %{ "DCMPcc_mem $src1,$src2\t # doubleMemory" %}
opcode(CDB_ZOPC);
ins_encode(z_form_rt_memFP(src1, src2));
ins_pipe(pipe_class_dummy);
%}
// Compare floating, generate condition code
instruct cmpF0_cc(flagsReg cr, regF src1, immFpm0 src2) %{
match(Set cr (CmpF src1 src2));
ins_cost(DEFAULT_COST);
size(4);
format %{ "LTEBR $src1,$src1\t # float" %}
opcode(LTEBR_ZOPC);
ins_encode(z_rreform(src1, src1));
ins_pipe(pipe_class_dummy);
%}
instruct cmpD0_cc(flagsReg cr, regD src1, immDpm0 src2) %{
match(Set cr (CmpD src1 src2));
ins_cost(DEFAULT_COST);
size(4);
format %{ "LTDBR $src1,$src1 \t # double" %}
opcode(LTDBR_ZOPC);
ins_encode(z_rreform(src1, src1));
ins_pipe(pipe_class_dummy);
%}
// Compare floating, generate -1,0,1
instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsReg cr) %{
match(Set dst (CmpF3 src1 src2));
effect(KILL cr);
ins_cost(DEFAULT_COST * 5 + BRANCH_COST);
size(24);
format %{ "CmpF3 $dst,$src1,$src2" %}
ins_encode %{
// compare registers
__ z_cebr($src1$$FloatRegister, $src2$$FloatRegister);
// Convert condition code into -1,0,1, where
// -1 means unordered or less
// 0 means equal
// 1 means greater.
if (VM_Version::has_LoadStoreConditional()) {
Register one = Z_R0_scratch;
Register minus_one = Z_R1_scratch;
__ z_lghi(minus_one, -1);
__ z_lghi(one, 1);
__ z_lghi( $dst$$Register, 0);
__ z_locgr($dst$$Register, one, Assembler::bcondHigh);
__ z_locgr($dst$$Register, minus_one, Assembler::bcondLowOrNotOrdered);
} else {
Label done;
__ clear_reg($dst$$Register, true, false);
__ z_bre(done);
__ z_lhi($dst$$Register, 1);
__ z_brh(done);
__ z_lhi($dst$$Register, -1);
__ bind(done);
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsReg cr) %{
match(Set dst (CmpD3 src1 src2));
effect(KILL cr);
ins_cost(DEFAULT_COST * 5 + BRANCH_COST);
size(24);
format %{ "CmpD3 $dst,$src1,$src2" %}
ins_encode %{
// compare registers
__ z_cdbr($src1$$FloatRegister, $src2$$FloatRegister);
// Convert condition code into -1,0,1, where
// -1 means unordered or less
// 0 means equal
// 1 means greater.
if (VM_Version::has_LoadStoreConditional()) {
Register one = Z_R0_scratch;
Register minus_one = Z_R1_scratch;
__ z_lghi(minus_one, -1);
__ z_lghi(one, 1);
__ z_lghi( $dst$$Register, 0);
__ z_locgr($dst$$Register, one, Assembler::bcondHigh);
__ z_locgr($dst$$Register, minus_one, Assembler::bcondLowOrNotOrdered);
} else {
Label done;
// indicate unused result
(void) __ clear_reg($dst$$Register, true, false);
__ z_bre(done);
__ z_lhi($dst$$Register, 1);
__ z_brh(done);
__ z_lhi($dst$$Register, -1);
__ bind(done);
}
%}
ins_pipe(pipe_class_dummy);
%}
//----------Branches---------------------------------------------------------
// Jump
// Direct Branch.
instruct branch(label labl) %{
match(Goto);
effect(USE labl);
ins_cost(BRANCH_COST);
size(4);
format %{ "BRU $labl" %}
ins_encode(z_enc_bru(labl));
ins_pipe(pipe_class_dummy);
// If set to 1 this indicates that the current instruction is a
// short variant of a long branch. This avoids using this
// instruction in first-pass matching. It will then only be used in
// the `Shorten_branches' pass.
ins_short_branch(1);
%}
// Direct Branch.
instruct branchFar(label labl) %{
match(Goto);
effect(USE labl);
ins_cost(BRANCH_COST);
size(6);
format %{ "BRUL $labl" %}
ins_encode(z_enc_brul(labl));
ins_pipe(pipe_class_dummy);
// This is not a short variant of a branch, but the long variant.
ins_short_branch(0);
%}
// Conditional Near Branch
instruct branchCon(cmpOp cmp, flagsReg cr, label lbl) %{
// Same match rule as `branchConFar'.
match(If cmp cr);
effect(USE lbl);
ins_cost(BRANCH_COST);
size(4);
format %{ "branch_con_short,$cmp $cr, $lbl" %}
ins_encode(z_enc_branch_con_short(cmp, lbl));
ins_pipe(pipe_class_dummy);
// If set to 1 this indicates that the current instruction is a
// short variant of a long branch. This avoids using this
// instruction in first-pass matching. It will then only be used in
// the `Shorten_branches' pass.
ins_short_branch(1);
%}
// This is for cases when the z/Architecture conditional branch instruction
// does not reach far enough. So we emit a far branch here, which is
// more expensive.
//
// Conditional Far Branch
instruct branchConFar(cmpOp cmp, flagsReg cr, label lbl) %{
// Same match rule as `branchCon'.
match(If cmp cr);
effect(USE cr, USE lbl);
// Make more expensive to prefer compare_and_branch over separate instructions.
ins_cost(2 * BRANCH_COST);
size(6);
format %{ "branch_con_far,$cmp $cr, $lbl" %}
ins_encode(z_enc_branch_con_far(cmp, lbl));
ins_pipe(pipe_class_dummy);
// This is not a short variant of a branch, but the long variant..
ins_short_branch(0);
%}
instruct branchLoopEnd(cmpOp cmp, flagsReg cr, label labl) %{
match(CountedLoopEnd cmp cr);
effect(USE labl);
ins_cost(BRANCH_COST);
size(4);
format %{ "branch_con_short,$cmp $labl\t # counted loop end" %}
ins_encode(z_enc_branch_con_short(cmp, labl));
ins_pipe(pipe_class_dummy);
// If set to 1 this indicates that the current instruction is a
// short variant of a long branch. This avoids using this
// instruction in first-pass matching. It will then only be used in
// the `Shorten_branches' pass.
ins_short_branch(1);
%}
instruct branchLoopEndFar(cmpOp cmp, flagsReg cr, label labl) %{
match(CountedLoopEnd cmp cr);
effect(USE labl);
ins_cost(BRANCH_COST);
size(6);
format %{ "branch_con_far,$cmp $labl\t # counted loop end" %}
ins_encode(z_enc_branch_con_far(cmp, labl));
ins_pipe(pipe_class_dummy);
// This is not a short variant of a branch, but the long variant.
ins_short_branch(0);
%}
//----------Compare and Branch (short distance)------------------------------
// INT REG operands for loop counter processing.
instruct testAndBranchLoopEnd_Reg(cmpOpT boolnode, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
match(CountedLoopEnd boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "test_and_branch_loop_end,$boolnode $src1,$src2,$labl\t # counted loop end SHORT" %}
opcode(CRJ_ZOPC);
ins_encode(z_enc_cmpb_regreg(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// INT REG operands.
instruct cmpb_RegI(cmpOpT boolnode, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
match(If boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CRJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CRJ_ZOPC);
ins_encode(z_enc_cmpb_regreg(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// Unsigned INT REG operands
instruct cmpbU_RegI(cmpOpT boolnode, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
match(If boolnode (CmpU src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLRJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLRJ_ZOPC);
ins_encode(z_enc_cmpb_regreg(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// LONG REG operands
instruct cmpb_RegL(cmpOpT boolnode, iRegL src1, iRegL src2, label labl, flagsReg cr) %{
match(If boolnode (CmpL src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CGRJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CGRJ_ZOPC);
ins_encode(z_enc_cmpb_regreg(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// PTR REG operands
// Separate rules for regular and narrow oops. ADLC can't recognize
// rules with polymorphic operands to be sisters -> shorten_branches
// will not shorten.
instruct cmpb_RegPP(cmpOpT boolnode, iRegP src1, iRegP src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGRJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLGRJ_ZOPC);
ins_encode(z_enc_cmpb_regreg(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
instruct cmpb_RegNN(cmpOpT boolnode, iRegN src1, iRegN src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP (DecodeN src1) (DecodeN src2)));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGRJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLGRJ_ZOPC);
ins_encode(z_enc_cmpb_regreg(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// INT REG/IMM operands for loop counter processing
instruct testAndBranchLoopEnd_Imm(cmpOpT boolnode, iRegI src1, immI8 src2, label labl, flagsReg cr) %{
match(CountedLoopEnd boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "test_and_branch_loop_end,$boolnode $src1,$src2,$labl\t # counted loop end SHORT" %}
opcode(CIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// INT REG/IMM operands
instruct cmpb_RegI_imm(cmpOpT boolnode, iRegI src1, immI8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CIJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// INT REG/IMM operands
instruct cmpbU_RegI_imm(cmpOpT boolnode, iRegI src1, uimmI8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpU src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLIJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// LONG REG/IMM operands
instruct cmpb_RegL_imm(cmpOpT boolnode, iRegL src1, immL8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpL src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CGIJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CGIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// PTR REG-imm operands
// Separate rules for regular and narrow oops. ADLC can't recognize
// rules with polymorphic operands to be sisters -> shorten_branches
// will not shorten.
instruct cmpb_RegP_immP(cmpOpT boolnode, iRegP src1, immP8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGIJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLGIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
// Compare against zero only, do not mix N and P oops (encode/decode required).
instruct cmpb_RegN_immP0(cmpOpT boolnode, iRegN src1, immP0 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP (DecodeN src1) src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGIJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLGIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
instruct cmpb_RegN_imm(cmpOpT boolnode, iRegN src1, immN8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP (DecodeN src1) (DecodeN src2)));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGIJ,$boolnode $src1,$src2,$labl\t # SHORT" %}
opcode(CLGIJ_ZOPC);
ins_encode(z_enc_cmpb_regimm(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(1);
%}
//----------Compare and Branch (far distance)------------------------------
// INT REG operands for loop counter processing
instruct testAndBranchLoopEnd_RegFar(cmpOpT boolnode, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
match(CountedLoopEnd boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "test_and_branch_loop_end,$boolnode $src1,$src2,$labl\t # counted loop end FAR" %}
opcode(CR_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regregFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// INT REG operands
instruct cmpb_RegI_Far(cmpOpT boolnode, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
match(If boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CRJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CR_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regregFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// INT REG operands
instruct cmpbU_RegI_Far(cmpOpT boolnode, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
match(If boolnode (CmpU src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLRJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLR_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regregFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// LONG REG operands
instruct cmpb_RegL_Far(cmpOpT boolnode, iRegL src1, iRegL src2, label labl, flagsReg cr) %{
match(If boolnode (CmpL src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CGRJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CGR_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regregFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// PTR REG operands
// Separate rules for regular and narrow oops. ADLC can't recognize
// rules with polymorphic operands to be sisters -> shorten_branches
// will not shorten.
instruct cmpb_RegPP_Far(cmpOpT boolnode, iRegP src1, iRegP src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGRJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLGR_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regregFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
instruct cmpb_RegNN_Far(cmpOpT boolnode, iRegN src1, iRegN src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP (DecodeN src1) (DecodeN src2)));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGRJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLGR_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regregFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// INT REG/IMM operands for loop counter processing
instruct testAndBranchLoopEnd_ImmFar(cmpOpT boolnode, iRegI src1, immI8 src2, label labl, flagsReg cr) %{
match(CountedLoopEnd boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "test_and_branch_loop_end,$boolnode $src1,$src2,$labl\t # counted loop end FAR" %}
opcode(CHI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// INT REG/IMM operands
instruct cmpb_RegI_imm_Far(cmpOpT boolnode, iRegI src1, immI8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpI src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CIJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CHI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// INT REG/IMM operands
instruct cmpbU_RegI_imm_Far(cmpOpT boolnode, iRegI src1, uimmI8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpU src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLIJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLFI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// LONG REG/IMM operands
instruct cmpb_RegL_imm_Far(cmpOpT boolnode, iRegL src1, immL8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpL src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CGIJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CGHI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// PTR REG-imm operands
// Separate rules for regular and narrow oops. ADLC can't recognize
// rules with polymorphic operands to be sisters -> shorten_branches
// will not shorten.
instruct cmpb_RegP_immP_Far(cmpOpT boolnode, iRegP src1, immP8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP src1 src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGIJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLGFI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// Compare against zero only, do not mix N and P oops (encode/decode required).
instruct cmpb_RegN_immP0_Far(cmpOpT boolnode, iRegN src1, immP0 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP (DecodeN src1) src2));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGIJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLGFI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
instruct cmpb_RegN_immN_Far(cmpOpT boolnode, iRegN src1, immN8 src2, label labl, flagsReg cr) %{
match(If boolnode (CmpP (DecodeN src1) (DecodeN src2)));
effect(USE labl, KILL cr);
predicate(VM_Version::has_CompareBranch());
ins_cost(BRANCH_COST+DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CLGIJ,$boolnode $src1,$src2,$labl\t # FAR(substituted)" %}
opcode(CLGFI_ZOPC, BRCL_ZOPC);
ins_encode(z_enc_cmpb_regimmFar(src1, src2, labl, boolnode));
ins_pipe(pipe_class_dummy);
ins_short_branch(0);
%}
// ============================================================================
// Long Compare
// Due to a shortcoming in the ADLC, it mixes up expressions like:
// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the
// difference between 'Y' and '0L'. The tree-matches for the CmpI sections
// are collapsed internally in the ADLC's dfa-gen code. The match for
// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
// foo match ends up with the wrong leaf. One fix is to not match both
// reg-reg and reg-zero forms of long-compare. This is unfortunate because
// both forms beat the trinary form of long-compare and both are very useful
// on platforms which have few registers.
// Manifest a CmpL3 result in an integer register. Very painful.
// This is the test to avoid.
instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr) %{
match(Set dst (CmpL3 src1 src2));
effect(KILL cr);
ins_cost(DEFAULT_COST * 5 + BRANCH_COST);
size(24);
format %{ "CmpL3 $dst,$src1,$src2" %}
ins_encode %{
Label done;
// compare registers
__ z_cgr($src1$$Register, $src2$$Register);
// Convert condition code into -1,0,1, where
// -1 means less
// 0 means equal
// 1 means greater.
if (VM_Version::has_LoadStoreConditional()) {
Register one = Z_R0_scratch;
Register minus_one = Z_R1_scratch;
__ z_lghi(minus_one, -1);
__ z_lghi(one, 1);
__ z_lghi( $dst$$Register, 0);
__ z_locgr($dst$$Register, one, Assembler::bcondHigh);
__ z_locgr($dst$$Register, minus_one, Assembler::bcondLow);
} else {
__ clear_reg($dst$$Register, true, false);
__ z_bre(done);
__ z_lhi($dst$$Register, 1);
__ z_brh(done);
__ z_lhi($dst$$Register, -1);
}
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
// ============================================================================
// Safepoint Instruction
instruct safePoint() %{
match(SafePoint);
predicate(false);
// TODO: s390 port size(FIXED_SIZE);
format %{ "UNIMPLEMENTED Safepoint_ " %}
ins_encode(enc_unimplemented());
ins_pipe(pipe_class_dummy);
%}
instruct safePoint_poll(iRegP poll, flagsReg cr) %{
match(SafePoint poll);
effect(USE poll, KILL cr); // R0 is killed, too.
// TODO: s390 port size(FIXED_SIZE);
format %{ "TM #0[,$poll],#111\t # Safepoint: poll for GC" %}
ins_encode %{
// Mark the code position where the load from the safepoint
// polling page was emitted as relocInfo::poll_type.
__ relocate(relocInfo::poll_type);
__ load_from_polling_page($poll$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
// ============================================================================
// Call Instructions
// Call Java Static Instruction
instruct CallStaticJavaDirect_dynTOC(method meth) %{
match(CallStaticJava);
effect(USE meth);
ins_cost(CALL_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CALL,static dynTOC $meth; ==> " %}
ins_encode( z_enc_java_static_call(meth) );
ins_pipe(pipe_class_dummy);
ins_alignment(2);
%}
// Call Java Dynamic Instruction
instruct CallDynamicJavaDirect_dynTOC(method meth) %{
match(CallDynamicJava);
effect(USE meth);
ins_cost(CALL_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "CALL,dynamic dynTOC $meth; ==> " %}
ins_encode(z_enc_java_dynamic_call(meth));
ins_pipe(pipe_class_dummy);
ins_alignment(2);
%}
// Call Runtime Instruction
instruct CallRuntimeDirect(method meth) %{
match(CallRuntime);
effect(USE meth);
ins_cost(CALL_COST);
// TODO: s390 port size(VARIABLE_SIZE);
ins_num_consts(1);
ins_alignment(2);
format %{ "CALL,runtime" %}
ins_encode( z_enc_java_to_runtime_call(meth) );
ins_pipe(pipe_class_dummy);
%}
// Call runtime without safepoint - same as CallRuntime
instruct CallLeafDirect(method meth) %{
match(CallLeaf);
effect(USE meth);
ins_cost(CALL_COST);
// TODO: s390 port size(VARIABLE_SIZE);
ins_num_consts(1);
ins_alignment(2);
format %{ "CALL,runtime leaf $meth" %}
ins_encode( z_enc_java_to_runtime_call(meth) );
ins_pipe(pipe_class_dummy);
%}
// Call runtime without safepoint - same as CallLeaf
instruct CallLeafNoFPDirect(method meth) %{
match(CallLeafNoFP);
effect(USE meth);
ins_cost(CALL_COST);
// TODO: s390 port size(VARIABLE_SIZE);
ins_num_consts(1);
format %{ "CALL,runtime leaf nofp $meth" %}
ins_encode( z_enc_java_to_runtime_call(meth) );
ins_pipe(pipe_class_dummy);
ins_alignment(2);
%}
// Tail Call; Jump from runtime stub to Java code.
// Also known as an 'interprocedural jump'.
// Target of jump will eventually return to caller.
// TailJump below removes the return address.
instruct TailCalljmpInd(iRegP jump_target, inline_cache_regP method_oop) %{
match(TailCall jump_target method_oop);
ins_cost(CALL_COST);
size(2);
format %{ "Jmp $jump_target\t# $method_oop holds method oop" %}
ins_encode %{ __ z_br($jump_target$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// Return Instruction
instruct Ret() %{
match(Return);
size(2);
format %{ "BR(Z_R14) // branch to link register" %}
ins_encode %{ __ z_br(Z_R14); %}
ins_pipe(pipe_class_dummy);
%}
// Tail Jump; remove the return address; jump to target.
// TailCall above leaves the return address around.
// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
// "restore" before this instruction (in Epilogue), we need to materialize it
// in %i0.
instruct tailjmpInd(iRegP jump_target, rarg1RegP ex_oop) %{
match(TailJump jump_target ex_oop);
ins_cost(CALL_COST);
size(8);
format %{ "TailJump $jump_target" %}
ins_encode %{
__ z_lg(Z_ARG2/* issuing pc */, _z_abi(return_pc), Z_SP);
__ z_br($jump_target$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
// Create exception oop: created by stack-crawling runtime code.
// Created exception is now available to this handler, and is setup
// just prior to jumping to this handler. No code emitted.
instruct CreateException(rarg1RegP ex_oop) %{
match(Set ex_oop (CreateEx));
ins_cost(0);
size(0);
format %{ "# exception oop; no code emitted" %}
ins_encode(/*empty*/);
ins_pipe(pipe_class_dummy);
%}
// Rethrow exception: The exception oop will come in the first
// argument position. Then JUMP (not call) to the rethrow stub code.
instruct RethrowException() %{
match(Rethrow);
ins_cost(CALL_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "Jmp rethrow_stub" %}
ins_encode %{
cbuf.set_insts_mark();
__ load_const_optimized(Z_R1_scratch, (address)OptoRuntime::rethrow_stub());
__ z_br(Z_R1_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// Die now.
instruct ShouldNotReachHere() %{
match(Halt);
ins_cost(CALL_COST);
format %{ "ILLTRAP; ShouldNotReachHere" %}
ins_encode %{
if (is_reachable()) {
__ z_illtrap();
}
%}
ins_pipe(pipe_class_dummy);
%}
// ============================================================================
// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
// array for an instance of the superklass. Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()). Return
// not zero for a miss or zero for a hit. The encoding ALSO sets flags.
instruct partialSubtypeCheck(rarg1RegP index, rarg2RegP sub, rarg3RegP super, flagsReg pcc,
rarg4RegP scratch1, rarg5RegP scratch2) %{
match(Set index (PartialSubtypeCheck sub super));
effect(KILL pcc, KILL scratch1, KILL scratch2);
ins_cost(10 * DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ " CALL PartialSubtypeCheck\n" %}
ins_encode %{
AddressLiteral stub_address(StubRoutines::zarch::partial_subtype_check());
__ load_const_optimized(Z_ARG4, stub_address);
__ z_basr(Z_R14, Z_ARG4);
%}
ins_pipe(pipe_class_dummy);
%}
instruct partialSubtypeCheck_vs_zero(flagsReg pcc, rarg2RegP sub, rarg3RegP super, immP0 zero,
rarg1RegP index, rarg4RegP scratch1, rarg5RegP scratch2) %{
match(Set pcc (CmpI (PartialSubtypeCheck sub super) zero));
effect(KILL scratch1, KILL scratch2, KILL index);
ins_cost(10 * DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "CALL PartialSubtypeCheck_vs_zero\n" %}
ins_encode %{
AddressLiteral stub_address(StubRoutines::zarch::partial_subtype_check());
__ load_const_optimized(Z_ARG4, stub_address);
__ z_basr(Z_R14, Z_ARG4);
%}
ins_pipe(pipe_class_dummy);
%}
// ============================================================================
// inlined locking and unlocking
instruct cmpFastLock(flagsReg pcc, iRegP_N2P oop, iRegP_N2P box, iRegP tmp1, iRegP tmp2) %{
match(Set pcc (FastLock oop box));
effect(TEMP tmp1, TEMP tmp2);
ins_cost(100);
// TODO: s390 port size(VARIABLE_SIZE); // Uses load_const_optimized.
format %{ "FASTLOCK $oop, $box; KILL Z_ARG4, Z_ARG5" %}
ins_encode %{ __ compiler_fast_lock_object($oop$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register,
UseBiasedLocking && !UseOptoBiasInlining); %}
ins_pipe(pipe_class_dummy);
%}
instruct cmpFastUnlock(flagsReg pcc, iRegP_N2P oop, iRegP_N2P box, iRegP tmp1, iRegP tmp2) %{
match(Set pcc (FastUnlock oop box));
effect(TEMP tmp1, TEMP tmp2);
ins_cost(100);
// TODO: s390 port size(FIXED_SIZE); // emitted code depends on UseBiasedLocking being on/off.
format %{ "FASTUNLOCK $oop, $box; KILL Z_ARG4, Z_ARG5" %}
ins_encode %{ __ compiler_fast_unlock_object($oop$$Register, $box$$Register, $tmp1$$Register, $tmp2$$Register,
UseBiasedLocking && !UseOptoBiasInlining); %}
ins_pipe(pipe_class_dummy);
%}
instruct inlineCallClearArrayConst(SSlenDW cnt, iRegP_N2P base, Universe dummy, flagsReg cr) %{
match(Set dummy (ClearArray cnt base));
effect(KILL cr);
ins_cost(100);
// TODO: s390 port size(VARIABLE_SIZE); // Variable in size due to varying #instructions.
format %{ "ClearArrayConst $cnt,$base" %}
ins_encode %{ __ Clear_Array_Const($cnt$$constant, $base$$Register); %}
ins_pipe(pipe_class_dummy);
%}
instruct inlineCallClearArrayConstBig(immL cnt, iRegP_N2P base, Universe dummy, revenRegL srcA, roddRegL srcL, flagsReg cr) %{
match(Set dummy (ClearArray cnt base));
effect(TEMP srcA, TEMP srcL, KILL cr); // R0, R1 are killed, too.
ins_cost(200);
// TODO: s390 port size(VARIABLE_SIZE); // Variable in size due to optimized constant loader.
format %{ "ClearArrayConstBig $cnt,$base" %}
ins_encode %{ __ Clear_Array_Const_Big($cnt$$constant, $base$$Register, $srcA$$Register, $srcL$$Register); %}
ins_pipe(pipe_class_dummy);
%}
instruct inlineCallClearArray(iRegL cnt, iRegP_N2P base, Universe dummy, revenRegL srcA, roddRegL srcL, flagsReg cr) %{
match(Set dummy (ClearArray cnt base));
effect(TEMP srcA, TEMP srcL, KILL cr); // R0, R1 are killed, too.
ins_cost(300);
// TODO: s390 port size(FIXED_SIZE); // z/Architecture: emitted code depends on PreferLAoverADD being on/off.
format %{ "ClearArrayVar $cnt,$base" %}
ins_encode %{ __ Clear_Array($cnt$$Register, $base$$Register, $srcA$$Register, $srcL$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// ============================================================================
// CompactStrings
// String equals
instruct string_equalsL(iRegP str1, iRegP str2, iRegI cnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(300);
format %{ "String Equals byte[] $str1,$str2,$cnt -> $result" %}
ins_encode %{
__ array_equals(false, $str1$$Register, $str2$$Register,
$cnt$$Register, $oddReg$$Register, $evenReg$$Register,
$result$$Register, true /* byte */);
%}
ins_pipe(pipe_class_dummy);
%}
instruct string_equalsU(iRegP str1, iRegP str2, iRegI cnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU || ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::none);
ins_cost(300);
format %{ "String Equals char[] $str1,$str2,$cnt -> $result" %}
ins_encode %{
__ array_equals(false, $str1$$Register, $str2$$Register,
$cnt$$Register, $oddReg$$Register, $evenReg$$Register,
$result$$Register, false /* byte */);
%}
ins_pipe(pipe_class_dummy);
%}
instruct string_equals_imm(iRegP str1, iRegP str2, uimmI8 cnt, iRegI result, flagsReg cr) %{
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(KILL cr); // R0 is killed, too.
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL || ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
ins_cost(100);
format %{ "String Equals byte[] $str1,$str2,$cnt -> $result" %}
ins_encode %{
const int cnt_imm = $cnt$$constant;
if (cnt_imm) { __ z_clc(0, cnt_imm - 1, $str1$$Register, 0, $str2$$Register); }
__ z_lhi($result$$Register, 1);
if (cnt_imm) {
if (VM_Version::has_LoadStoreConditional()) {
__ z_lhi(Z_R0_scratch, 0);
__ z_locr($result$$Register, Z_R0_scratch, Assembler::bcondNotEqual);
} else {
Label Lskip;
__ z_bre(Lskip);
__ clear_reg($result$$Register);
__ bind(Lskip);
}
}
%}
ins_pipe(pipe_class_dummy);
%}
instruct string_equalsC_imm(iRegP str1, iRegP str2, immI8 cnt, iRegI result, flagsReg cr) %{
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(KILL cr); // R0 is killed, too.
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::none);
ins_cost(100);
format %{ "String Equals $str1,$str2,$cnt -> $result" %}
ins_encode %{
const int cnt_imm = $cnt$$constant; // positive immI8 (7 bits used)
if (cnt_imm) { __ z_clc(0, (cnt_imm << 1) - 1, $str1$$Register, 0, $str2$$Register); }
__ z_lhi($result$$Register, 1);
if (cnt_imm) {
if (VM_Version::has_LoadStoreConditional()) {
__ z_lhi(Z_R0_scratch, 0);
__ z_locr($result$$Register, Z_R0_scratch, Assembler::bcondNotEqual);
} else {
Label Lskip;
__ z_bre(Lskip);
__ clear_reg($result$$Register);
__ bind(Lskip);
}
}
%}
ins_pipe(pipe_class_dummy);
%}
// Array equals
instruct array_equalsB(iRegP ary1, iRegP ary2, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (AryEq ary1 ary2));
effect(TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result" %}
ins_encode %{
__ array_equals(true, $ary1$$Register, $ary2$$Register,
noreg, $oddReg$$Register, $evenReg$$Register,
$result$$Register, true /* byte */);
%}
ins_pipe(pipe_class_dummy);
%}
instruct array_equalsC(iRegP ary1, iRegP ary2, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (AryEq ary1 ary2));
effect(TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result" %}
ins_encode %{
__ array_equals(true, $ary1$$Register, $ary2$$Register,
noreg, $oddReg$$Register, $evenReg$$Register,
$result$$Register, false /* byte */);
%}
ins_pipe(pipe_class_dummy);
%}
// String CompareTo
instruct string_compareL(iRegP str1, iRegP str2, rarg2RegI cnt1, rarg5RegI cnt2, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL cnt1, USE_KILL cnt2, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(300);
format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result" %}
ins_encode %{
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$oddReg$$Register, $evenReg$$Register,
$result$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_dummy);
%}
instruct string_compareU(iRegP str1, iRegP str2, rarg2RegI cnt1, rarg5RegI cnt2, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL cnt1, USE_KILL cnt2, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU || ((StrCompNode*)n)->encoding() == StrIntrinsicNode::none);
ins_cost(300);
format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result" %}
ins_encode %{
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$oddReg$$Register, $evenReg$$Register,
$result$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_dummy);
%}
instruct string_compareLU(iRegP str1, iRegP str2, rarg2RegI cnt1, rarg5RegI cnt2, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL cnt1, USE_KILL cnt2, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
ins_cost(300);
format %{ "String Compare byte[],char[] $str1,$cnt1,$str2,$cnt2 -> $result" %}
ins_encode %{
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$oddReg$$Register, $evenReg$$Register,
$result$$Register, StrIntrinsicNode::LU);
%}
ins_pipe(pipe_class_dummy);
%}
instruct string_compareUL(iRegP str1, iRegP str2, rarg2RegI cnt1, rarg5RegI cnt2, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL cnt1, USE_KILL cnt2, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
ins_cost(300);
format %{ "String Compare char[],byte[] $str1,$cnt1,$str2,$cnt2 -> $result" %}
ins_encode %{
__ string_compare($str2$$Register, $str1$$Register,
$cnt2$$Register, $cnt1$$Register,
$oddReg$$Register, $evenReg$$Register,
$result$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_dummy);
%}
// String IndexOfChar
instruct indexOfChar_U(iRegP haystack, iRegI haycnt, iRegI ch, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOfChar (Binary haystack haycnt) ch));
effect(TEMP_DEF result, TEMP evenReg, TEMP oddReg, KILL cr); // R0, R1 are killed, too.
ins_cost(200);
format %{ "String IndexOfChar [0..$haycnt]($haystack), $ch -> $result" %}
ins_encode %{
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
$ch$$Register, 0 /* unused, ch is in register */,
$oddReg$$Register, $evenReg$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_imm1_U(iRegP haystack, iRegI haycnt, immP needle, immI_1 needlecnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(TEMP_DEF result, TEMP evenReg, TEMP oddReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU || ((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::none);
ins_cost(200);
format %{ "String IndexOf UL [0..$haycnt]($haystack), [0]($needle) -> $result" %}
ins_encode %{
immPOper *needleOper = (immPOper *)$needle;
const TypeOopPtr *t = needleOper->type()->isa_oopptr();
ciTypeArray* needle_values = t->const_oop()->as_type_array(); // Pointer to live char *
jchar chr;
#ifdef VM_LITTLE_ENDIAN
Unimplemented();
#else
chr = (((jchar)(unsigned char)needle_values->element_value(0).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(1).as_byte());
#endif
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
noreg, chr,
$oddReg$$Register, $evenReg$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_imm1_L(iRegP haystack, iRegI haycnt, immP needle, immI_1 needlecnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(TEMP_DEF result, TEMP evenReg, TEMP oddReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(200);
format %{ "String IndexOf L [0..$haycnt]($haystack), [0]($needle) -> $result" %}
ins_encode %{
immPOper *needleOper = (immPOper *)$needle;
const TypeOopPtr *t = needleOper->type()->isa_oopptr();
ciTypeArray* needle_values = t->const_oop()->as_type_array(); // Pointer to live char *
jchar chr = (jchar)needle_values->element_value(0).as_byte();
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
noreg, chr,
$oddReg$$Register, $evenReg$$Register, true /*is_byte*/);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_imm1_UL(iRegP haystack, iRegI haycnt, immP needle, immI_1 needlecnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(TEMP_DEF result, TEMP evenReg, TEMP oddReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
ins_cost(200);
format %{ "String IndexOf UL [0..$haycnt]($haystack), [0]($needle) -> $result" %}
ins_encode %{
immPOper *needleOper = (immPOper *)$needle;
const TypeOopPtr *t = needleOper->type()->isa_oopptr();
ciTypeArray* needle_values = t->const_oop()->as_type_array(); // Pointer to live char *
jchar chr = (jchar)needle_values->element_value(0).as_byte();
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
noreg, chr,
$oddReg$$Register, $evenReg$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_dummy);
%}
// String IndexOf
instruct indexOf_imm_U(iRegP haystack, rarg2RegI haycnt, iRegP needle, immI16 needlecntImm, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(TEMP_DEF result, USE_KILL haycnt, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU || ((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::none);
ins_cost(250);
format %{ "String IndexOf U [0..$needlecntImm]($needle) .in. [0..$haycnt]($haystack) -> $result" %}
ins_encode %{
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, noreg, $needlecntImm$$constant,
$oddReg$$Register, $evenReg$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_imm_L(iRegP haystack, rarg2RegI haycnt, iRegP needle, immI16 needlecntImm, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(TEMP_DEF result, USE_KILL haycnt, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(250);
format %{ "String IndexOf L [0..$needlecntImm]($needle) .in. [0..$haycnt]($haystack) -> $result" %}
ins_encode %{
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, noreg, $needlecntImm$$constant,
$oddReg$$Register, $evenReg$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_imm_UL(iRegP haystack, rarg2RegI haycnt, iRegP needle, immI16 needlecntImm, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(TEMP_DEF result, USE_KILL haycnt, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
ins_cost(250);
format %{ "String IndexOf UL [0..$needlecntImm]($needle) .in. [0..$haycnt]($haystack) -> $result" %}
ins_encode %{
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, noreg, $needlecntImm$$constant,
$oddReg$$Register, $evenReg$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_U(iRegP haystack, rarg2RegI haycnt, iRegP needle, rarg5RegI needlecnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(TEMP_DEF result, USE_KILL haycnt, USE_KILL needlecnt, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU || ((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::none);
ins_cost(300);
format %{ "String IndexOf U [0..$needlecnt]($needle) .in. [0..$haycnt]($haystack) -> $result" %}
ins_encode %{
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, $needlecnt$$Register, 0,
$oddReg$$Register, $evenReg$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_L(iRegP haystack, rarg2RegI haycnt, iRegP needle, rarg5RegI needlecnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(TEMP_DEF result, USE_KILL haycnt, USE_KILL needlecnt, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(300);
format %{ "String IndexOf L [0..$needlecnt]($needle) .in. [0..$haycnt]($haystack) -> $result" %}
ins_encode %{
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, $needlecnt$$Register, 0,
$oddReg$$Register, $evenReg$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_dummy);
%}
instruct indexOf_UL(iRegP haystack, rarg2RegI haycnt, iRegP needle, rarg5RegI needlecnt, iRegI result, roddRegL oddReg, revenRegL evenReg, flagsReg cr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(TEMP_DEF result, USE_KILL haycnt, USE_KILL needlecnt, TEMP oddReg, TEMP evenReg, KILL cr); // R0, R1 are killed, too.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
ins_cost(300);
format %{ "String IndexOf UL [0..$needlecnt]($needle) .in. [0..$haycnt]($haystack) -> $result" %}
ins_encode %{
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, $needlecnt$$Register, 0,
$oddReg$$Register, $evenReg$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_dummy);
%}
// char[] to byte[] compression
instruct string_compress(iRegP src, iRegP dst, iRegI result, iRegI len, iRegI tmp, flagsReg cr) %{
match(Set result (StrCompressedCopy src (Binary dst len)));
effect(TEMP_DEF result, TEMP tmp, KILL cr); // R0, R1 are killed, too.
ins_cost(300);
format %{ "String Compress $src->$dst($len) -> $result" %}
ins_encode %{
__ string_compress($result$$Register, $src$$Register, $dst$$Register, $len$$Register,
$tmp$$Register, false);
%}
ins_pipe(pipe_class_dummy);
%}
// byte[] to char[] inflation. trot implementation is shorter, but slower than the unrolled icm(h) loop.
//instruct string_inflate_trot(Universe dummy, iRegP src, revenRegP dst, roddRegI len, iRegI tmp, flagsReg cr) %{
// match(Set dummy (StrInflatedCopy src (Binary dst len)));
// effect(USE_KILL dst, USE_KILL len, TEMP tmp, KILL cr); // R0, R1 are killed, too.
// predicate(VM_Version::has_ETF2Enhancements());
// ins_cost(300);
// format %{ "String Inflate (trot) $dst,$src($len)" %}
// ins_encode %{
// __ string_inflate_trot($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register);
// %}
// ins_pipe(pipe_class_dummy);
//%}
// byte[] to char[] inflation
instruct string_inflate(Universe dummy, iRegP src, iRegP dst, iRegI len, iRegI tmp, flagsReg cr) %{
match(Set dummy (StrInflatedCopy src (Binary dst len)));
effect(TEMP tmp, KILL cr); // R0, R1 are killed, too.
ins_cost(300);
format %{ "String Inflate $src->$dst($len)" %}
ins_encode %{
__ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
// byte[] to char[] inflation
instruct string_inflate_const(Universe dummy, iRegP src, iRegP dst, iRegI tmp, immI len, flagsReg cr) %{
match(Set dummy (StrInflatedCopy src (Binary dst len)));
effect(TEMP tmp, KILL cr); // R0, R1 are killed, too.
ins_cost(300);
format %{ "String Inflate (constLen) $src->$dst($len)" %}
ins_encode %{
__ string_inflate_const($src$$Register, $dst$$Register, $tmp$$Register, $len$$constant);
%}
ins_pipe(pipe_class_dummy);
%}
// StringCoding.java intrinsics
instruct has_negatives(rarg5RegP ary1, iRegI len, iRegI result, roddRegI oddReg, revenRegI evenReg, iRegI tmp, flagsReg cr) %{
match(Set result (HasNegatives ary1 len));
effect(TEMP_DEF result, USE_KILL ary1, TEMP oddReg, TEMP evenReg, TEMP tmp, KILL cr); // R0, R1 are killed, too.
ins_cost(300);
format %{ "has negatives byte[] $ary1($len) -> $result" %}
ins_encode %{
__ has_negatives($result$$Register, $ary1$$Register, $len$$Register,
$oddReg$$Register, $evenReg$$Register, $tmp$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
// encode char[] to byte[] in ISO_8859_1
instruct encode_iso_array(iRegP src, iRegP dst, iRegI result, iRegI len, iRegI tmp, flagsReg cr) %{
match(Set result (EncodeISOArray src (Binary dst len)));
effect(TEMP_DEF result, TEMP tmp, KILL cr); // R0, R1 are killed, too.
ins_cost(300);
format %{ "Encode array $src->$dst($len) -> $result" %}
ins_encode %{
__ string_compress($result$$Register, $src$$Register, $dst$$Register, $len$$Register,
$tmp$$Register, true);
%}
ins_pipe(pipe_class_dummy);
%}
//----------PEEPHOLE RULES-----------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
//
// peepmatch (root_instr_name [preceeding_instruction]*);
//
// peepconstraint %{
// (instruction_number.operand_name relational_op instruction_number.operand_name
// [, ...]);
// // instruction numbers are zero-based using left to right order in peepmatch
//
// peepreplace (instr_name([instruction_number.operand_name]*));
// // provide an instruction_number.operand_name for each operand that appears
// // in the replacement instruction's match rule
//
// ---------VM FLAGS---------------------------------------------------------
//
// All peephole optimizations can be turned off using -XX:-OptoPeephole
//
// Each peephole rule is given an identifying number starting with zero and
// increasing by one in the order seen by the parser. An individual peephole
// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
// on the command-line.
//
// ---------CURRENT LIMITATIONS----------------------------------------------
//
// Only match adjacent instructions in same basic block
// Only equality constraints
// Only constraints between operands, not (0.dest_reg == EAX_enc)
// Only one replacement instruction
//
// ---------EXAMPLE----------------------------------------------------------
//
// // pertinent parts of existing instructions in architecture description
// instruct movI(eRegI dst, eRegI src) %{
// match(Set dst (CopyI src));
// %}
//
// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
// match(Set dst (AddI dst src));
// effect(KILL cr);
// %}
//
// // Change (inc mov) to lea
// peephole %{
// // increment preceeded by register-register move
// peepmatch (incI_eReg movI);
// // require that the destination register of the increment
// // match the destination register of the move
// peepconstraint (0.dst == 1.dst);
// // construct a replacement instruction that sets
// // the destination to (move's source register + one)
// peepreplace (leaI_eReg_immI(0.dst 1.src 0.src));
// %}
//
// Implementation no longer uses movX instructions since
// machine-independent system no longer uses CopyX nodes.
//
// peephole %{
// peepmatch (incI_eReg movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_eReg_immI(0.dst 1.src 0.src));
// %}
//
// peephole %{
// peepmatch (decI_eReg movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_eReg_immI(0.dst 1.src 0.src));
// %}
//
// peephole %{
// peepmatch (addI_eReg_imm movI);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaI_eReg_immI(0.dst 1.src 0.src));
// %}
//
// peephole %{
// peepmatch (addP_eReg_imm movP);
// peepconstraint (0.dst == 1.dst);
// peepreplace (leaP_eReg_immI(0.dst 1.src 0.src));
// %}
// This peephole rule does not work, probably because ADLC can't handle two effects:
// Effect 1 is defining 0.op1 and effect 2 is setting CC
// condense a load from memory and subsequent test for zero
// into a single, more efficient ICM instruction.
// peephole %{
// peepmatch (compI_iReg_imm0 loadI);
// peepconstraint (1.dst == 0.op1);
// peepreplace (loadtest15_iReg_mem(0.op1 0.op1 1.mem));
// %}
// // Change load of spilled value to only a spill
// instruct storeI(memory mem, eRegI src) %{
// match(Set mem (StoreI mem src));
// %}
//
// instruct loadI(eRegI dst, memory mem) %{
// match(Set dst (LoadI mem));
// %}
//
peephole %{
peepmatch (loadI storeI);
peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
peepreplace (storeI(1.mem 1.mem 1.src));
%}
peephole %{
peepmatch (loadL storeL);
peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
peepreplace (storeL(1.mem 1.mem 1.src));
%}
peephole %{
peepmatch (loadP storeP);
peepconstraint (1.src == 0.dst, 1.dst == 0.mem);
peepreplace (storeP(1.dst 1.dst 1.src));
%}
//----------SUPERWORD RULES---------------------------------------------------
// Expand rules for special cases
instruct expand_storeF(stackSlotF mem, regF src) %{
// No match rule, false predicate, for expand only.
effect(DEF mem, USE src);
predicate(false);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "STE $src,$mem\t # replicate(float2stack)" %}
opcode(STE_ZOPC, STE_ZOPC);
ins_encode(z_form_rt_mem(src, mem));
ins_pipe(pipe_class_dummy);
%}
instruct expand_LoadLogical_I2L(iRegL dst, stackSlotF mem) %{
// No match rule, false predicate, for expand only.
effect(DEF dst, USE mem);
predicate(false);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LLGF $dst,$mem\t # replicate(stack2reg(unsigned))" %}
opcode(LLGF_ZOPC, LLGF_ZOPC);
ins_encode(z_form_rt_mem(dst, mem));
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar int to packed int values (8 Bytes)
instruct expand_Repl2I_reg(iRegL dst, iRegL src) %{
// Dummy match rule, false predicate, for expand only.
match(Set dst (ConvI2L src));
predicate(false);
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "REPLIC2F $dst,$src\t # replicate(pack2F)" %}
ins_encode %{
if ($dst$$Register == $src$$Register) {
__ z_sllg(Z_R0_scratch, $src$$Register, 64-32);
__ z_ogr($dst$$Register, Z_R0_scratch);
} else {
__ z_sllg($dst$$Register, $src$$Register, 64-32);
__ z_ogr( $dst$$Register, $src$$Register);
}
%}
ins_pipe(pipe_class_dummy);
%}
// Replication
// Exploit rotate_then_insert, if available
// Replicate scalar byte to packed byte values (8 Bytes).
instruct Repl8B_reg_risbg(iRegL dst, iRegI src, flagsReg cr) %{
match(Set dst (ReplicateB src));
effect(KILL cr);
predicate((n->as_Vector()->length() == 8));
format %{ "REPLIC8B $dst,$src\t # pack8B" %}
ins_encode %{
if ($dst$$Register != $src$$Register) {
__ z_lgr($dst$$Register, $src$$Register);
}
__ rotate_then_insert($dst$$Register, $dst$$Register, 48, 55, 8, false);
__ rotate_then_insert($dst$$Register, $dst$$Register, 32, 47, 16, false);
__ rotate_then_insert($dst$$Register, $dst$$Register, 0, 31, 32, false);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar byte to packed byte values (8 Bytes).
instruct Repl8B_imm(iRegL dst, immB_n0m1 src) %{
match(Set dst (ReplicateB src));
predicate(n->as_Vector()->length() == 8);
ins_should_rematerialize(true);
format %{ "REPLIC8B $dst,$src\t # pack8B imm" %}
ins_encode %{
int64_t Isrc8 = $src$$constant & 0x000000ff;
int64_t Isrc16 = Isrc8 << 8 | Isrc8;
int64_t Isrc32 = Isrc16 << 16 | Isrc16;
assert(Isrc8 != 0x000000ff && Isrc8 != 0, "should be handled by other match rules.");
__ z_llilf($dst$$Register, Isrc32);
__ z_iihf($dst$$Register, Isrc32);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar byte to packed byte values (8 Bytes).
instruct Repl8B_imm0(iRegL dst, immI_0 src) %{
match(Set dst (ReplicateB src));
predicate(n->as_Vector()->length() == 8);
ins_should_rematerialize(true);
format %{ "REPLIC8B $dst,$src\t # pack8B imm0" %}
ins_encode %{ __ z_laz($dst$$Register, 0, Z_R0); %}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar byte to packed byte values (8 Bytes).
instruct Repl8B_immm1(iRegL dst, immB_minus1 src) %{
match(Set dst (ReplicateB src));
predicate(n->as_Vector()->length() == 8);
ins_should_rematerialize(true);
format %{ "REPLIC8B $dst,$src\t # pack8B immm1" %}
ins_encode %{ __ z_lghi($dst$$Register, -1); %}
ins_pipe(pipe_class_dummy);
%}
// Exploit rotate_then_insert, if available
// Replicate scalar short to packed short values (8 Bytes).
instruct Repl4S_reg_risbg(iRegL dst, iRegI src, flagsReg cr) %{
match(Set dst (ReplicateS src));
effect(KILL cr);
predicate((n->as_Vector()->length() == 4));
format %{ "REPLIC4S $dst,$src\t # pack4S" %}
ins_encode %{
if ($dst$$Register != $src$$Register) {
__ z_lgr($dst$$Register, $src$$Register);
}
__ rotate_then_insert($dst$$Register, $dst$$Register, 32, 47, 16, false);
__ rotate_then_insert($dst$$Register, $dst$$Register, 0, 31, 32, false);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar short to packed short values (8 Bytes).
instruct Repl4S_imm(iRegL dst, immS_n0m1 src) %{
match(Set dst (ReplicateS src));
predicate(n->as_Vector()->length() == 4);
ins_should_rematerialize(true);
format %{ "REPLIC4S $dst,$src\t # pack4S imm" %}
ins_encode %{
int64_t Isrc16 = $src$$constant & 0x0000ffff;
int64_t Isrc32 = Isrc16 << 16 | Isrc16;
assert(Isrc16 != 0x0000ffff && Isrc16 != 0, "Repl4S_imm: (src == " INT64_FORMAT
") should be handled by other match rules.", $src$$constant);
__ z_llilf($dst$$Register, Isrc32);
__ z_iihf($dst$$Register, Isrc32);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar short to packed short values (8 Bytes).
instruct Repl4S_imm0(iRegL dst, immI_0 src) %{
match(Set dst (ReplicateS src));
predicate(n->as_Vector()->length() == 4);
ins_should_rematerialize(true);
format %{ "REPLIC4S $dst,$src\t # pack4S imm0" %}
ins_encode %{ __ z_laz($dst$$Register, 0, Z_R0); %}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar short to packed short values (8 Bytes).
instruct Repl4S_immm1(iRegL dst, immS_minus1 src) %{
match(Set dst (ReplicateS src));
predicate(n->as_Vector()->length() == 4);
ins_should_rematerialize(true);
format %{ "REPLIC4S $dst,$src\t # pack4S immm1" %}
ins_encode %{ __ z_lghi($dst$$Register, -1); %}
ins_pipe(pipe_class_dummy);
%}
// Exploit rotate_then_insert, if available.
// Replicate scalar int to packed int values (8 Bytes).
instruct Repl2I_reg_risbg(iRegL dst, iRegI src, flagsReg cr) %{
match(Set dst (ReplicateI src));
effect(KILL cr);
predicate((n->as_Vector()->length() == 2));
format %{ "REPLIC2I $dst,$src\t # pack2I" %}
ins_encode %{
if ($dst$$Register != $src$$Register) {
__ z_lgr($dst$$Register, $src$$Register);
}
__ rotate_then_insert($dst$$Register, $dst$$Register, 0, 31, 32, false);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar int to packed int values (8 Bytes).
instruct Repl2I_imm(iRegL dst, immI_n0m1 src) %{
match(Set dst (ReplicateI src));
predicate(n->as_Vector()->length() == 2);
ins_should_rematerialize(true);
format %{ "REPLIC2I $dst,$src\t # pack2I imm" %}
ins_encode %{
int64_t Isrc32 = $src$$constant;
assert(Isrc32 != -1 && Isrc32 != 0, "should be handled by other match rules.");
__ z_llilf($dst$$Register, Isrc32);
__ z_iihf($dst$$Register, Isrc32);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar int to packed int values (8 Bytes).
instruct Repl2I_imm0(iRegL dst, immI_0 src) %{
match(Set dst (ReplicateI src));
predicate(n->as_Vector()->length() == 2);
ins_should_rematerialize(true);
format %{ "REPLIC2I $dst,$src\t # pack2I imm0" %}
ins_encode %{ __ z_laz($dst$$Register, 0, Z_R0); %}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar int to packed int values (8 Bytes).
instruct Repl2I_immm1(iRegL dst, immI_minus1 src) %{
match(Set dst (ReplicateI src));
predicate(n->as_Vector()->length() == 2);
ins_should_rematerialize(true);
format %{ "REPLIC2I $dst,$src\t # pack2I immm1" %}
ins_encode %{ __ z_lghi($dst$$Register, -1); %}
ins_pipe(pipe_class_dummy);
%}
//
instruct Repl2F_reg_indirect(iRegL dst, regF src, flagsReg cr) %{
match(Set dst (ReplicateF src));
effect(KILL cr);
predicate(!VM_Version::has_FPSupportEnhancements() && n->as_Vector()->length() == 2);
format %{ "REPLIC2F $dst,$src\t # pack2F indirect" %}
expand %{
stackSlotF tmp;
iRegL tmp2;
expand_storeF(tmp, src);
expand_LoadLogical_I2L(tmp2, tmp);
expand_Repl2I_reg(dst, tmp2);
%}
%}
// Replicate scalar float to packed float values in GREG (8 Bytes).
instruct Repl2F_reg_direct(iRegL dst, regF src, flagsReg cr) %{
match(Set dst (ReplicateF src));
effect(KILL cr);
predicate(VM_Version::has_FPSupportEnhancements() && n->as_Vector()->length() == 2);
format %{ "REPLIC2F $dst,$src\t # pack2F direct" %}
ins_encode %{
assert(VM_Version::has_FPSupportEnhancements(), "encoder should never be called on old H/W");
__ z_lgdr($dst$$Register, $src$$FloatRegister);
__ z_srlg(Z_R0_scratch, $dst$$Register, 32); // Floats are left-justified in 64bit reg.
__ z_iilf($dst$$Register, 0); // Save a "result not ready" stall.
__ z_ogr($dst$$Register, Z_R0_scratch);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar float immediate to packed float values in GREG (8 Bytes).
instruct Repl2F_imm(iRegL dst, immF src) %{
match(Set dst (ReplicateF src));
predicate(n->as_Vector()->length() == 2);
ins_should_rematerialize(true);
format %{ "REPLIC2F $dst,$src\t # pack2F imm" %}
ins_encode %{
union {
int Isrc32;
float Fsrc32;
};
Fsrc32 = $src$$constant;
__ z_llilf($dst$$Register, Isrc32);
__ z_iihf($dst$$Register, Isrc32);
%}
ins_pipe(pipe_class_dummy);
%}
// Replicate scalar float immediate zeroes to packed float values in GREG (8 Bytes).
// Do this only for 'real' zeroes, especially don't loose sign of negative zeroes.
instruct Repl2F_imm0(iRegL dst, immFp0 src) %{
match(Set dst (ReplicateF src));
predicate(n->as_Vector()->length() == 2);
ins_should_rematerialize(true);
format %{ "REPLIC2F $dst,$src\t # pack2F imm0" %}
ins_encode %{ __ z_laz($dst$$Register, 0, Z_R0); %}
ins_pipe(pipe_class_dummy);
%}
// Store
// Store Aligned Packed Byte register to memory (8 Bytes).
instruct storeA8B(memory mem, iRegL src) %{
match(Set mem (StoreVector mem src));
predicate(n->as_StoreVector()->memory_size() == 8);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "STG $src,$mem\t # ST(packed8B)" %}
opcode(STG_ZOPC, STG_ZOPC);
ins_encode(z_form_rt_mem_opt(src, mem));
ins_pipe(pipe_class_dummy);
%}
// Load
instruct loadV8(iRegL dst, memory mem) %{
match(Set dst (LoadVector mem));
predicate(n->as_LoadVector()->memory_size() == 8);
ins_cost(MEMORY_REF_COST);
// TODO: s390 port size(VARIABLE_SIZE);
format %{ "LG $dst,$mem\t # L(packed8B)" %}
opcode(LG_ZOPC, LG_ZOPC);
ins_encode(z_form_rt_mem_opt(dst, mem));
ins_pipe(pipe_class_dummy);
%}
//----------POPULATION COUNT RULES--------------------------------------------
// Byte reverse
instruct bytes_reverse_int(iRegI dst, iRegI src) %{
match(Set dst (ReverseBytesI src));
predicate(UseByteReverseInstruction); // See Matcher::match_rule_supported
ins_cost(DEFAULT_COST);
size(4);
format %{ "LRVR $dst,$src\t# byte reverse int" %}
opcode(LRVR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
instruct bytes_reverse_long(iRegL dst, iRegL src) %{
match(Set dst (ReverseBytesL src));
predicate(UseByteReverseInstruction); // See Matcher::match_rule_supported
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "LRVGR $dst,$src\t# byte reverse long" %}
opcode(LRVGR_ZOPC);
ins_encode(z_rreform(dst, src));
ins_pipe(pipe_class_dummy);
%}
// Leading zeroes
// The instruction FLOGR (Find Leftmost One in Grande (64bit) Register)
// returns the bit position of the leftmost 1 in the 64bit source register.
// As the bits are numbered from left to right (0..63), the returned
// position index is equivalent to the number of leading zeroes.
// If no 1-bit is found (i.e. the regsiter contains zero), the instruction
// returns position 64. That's exactly what we need.
instruct countLeadingZerosI(revenRegI dst, iRegI src, roddRegI tmp, flagsReg cr) %{
match(Set dst (CountLeadingZerosI src));
effect(KILL tmp, KILL cr);
ins_cost(3 * DEFAULT_COST);
size(14);
format %{ "SLLG $dst,$src,32\t# no need to always count 32 zeroes first\n\t"
"IILH $dst,0x8000 \t# insert \"stop bit\" to force result 32 for zero src.\n\t"
"FLOGR $dst,$dst"
%}
ins_encode %{
// Performance experiments indicate that "FLOGR" is using some kind of
// iteration to find the leftmost "1" bit.
//
// The prior implementation zero-extended the 32-bit argument to 64 bit,
// thus forcing "FLOGR" to count 32 bits of which we know they are zero.
// We could gain measurable speedup in micro benchmark:
//
// leading trailing
// z10: int 2.04 1.68
// long 1.00 1.02
// z196: int 0.99 1.23
// long 1.00 1.11
//
// By shifting the argument into the high-word instead of zero-extending it.
// The add'l branch on condition (taken for a zero argument, very infrequent,
// good prediction) is well compensated for by the savings.
//
// We leave the previous implementation in for some time in the future when
// the "FLOGR" instruction may become less iterative.
// Version 2: shows 62%(z9), 204%(z10), -1%(z196) improvement over original
__ z_sllg($dst$$Register, $src$$Register, 32); // No need to always count 32 zeroes first.
__ z_iilh($dst$$Register, 0x8000); // Insert "stop bit" to force result 32 for zero src.
__ z_flogr($dst$$Register, $dst$$Register);
%}
ins_pipe(pipe_class_dummy);
%}
instruct countLeadingZerosL(revenRegI dst, iRegL src, roddRegI tmp, flagsReg cr) %{
match(Set dst (CountLeadingZerosL src));
effect(KILL tmp, KILL cr);
ins_cost(DEFAULT_COST);
size(4);
format %{ "FLOGR $dst,$src \t# count leading zeros (long)\n\t" %}
ins_encode %{ __ z_flogr($dst$$Register, $src$$Register); %}
ins_pipe(pipe_class_dummy);
%}
// trailing zeroes
// We transform the trailing zeroes problem to a leading zeroes problem
// such that can use the FLOGR instruction to our advantage.
// With
// tmp1 = src - 1
// we flip all trailing zeroes to ones and the rightmost one to zero.
// All other bits remain unchanged.
// With the complement
// tmp2 = ~src
// we get all ones in the trailing zeroes positions. Thus,
// tmp3 = tmp1 & tmp2
// yields ones in the trailing zeroes positions and zeroes elsewhere.
// Now we can apply FLOGR and get 64-(trailing zeroes).
instruct countTrailingZerosI(revenRegI dst, iRegI src, roddRegI tmp, flagsReg cr) %{
match(Set dst (CountTrailingZerosI src));
effect(TEMP_DEF dst, TEMP tmp, KILL cr);
ins_cost(8 * DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE); // Emitted code depends on PreferLAoverADD being on/off.
format %{ "LLGFR $dst,$src \t# clear upper 32 bits (we are dealing with int)\n\t"
"LCGFR $tmp,$src \t# load 2's complement (32->64 bit)\n\t"
"AGHI $dst,-1 \t# tmp1 = src-1\n\t"
"AGHI $tmp,-1 \t# tmp2 = -src-1 = ~src\n\t"
"NGR $dst,$tmp \t# tmp3 = tmp1&tmp2\n\t"
"FLOGR $dst,$dst \t# count trailing zeros (int)\n\t"
"AHI $dst,-64 \t# tmp4 = 64-(trailing zeroes)-64\n\t"
"LCR $dst,$dst \t# res = -tmp4"
%}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
// Rtmp only needed for for zero-argument shortcut. With kill effect in
// match rule Rsrc = roddReg would be possible, saving one register.
Register Rtmp = $tmp$$Register;
assert_different_registers(Rdst, Rsrc, Rtmp);
// Algorithm:
// - Isolate the least significant (rightmost) set bit using (src & (-src)).
// All other bits in the result are zero.
// - Find the "leftmost one" bit position in the single-bit result from previous step.
// - 63-("leftmost one" bit position) gives the # of trailing zeros.
// Version 2: shows 79%(z9), 68%(z10), 23%(z196) improvement over original.
Label done;
__ load_const_optimized(Rdst, 32); // Prepare for shortcut (zero argument), result will be 32.
__ z_lcgfr(Rtmp, Rsrc);
__ z_bre(done); // Taken very infrequently, good prediction, no BHT entry.
__ z_nr(Rtmp, Rsrc); // (src) & (-src) leaves nothing but least significant bit.
__ z_ahi(Rtmp, -1); // Subtract one to fill all trailing zero positions with ones.
// Use 32bit op to prevent borrow propagation (case Rdst = 0x80000000)
// into upper half of reg. Not relevant with sllg below.
__ z_sllg(Rdst, Rtmp, 32); // Shift interesting contents to upper half of register.
__ z_bre(done); // Shortcut for argument = 1, result will be 0.
// Depends on CC set by ahi above.
// Taken very infrequently, good prediction, no BHT entry.
// Branch delayed to have Rdst set correctly (Rtmp == 0(32bit)
// after SLLG Rdst == 0(64bit)).
__ z_flogr(Rdst, Rdst); // Kills tmp which is the oddReg for dst.
__ add2reg(Rdst, -32); // 32-pos(leftmost1) is #trailing zeros
__ z_lcgfr(Rdst, Rdst); // Provide 64bit result at no cost.
__ bind(done);
%}
ins_pipe(pipe_class_dummy);
%}
instruct countTrailingZerosL(revenRegI dst, iRegL src, roddRegL tmp, flagsReg cr) %{
match(Set dst (CountTrailingZerosL src));
effect(TEMP_DEF dst, KILL tmp, KILL cr);
ins_cost(8 * DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE); // Emitted code depends on PreferLAoverADD being on/off.
format %{ "LCGR $dst,$src \t# preserve src\n\t"
"NGR $dst,$src \t#"
"AGHI $dst,-1 \t# tmp1 = src-1\n\t"
"FLOGR $dst,$dst \t# count trailing zeros (long), kill $tmp\n\t"
"AHI $dst,-64 \t# tmp4 = 64-(trailing zeroes)-64\n\t"
"LCR $dst,$dst \t#"
%}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
assert_different_registers(Rdst, Rsrc); // Rtmp == Rsrc allowed.
// New version: shows 5%(z9), 2%(z10), 11%(z196) improvement over original.
__ z_lcgr(Rdst, Rsrc);
__ z_ngr(Rdst, Rsrc);
__ add2reg(Rdst, -1);
__ z_flogr(Rdst, Rdst); // Kills tmp which is the oddReg for dst.
__ add2reg(Rdst, -64);
__ z_lcgfr(Rdst, Rdst); // Provide 64bit result at no cost.
%}
ins_pipe(pipe_class_dummy);
%}
// bit count
instruct popCountI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
match(Set dst (PopCountI src));
effect(TEMP_DEF dst, TEMP tmp, KILL cr);
predicate(UsePopCountInstruction && VM_Version::has_PopCount());
ins_cost(DEFAULT_COST);
size(24);
format %{ "POPCNT $dst,$src\t# pop count int" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
// Prefer compile-time assertion over run-time SIGILL.
assert(VM_Version::has_PopCount(), "bad predicate for countLeadingZerosI");
assert_different_registers(Rdst, Rtmp);
// Version 2: shows 10%(z196) improvement over original.
__ z_popcnt(Rdst, Rsrc);
__ z_srlg(Rtmp, Rdst, 16); // calc byte4+byte6 and byte5+byte7
__ z_alr(Rdst, Rtmp); // into byte6 and byte7
__ z_srlg(Rtmp, Rdst, 8); // calc (byte4+byte6) + (byte5+byte7)
__ z_alr(Rdst, Rtmp); // into byte7
__ z_llgcr(Rdst, Rdst); // zero-extend sum
%}
ins_pipe(pipe_class_dummy);
%}
instruct popCountL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
match(Set dst (PopCountL src));
effect(TEMP_DEF dst, TEMP tmp, KILL cr);
predicate(UsePopCountInstruction && VM_Version::has_PopCount());
ins_cost(DEFAULT_COST);
// TODO: s390 port size(FIXED_SIZE);
format %{ "POPCNT $dst,$src\t# pop count long" %}
ins_encode %{
Register Rdst = $dst$$Register;
Register Rsrc = $src$$Register;
Register Rtmp = $tmp$$Register;
// Prefer compile-time assertion over run-time SIGILL.
assert(VM_Version::has_PopCount(), "bad predicate for countLeadingZerosI");
assert_different_registers(Rdst, Rtmp);
// Original version. Using LA instead of algr seems to be a really bad idea (-35%).
__ z_popcnt(Rdst, Rsrc);
__ z_ahhlr(Rdst, Rdst, Rdst);
__ z_sllg(Rtmp, Rdst, 16);
__ z_algr(Rdst, Rtmp);
__ z_sllg(Rtmp, Rdst, 8);
__ z_algr(Rdst, Rtmp);
__ z_srlg(Rdst, Rdst, 56);
%}
ins_pipe(pipe_class_dummy);
%}
//----------SMARTSPILL RULES---------------------------------------------------
// These must follow all instruction definitions as they use the names
// defined in the instructions definitions.
// ============================================================================
// TYPE PROFILING RULES